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Abstract. Associated with every vector measuretaking its values in a Fechet spac« is the space
L'(m) of all m-integrable functions. It turns out that' (m) is always a Rechet lattice. We show that
possession of the AL-property for the lattide (m) has some remarkable consequences for both the
underlying Féchet spacél and the integration operatgr— | f dm.

Medidas con valores en espacios de Fr  échet y la propiedad AL

Resumen. Cada medida vectoriah con valores en un espacio de&eEhetX tiene asociado el espacio
L'(m) de todas las funciones-integrables. Este espacio resulta ser siempre icutetde Féchet. De-
mostramos que cuando eli@ilo L' (m) goza de la propiedad AL, se obtienem consecuencias notables
tanto para el espacio deé&hetX como para el operador integrénif — [ f dm.

1. Introduction and main results

Associated to every vector measurg with values in some Banach spa&e is the Banach lattic& ! (m)
consisting of the space of alt-integrable functions equipped with the topology of convergence in mean.
“How close” are such spacés'(m) to being classical!-spaces (corresponding to some positive mea-
sure)? Due to a fundamental result of S. Kakutani, [16, Theorem 1.b.2], this question can be reformu-
lated: when isL!(m) order isomorphic to an AL-space, that is, to a Banach lattice in which the norm is
additive on the positive cone? This question was completely and satisfactorily answered by G. Curbera
in [5, Proposition 3.1] and [6, Proposition 2], where an important connection is made between the AL-
property of the lattice.! (m) and certain properties of thietegration operatotZ,,, : L'(m) — X given by

[+ [ fdm. Curbera’s result was subsequently extended to the setting of (locally conéeX)efspaces

X by A. Ferrandez and F. Naranjo, [9, Theorem 2.1]. The aim of this note is to show that possession of
the AL-property for the Rechet latticel.! (m) has some remarkable consequences for both the underlying
Fréchet spac& and the integration operatdy, .

Theorem 1 Let X be a Frechet space. Thek is nuclear if and only if.! (m) is a Fréchet AL-lattice for
everyX-valued vector measura. [
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Some notation is needed to formulate the next result. X dte a (complex) Fechet space with con-
tinuous dual spac&’. It is always assumed that < p, < ... is an increasing sequence of continuous
seminorms determining the topology &f. Let X/p,jl({o}) be thequotient normed spaadetermined by
pr and X, denote its Banach space completion, foe N. The norm inX}, is denoted by - ||, and the
canonical quotient mapf X onto X/p; ' ({0}) is denoted byl;; we use the same notatidh, when it is
interpreted as being ;. -valued.

Let > be ac-algebra of subsets of a non-empty §eaandm : > — X be avector measurei.e., m
is o-additive meaning that.(F,,) — 0 (in X) wheneverE,, | () in 3. The continuity ofll; ensures that
my, := I}, o m is a vector measure o with values inX/p; ' ({0}) < Xj, for k € N. For the definition
of thevariation measurém;,| : ¥ — [0, co] of the Banach-space-valued measug: ¥ — X, we refer
to [7, pp. 2-3].

Theorem 2 Let X be a Frechet Montel space angh be an X-valued vector measure. The following
statements are equivalent.

(i) The Fréchet latticeL! (m) is isomorphic (orderwise and topologically) to a Banach AL-lattice.
(i) There exists € N such that the Rechet latticel.! (m) is isomorphic to the Banach lattide' (|m..|).
(iii) The Féchet spacé.!(m) is normable.

(iv) The integration operatof,, : L!(m) — X is compact. H

Recall that a Fechet space islontelif every closed bounded subset is compact. EverglearFréchet
space is necessarily Montel, [22, p. 520], but not conversely, [13, pp. 433—434]. It should be pointed out,
in relation to Theorem 1, that other characterizations of nuclezstat spaces in terms of the variation of
vector measures, [8], [15], and certain properties of the range of vector measures, [4], are also known.

2. Preliminaries

In this section we formulate the necessary lemmata (and some results of interest in their own right) which
are needed to establish Theorem 1 and Theorem 2. The notation is as in Section 1. The following fact is
well known; see [13, Ch. 3, Section 4].

Lemma 1l Let X be a Fiechet space with topology determined by an increasing sequence of continuous
seminorm®; < p» < .... Then, for eaclk € N, we havg|Tl;(z)||x = pr(z)forz € X. N

An immediate consequence of Lemma 1 is, for any vector measurg — X, that
mel(B) = sup ¢ > _pi(m(Ey)) : {E;} € P(E) p,  E€X, (1)
J

for eachk € N, whereP(E) is the set of all finite partitions oF via X-measurable set8;. We say
thatm hasfinite variationif everyBanach-space-valued measuig, for k € N, has finite variation (i.e.,
mg|(2) < o). Because of (1) this agrees with the definition given in [3, p. 336], where it is called
“bounded variation”.

Let (2, X) be a measurable spacé,be a Féchet space (with topology given by continuous seminorms
p1 < ps <..)andm: ¥ — X be avector measure. Fof € X', let (m, 2’) denote the complex measure
E — (m(E),2'); its variation|(m, 2'}| is then a finite measure. B-measurable functiofi : @ — Cism-
integrableif it is (m, ’)-integrable for each’ € X', and if there is a set functiofin : ¥ — X satisfying
((fm)(E),2") = [, fd(m,z') forall 2’ € X" andE € X. The classical notatiof, f dm := (fm)(E)
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is also used. By th®rlicz-Pettis theorenfsee [11, p. 308] or [12, p. 4]),m is also a vector measure. The
vector space of all individuah-integrable functions is denoted I} (m). Fork € N, define a seminorm
onL(m) by

pk(m>:stup{pk (/Efdm) :Eez}, f e £im). @)

Equipped with the seminorms; (m) < pa2(m) < ... the locally convex spacg!(m) is complete and
contains the space of all-valued,X-simple functiongwhich is denoted by si(X)) as a dense subspace;
see [12, Ch. IV] and [14, Theorem 2.4], or also [10]. Continuity of the integration opefato’! (m) —

X (see Section 1) follows from the inequalities

pr(Im [) < pre(m)(f), feL(m), keN.
For eachk € N, thepolar of thep,-unit ball U, := {x € X : pi(x) < 1} is defined by
Up :={a' € X': [(z,2")| < 1forallz € Uy}.

The family of seminorms

plnlr)s=swp{ [ Ifldlm.a) oo e vz} fecim), ©
for k € N, is equivalent to the seminorms in (2) since

pre(m)(f) < pelm](f) < dpr(m)(f), [ e Li(m), (4)

for eachk € N; see [12, Lemma 11.1.2], where there is 2 in place of 4 above bec#useonsidered over
R rather thanC. With respect to the positive cordg’ € £(m) : f > 0}, defined for the pointwise order
on (), the spaceC!(m) becomes a countably seminormed lattice with respect ttattiee seminormg3).

Lemma 2 Let X be a Fiechet space anth : ¥ — X be a vector measure. Then

ﬂ L£'(Jmi|) € LY (m ﬂ L (my). (5)

k=1

Moreover, the inclusion is continuous whelj~, £'(|my|) is equipped with the topology given by the
increasing sequence of seminorms

1A= [ Ifldimd, ke, ©
In addition, the topology of ! (m) is equivalent to that given by the increasing sequence of seminorms

- el (f) = sup{ [ Famy

:EGZ}, fecLim), keN. (7)
k

ProOOF All of the statements in the Lemma are contained in [18, Lemma 2.4] except for the equality in
(5), where it is only established thét (m) C Ny~ £ (my).

For the converse inclusion, lgt € Ny~, £'(m;). Choose a sequende,, }5°, in sim(X) which
converges pointwise t$ on 2 and satisfiess,,| < |f| for all n € N. To verify thatf € £!(m) it suffices
to show, givenE € X, that{ [, s, dm};2, is Cauchy inX, [14, Theorem 2.4]. So, fik € N. Then, by

Lemma 1 we have
Dr </ (S — Sr) dm> HHk </ (S — $r) dm>
E E

— ‘ /If(sn—sT)d(Hko m) /E(sn—sr)dmk

k

—0
k

k ‘
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asn,r — oo because of the dominated convergence theorem for vector measures, [12, Theorem 11.4.2],
applied to the Banach-space-valued measuei.e.,lim, .o [ 5n dmy = [, fdmy in X;.. B

A Fréchet latticeX has the AL-property, [23], if its topology can be defined by a sequence of continuous
lattice seminorms, po, . . . that are additive in the positive coldé™, that is, such that

pr(z+y) =pe(x) +pi(y), xyeXt kel

It is a consequence of Kantor@s theorem, [1, Theorem 1.7], that ag€het lattice is an AL-space if and
only if equicontinuous subsets &f’ are order bounded iX".

Let X be a Féchet space and : ¥ — X be a vector measure. Fbre N, the variation measuren,|
of my : ¥ — Xy, has already been defined. Then< p, < ... implies thatjm;| < |mo| < ...0n%.
An elementf € £!(m) is calledm-null if fm is the zero vector measure. Equivalently(m)(f) = 0 for
all & € N, which in turn is equivalent t¢ being|m|-null for everyk € N; this is based on the inclusions
LY(m) C L£'(my) which follow from m;, := II, o m (see Section 2 of [18]). The closed subspace of
L (m) consisting of allm-null functions is denoted by (m). Of course N'(m) = Nre; N (my) =
My N (Jmk]). The quotient spacé'(m) := L'(m)/N(m) becomes a Fchet lattice when equipped
with the quotient topology determined by the seminorms (3). Unlike in Banach spaces,wiagre|m |
have the same null sets, for a€€het-space-valued measunethere is no single positive measure which
plays the role of the variation. It follows from Lemma 2 that

(ﬂ £1<mk|>> [N (m) € LY (m) = (ﬂ £1<mk>> [N (m), ®)
k=1 k=1

with a continuous inclusion. We adopt the notation of [9] and denote the left-hand-side of [8)|ay|),

even though the symbain| has no meaning by itself ik is not normable. Sol.!(|m|) is continuously
included inL!(m) and both spaces have the same order. Furthernid(ey|) is a Féchet lattice which

has the AL-property for the (induced quotient) seminorms (6); see [9]. The following result is (part of)
Theorem 2.1 in [9], where it is proved for spaces dRethe extension fronR to C is straightforward. The
Banach space version is due to G. Curbera, [6, Proposition 2].

Lemma 3 Let X be a Fiéchet space anéh be an X -valued vector measure. Then thetEhet lattice
L'(m) is (orderwise and topologically) isomorphic to aéehet AL-lattice if and only if the natural inclu-
sionJ : L!(|m|) — L'(m) is a bicontinuous lattice isomorphism bt (|m|) onto L' (m). W

The next result is of interest in its own right.

Proposition 1 Let X be a Fiechet space anth be anX-valued vector measure. Then theeEhet AL-
lattice L' (|m|) is normable if and only if there existss N such thatZ! (|m/|) is orderwise and topologically
isomorphic to the Banach AL-latticg! (|m..|).

PROOF  Suppose that!(|m|) is normable. Lefl : £!(|m|) — L*(|m|) denote the canonical quotient
map of £1(|m]) := Np—; £} (Jmk]) onto L' (|m]). If Q is a norm determining the topology éf' (|m|),
theng := Q o I is a seminorm determining the topology 6t (]m/). In other words, the following two
statements hold:

() Givenk € N, there isa, > 0 such that

WAk < ang(f),  feL(ml);
and

(b) There exist € N andg, > 0 such that
a(f) < Bellfllls  F €L (|m]).
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Letk € N satisfyk > r. Then
Im.[(E) < |mg[(E) < ok Brlm,|(E),  E€X. ©)

In fact, the first inequality follows becauge < p; implies|m,| < |my| onX. By (a) and (b) above we
have
Imi|(E) < arq(xg) < ax Brlm.|(E)

so that (9) holds.
An immediate consequence of (9) is ti&t(|m,.|) = £1(]my]|) for everyk > r and hence, that

LH(ml) = () £ (Jml) = £ (Imy])
k=1

becausel! (|mq|) 2 L1 (Jma|) 2 ... 2 LY(Jm,]). Similarly, (9) implies that\'(m) = N, N (mg) =

N (m,.) after recalling that\'(m;) = N(|m;|) for eachj € N. So,L*(|m|) = L'(|m,|) as ordered vector

spaces. From the definition of the topology bh(|m|) it follows that the identity map from the Echet

spaceL!(|m|) onto the Banach spade'(|m,|) is continuous. This map is then an isomorphism by the

open mapping theorernf22, p. 172], and hencd,'(|m|) is isomorphic to the Banach AL-lattide" (|m..|).
The converse statement is obviousHl

Corollary 1 Let X be a Féchet space angh be anX-valued vector measure. Then theEhet lattice
L'(m) is a Banach AL-lattice if and only if there exists N such that! (m) is isomorphic taL* (|m..|).

PrRoOOF If L!'(m) is a Banach AL-lattice, then it is also a&ehet AL-lattice and so, by Lemma 3,
L'(m) = L*(|m|) with equality meaning orderwise and topologically isomorphic. Bit(m) is also
normable and s&!(|m|) = L!(|m.|) for somer € N (see Proposition 1). Hencé! (m) is isomorphic to
L (jm.|).

The converse statement is obviousll

Recall that a continuous linear m@pfrom a locally convex spacg into a FEéchet spac&’ is compact
if there is a neighbourhood of 0 € Y such that the closure @f(U) is compact inX, [22, p. 483].
The sequence space:= C is defined in Section 3; see Remark 1.

Proposition 2 Let X be a Fréchet space anth be an X -valued vector measure whose integration op-
erator I,,, : L*(m) — X is compact. The!(m) is a Banach AL-lattice. In particulad.!(m) cannot
contain an isomorphic copy of the &het space.

PrRoOOF By [18, Theorem 2] there existse N such that/,,,, : L'(my) — Xy is compact and.! (my,) =
LY(m,) forall k > r. In particular,

LYmy) = LY(my) and N(my) =N(m,),  k>r (10)
SinceN(m1) 2 N(mz) 2 ... we conclude thatv'(m) = (=, N(mk) = Npe, N(my) = N(m,.).
Moreover,L!(m1) 2 L1 (my) D ... together with (5) and (10) yields
LYm) = () L (mx) = () £ (m) = L' (my).
k=1 k=r
Accordingly,

L' (m) = L' (m)/N(m) = L (m,)/N(m,) = L'(m,).

But, the compactness @f,,., with m,. being Banach-space-valued, implies thathas finite variation and
L'(m,) is isomorphic toL!(|m..|); see Theorems 1 and 4 of [17]. Hendg,(m) is isomorphic to the
Banach AL-latticeL! (|m,.|).
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Sincew is non-normable and subspaces of a Banach space are normable, it follows(thatcannot
contain an isomorphic copy of the#ahet space. H

The remainder of this section is devoted to Bochner integrable functions, in so far as we record some
appropriate results needed to prove the main theorems.

Let X be a Fechet space andl : ¥ — [0,00) be a finite measure defined on a measurable space
(Q,%). AfunctionG : Q — X is calledstrongly measurabléfor )\) if there areX-simple functions
H, :Q — X, forn € N, with lim,, ., H,(w) = G(w), in X, for \-a.e.w € . A strongly measurable
functionG : Q — X is said to beBochner)-integrableif [, (px o G)d\ < oo for eachk € N, where
p1 < po < ... are continuous seminorms determining the topologyof Equivalently, there exists a
sequence oE-simple functions,, : Q@ — X, for n € N, which converges pointwisg-a.e. toG and
Jopro (G —Gr)dx — 0asn — oo, for eachk € N, [18, Lemma 2.5]. For each € 3, the “integral
of G over E” is defined to be the elemenft, G d\ := lim,_.o [, Gn d\ of X, which exists by the
completeness ak and by using the obvious definition g¢f, G, d\. This definition is independent of the
choice of the sequendg,, };2,. Furthermore, théndefinite Bochned-integral G-\ : E — [, Gd\ is
an X -valued vector measure of finite variation and satisfies

(GNI(E) = [E (o G)d\,  Eex, (11)

for eachk € N, [18, Lemma 2.8].

A functionG : Q — X is calledPettis A-integrableif it is weakly measurablé.e., the scalar function
(G,2') s w— (G(w), ') is E-measurable for alt’ € X”), if (G, ") € L'()\) for eachz’ € X', and if for
eachE € X there exists a vectdiP)- [,, G d\ in X satisfying

<(P)-/EGd/\,a:’> :/E<G,ac’> i, 2 eX)

[2, p. 88]. By the Orlicz-Pettis theorem, tivdefinite Pettis\-integral £ — (P)- [, G d\ is anX-valued
vector measure oR. Every Bochnen-integrable function is clearly Pettisintegrable, but not conversely
in general.

A vector measuren : ¥ — X of finite variation is called\-continuousf, for eachk € N, we have
|mg|(E) — 0 whenever\(E) — 0, [3, p. 336]. In particularm is alwayswv,,-continuous for the finite
measure/,,, : ¥ — [0, co) defined by

vn(E) =Y [mel(B)/2F (14 |mel(Q)), E €3 (12)
k=1

The following folklore result presents a different characterization of nuclesehet spaces than that
given in Theorem 1.

Proposition 3 LetX be a Féchet space. Thek is nuclear if and only if, for each finite, positive measure
space((2, X, ) the class of allX-valued Pettis\-integrable functions of coincides with the class of all
X-valued Bochnea-integrable functions of.

PROOF Let X be nuclear and lef©2, 3, \) be any finite, positive measure space. Then evéryalued
PettisA-integrable function o2 is known to be Bochnek-integrable, [21, Theorem 6]. As already noted,
Bochner A-integrable functions are always Pettisintegrable and so these two classes\aftegrable
functions coincide.

Suppose now that for each finite, positive measure sfack, )\), the classes ok -valued Pettis\-
integrable and Bochnex-integrable functions coincide. Létr,,}>2 ; be any unconditionally summable
sequence inX. LetQ) := N andX := 2N, and define a finite, positive measuxeon ¥ by A\(E) :=
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> .epn”?, foreachE € . The functionG : @ — X defined byG(n) := n?z, for n € Qs clearly
weakly measurable, since

(G,2) :n— (G(n),z") = n*(zx,, o), n €,

for eachz’ € X'. Moreover,(G,z’) € L*(\) for eachz’ € X', because

| 1Gantar - Z| ) A({n}) = Zmn,

is finite; this follows from the unconditional summability 6f,,}52 ; and Riemann’s theorem, stating that

a sequence of complex numbers is absolutely summable if and only if it is unconditionally summable.

Finally, if we define(P)- [, Gd\ := }_ . x,, for eachE € X, then it is routine to verify the identity
P)-[,Gd\ ') = [,(G,z')d) for eachz’ € X'. Accordingly, G is Pettis-integrable and hence,

by hypothesis, also Bochnerintegrable. In particular, the indefinite Bochneintegral G-\ has finite

variation and, fok € N arbitrary, (11) implies that

Zpk Tn =/ (pr o G)dX < 0.

So,{z, }22, is absolutely summable i . In view of [19, Theorem 4.2.5] it follows thaY is nuclear. B

Proposition 4 Let X be a Frechet space anff2, 3, \) be a finite, positive measure space. Get ) —
X be a Bochnen-integrable function aneln denote the vector measuig\. Then

LY(Jm|) = {f : Q@ — C is ¥-measurable ang G is Bochner-integrablp (13)

and
LY(m) = {f : Q — C is X-measurable ang G is Pettis-integrablg. (14)

PROOF To establish (13) lef : Q — C be aX-measurable function such that the functjg@ : Q@ — X
is Bochner-integrable. ClearlyfG is strongly measurable. By [18, Lemma 2.8] appliediigg :=
(fG)- it follows that the vector measuresq : ¥ — X has finite variation and, for eaéhe N,

|(mfG)k|(E):/ (pro (fG))d\, EeX.

Thatis,px o (fG) € L*(\), for eachk € N. Again by [18, Lemma 2.8], now applied ta, we have

L istdimd = [ 111630 = [ 1rkoee Gix= [ (o r@)ar< o

and hencef € £!(|my)|. Sincek € Nis arbitrary it follows thatf € ;= £(|mk|) = L(|m]).
Conversely, suppose thfte £!(|m|), thatis,f € £!(|my]) for all k € N. As already notedfG is
strongly measurable. Moreover, fore N, Lemma 2.8 of [18] again applies to yield

/Q (pr o (FG)) d\ = /Q (i o G)dA = /2 [ Fldlma] < o,

which means precisely thdtz is Bochneri-integrable. The identity (13) is thereby established.
The equality (14) is a direct consequence of the various definitions involved combined with the formulae

(hG, 2"y = WG, z"), 2 e X,
and
(m, 2/)(E) = / @ avd\, 2 € X,
E

valid for eachE € ¥ and eacth-measurable functioh : @ — C. B
For Banach space versions of the previous result we refer to Propositions 8 and 13 of [20].
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3. Proofs of main theorems

We begin immediately with the proof of Theorem 1.

Suppose first thaX is a Féchet space with the property that(m) is a Féchet AL-lattice for every -
valued vector measure. According to Lemma 3! (m) is then isomorphic td. (|m|). Since the function
1 (constantly equal to 1 of) belongs toL!(m) it also belongs ta.!(|m|) and hencel € L!(|my])
for everyk € N. So,m has finite variation. Then Corollary 4.3 of [15], together with the paragraph
immediately following its proof, imply thakX is nuclear.

For the proof of the converse implication, suppose tKais a nuclear Fechet space (with topology
determined by the seminorms < p, < ...) and thatm : ¥ — X is a vector measure. Again by [15,
Corollary 4.3] it follows thatm has finite variation. Let,, : ¥ — [0, c0) be the finite, positive measure
given by (12), in which case: is v,,-continuous; see Section 2. Since nucleg&dRet spaces have the
Radon-Niko§im property [3, p. 338], there exists a functidr : @ — X which is integrable by seminorm
(relative tov,,), in the sense of [3, p. 336], and satisfies

m(E) = /E Gdvy, EcX. (15)

Nuclear Fechet spaces are necessarily separable, [19, p. 82], and hence, are Suslin spaces. So Proposition
2.3 of [2] implies thatG is strongly measurable. Moreovef, (px © G) dvy, < oo for eachk € N, [2,
Proposition 2.5(ii)]. Accordingly= is Bochnetv,,-integrable. Moreovetn = G-v,, by (15).

Now let f € £!(m), in which casef is $-measurable andG : Q — X is Pettisv,,-integrable;
see (14) of Proposition 4. Then Proposition 3 implies th@atis also Bochner,,-integrable. By (13) of
Proposition 4 we conclude thgte £!(|m|). This shows that!(m) C £!(|m|) and hence, that'(m) C
L(|m)|). Since the reverse inclusidit (|m|) C L'(m) always holds, we conclude that (m) = L(|m|)
as ordered vector spaces. But, the identity map from tiéeHat spacd.! (|m|) onto the Féchet space
L'(m) is continuous and so the open mapping theorem ensure that) and L' (|m|) are isomorphic.
According to Lemma 3 we conclude that (m) is a Féchet AL-lattice. This concludes the proof of
Theorem1. W

For the case wheX is nuclear Fechet , the inclusior! (m) C £!(Jm]) also follows from part (3)
of Corollary 4.3 in [15]. In the previous proof we provided an alternative argument of this fact, since our
method can also be applied in other settings.

We now turn to the proof of Theorem 2. So, suppose #ias a Féchet Montel space and is an
X-valued vector measure.

(i) < (ii) is true in every Fechet space; see Corollary 1.

(i) = (i) is obvious.

(iv) = (i) is true in every Fechet space; see Proposition 2.

(i) = (iv). Since the integration operatdy, is always continuous, the normability &f (m) implies

that the open unit balB of the norm determining the topology &f (m), with B also aboundedsubset of
L'(m), gets mapped by, to a bounded subset of. SinceX is Montel, I,,,(B) is relatively compact in
X and hencel,, is a compact operator. The proof of Theorem 2 is thereby compleli.

Remark 1 In statement (i) of Theorem 2 it isot possible to replace “Banach AL-lattice” with “Echet
AL-lattice”. Indeed, letX := w = CY be equipped with the topology determined by the increasing
sequence of seminorms

k
pr(T) ::Z\zﬂ, x = (x1,22,...) € X,
=1

for eachk € N, in which caseX is a nuclear (hence, Montel) &het space. Lé? := N and¥ := 2", and
define anX -valued vector measure : ¥ — X by

m(E) = (XE(1)7XE(2)"")’ EeX.
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Observe that\'(m) = {0} and soL!(m) = L'(m). Moreover,L*(m) = C" as an ordered vector space
and, for any functiory : N — C, we havefE Jdm = fx for E € ¥. Hence, forf € L'(m) andk € N
it is the case that

k
pr(m)(f) = sup {p(fx;) : E€ S} =Y 1f()] = pe(/).

j=1

This shows thaf.! (m) is isomorphic toX. Since the lattice seminorms, ps, ... have the AL-property,
we see thatl!(m) is a Féchet AL-lattice. However[!(m) is not normable and so (iii) of Theorem 2
fails. W
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