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Fréchet-space-valued measures and the AL-property
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Dedicated to the late K. Floret

Abstract. Associated with every vector measurem taking its values in a Fréchet spaceX is the space
L1(m) of all m-integrable functions. It turns out thatL1(m) is always a Fŕechet lattice. We show that
possession of the AL-property for the latticeL1(m) has some remarkable consequences for both the
underlying Fŕechet spaceX and the integration operatorf 7→

∫
f dm.

Medidas con valores en espacios de Fr échet y la propiedad AL

Resumen. Cada medida vectorialm con valores en un espacio de FréchetX tiene asociado el espacio
L1(m) de todas las funcionesm-integrables. Este espacio resulta ser siempre un retı́culo de Fŕechet. De-
mostramos que cuando el retı́culo L1(m) goza de la propiedad AL, se obtienem consecuencias notables
tanto para el espacio de FréchetX como para el operador integraciónf 7→

∫
f dm.

1. Introduction and main results

Associated to every vector measurem, with values in some Banach spaceX, is the Banach latticeL1(m)
consisting of the space of allm-integrable functions equipped with the topology of convergence in mean.
“How close” are such spacesL1(m) to being classicalL1-spaces (corresponding to some positive mea-
sure)? Due to a fundamental result of S. Kakutani, [16, Theorem 1.b.2], this question can be reformu-
lated: when isL1(m) order isomorphic to an AL-space, that is, to a Banach lattice in which the norm is
additive on the positive cone? This question was completely and satisfactorily answered by G. Curbera
in [5, Proposition 3.1] and [6, Proposition 2], where an important connection is made between the AL-
property of the latticeL1(m) and certain properties of theintegration operatorIm : L1(m) → X given by
f 7→

∫
f dm. Curbera’s result was subsequently extended to the setting of (locally convex) Fréchet spaces

X by A. Ferńandez and F. Naranjo, [9, Theorem 2.1]. The aim of this note is to show that possession of
the AL-property for the Fŕechet latticeL1(m) has some remarkable consequences for both the underlying
Fréchet spaceX and the integration operatorIm.

Theorem 1 LetX be a Fŕechet space. ThenX is nuclear if and only ifL1(m) is a Fréchet AL-lattice for
everyX-valued vector measurem. �

Presentado por José Bonet.
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Some notation is needed to formulate the next result. LetX be a (complex) Fŕechet space with con-
tinuous dual spaceX ′. It is always assumed thatp1 ≤ p2 ≤ . . . is an increasing sequence of continuous
seminorms determining the topology ofX. Let X/p−1

k ({0}) be thequotient normed spacedetermined by
pk andXk denote its Banach space completion, fork ∈ N. The norm inXk is denoted by‖ · ‖k and the
canonical quotient mapof X ontoX/p−1

k ({0}) is denoted byΠk; we use the same notationΠk when it is
interpreted as beingXk-valued.

Let Σ be aσ-algebra of subsets of a non-empty setΩ andm : Σ → X be avector measure, i.e., m
is σ-additive meaning thatm(En) → 0 (in X) wheneverEn ↓ ∅ in Σ. The continuity ofΠk ensures that
mk := Πk ◦ m is a vector measure onΣ with values inX/p−1

k ({0}) ↪→ Xk, for k ∈ N. For the definition
of thevariation measure|mk| : Σ → [ 0,∞ ] of the Banach-space-valued measuremk : Σ → Xk we refer
to [7, pp. 2–3].

Theorem 2 Let X be a Fŕechet Montel space andm be anX-valued vector measure. The following
statements are equivalent.

(i) The Fŕechet latticeL1(m) is isomorphic (orderwise and topologically) to a Banach AL-lattice.

(ii) There existsr ∈ N such that the Fŕechet latticeL1(m) is isomorphic to the Banach latticeL1(|mr|).

(iii) The Fŕechet spaceL1(m) is normable.

(iv) The integration operatorIm : L1(m) → X is compact. �

Recall that a Fŕechet space isMontel if every closed bounded subset is compact. EverynuclearFréchet
space is necessarily Montel, [22, p. 520], but not conversely, [13, pp. 433–434]. It should be pointed out,
in relation to Theorem 1, that other characterizations of nuclear Fréchet spaces in terms of the variation of
vector measures, [8], [15], and certain properties of the range of vector measures, [4], are also known.

2. Preliminaries

In this section we formulate the necessary lemmata (and some results of interest in their own right) which
are needed to establish Theorem 1 and Theorem 2. The notation is as in Section 1. The following fact is
well known; see [13, Ch. 3, Section 4].

Lemma 1 Let X be a Fŕechet space with topology determined by an increasing sequence of continuous
seminormsp1 ≤ p2 ≤ . . .. Then, for eachk ∈ N, we have‖Πk(x)‖k = pk(x) for x ∈ X. �

An immediate consequence of Lemma 1 is, for any vector measurem : Σ → X, that

|mk|(E) = sup

∑
j

pk

(
m(Ej)

)
: {Ej} ∈ P(E)

 , E ∈ Σ, (1)

for eachk ∈ N, whereP(E) is the set of all finite partitions ofE via Σ-measurable setsEj . We say
thatm hasfinite variationif everyBanach-space-valued measuremk, for k ∈ N, has finite variation (i.e.,
|mk|(Ω) < ∞). Because of (1) this agrees with the definition given in [3, p. 336], where it is called
“bounded variation”.

Let (Ω,Σ) be a measurable space,X be a Fŕechet space (with topology given by continuous seminorms
p1 ≤ p2 ≤ . . .) andm : Σ → X be a vector measure. Forx′ ∈ X ′, let 〈m,x′〉 denote the complex measure
E 7→ 〈m(E), x′〉; its variation|〈m,x′〉| is then a finite measure. AΣ-measurable functionf : Ω → C is m-
integrableif it is 〈m,x′〉-integrable for eachx′ ∈ X ′, and if there is a set functionfm : Σ → X satisfying
〈(fm)(E), x′〉 =

∫
E

f d〈m,x′〉 for all x′ ∈ X ′ andE ∈ Σ. The classical notation
∫

E
f dm := (fm)(E)
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is also used. By theOrlicz-Pettis theorem(see [11, p. 308] or [12, p. 4]),fm is also a vector measure. The
vector space of all individualm-integrable functions is denoted byL1(m). Fork ∈ N, define a seminorm
onL1(m) by

pk(m) : f 7→ sup
{

pk

(∫
E

f dm

)
: E ∈ Σ

}
, f ∈ L1(m). (2)

Equipped with the seminormsp1(m) ≤ p2(m) ≤ . . . the locally convex spaceL1(m) is complete and
contains the space of allC-valued,Σ-simple functions(which is denoted by sim(Σ)) as a dense subspace;
see [12, Ch. IV] and [14, Theorem 2.4], or also [10]. Continuity of the integration operatorIm : L1(m) →
X (see Section 1) follows from the inequalities

pk(Im f) ≤ pk(m)(f), f ∈ L1(m), k ∈ N.

For eachk ∈ N, thepolar of thepk-unit ballUk := {x ∈ X : pk(x) ≤ 1} is defined by

U◦
k :=

{
x′ ∈ X ′ : |〈x, x′〉| ≤ 1 for all x ∈ Uk

}
.

The family of seminorms

pk[m](f) := sup
{∫

Ω

|f | d|〈m,x′〉| : x′ ∈ U◦
k

}
, f ∈ L1(m), (3)

for k ∈ N, is equivalent to the seminorms in (2) since

pk(m)(f) ≤ pk[m](f) ≤ 4pk(m)(f), f ∈ L1(m), (4)

for eachk ∈ N; see [12, Lemma II.1.2], where there is 2 in place of 4 above becauseX is considered over
R rather thanC. With respect to the positive cone{f ∈ L1(m) : f ≥ 0}, defined for the pointwise order
onΩ, the spaceL1(m) becomes a countably seminormed lattice with respect to thelattice seminorms(3).

Lemma 2 LetX be a Fŕechet space andm : Σ → X be a vector measure. Then

∞⋂
k=1

L1(|mk|) ⊆ L1(m) =
∞⋂

k=1

L1(mk). (5)

Moreover, the inclusion is continuous when
⋂∞

k=1 L1(|mk|) is equipped with the topology given by the
increasing sequence of seminorms

|||f |||k :=
∫

Ω

|f | d|mk|, k ∈ N. (6)

In addition, the topology ofL1(m) is equivalent to that given by the increasing sequence of seminorms

‖ · ‖k(mk)(f) := sup
{∥∥∥∥∫

E

f dmk

∥∥∥∥
k

: E ∈ Σ
}

, f ∈ L1(m), k ∈ N. (7)

PROOF. All of the statements in the Lemma are contained in [18, Lemma 2.4] except for the equality in
(5), where it is only established thatL1(m) ⊆

⋂∞
k=1 L1(mk).

For the converse inclusion, letf ∈
⋂∞

k=1 L1(mk). Choose a sequence{sn}∞n=1 in sim(Σ) which
converges pointwise tof on Ω and satisfies|sn| ≤ |f | for all n ∈ N. To verify thatf ∈ L1(m) it suffices
to show, givenE ∈ Σ, that{

∫
E

sn dm}∞n=1 is Cauchy inX, [14, Theorem 2.4]. So, fixk ∈ N. Then, by
Lemma 1 we have

pk

(∫
E

(sn − sr) dm

)
=

∥∥∥∥Πk

(∫
E

(sn − sr) dm

)∥∥∥∥
k

=
∥∥∥∥∫

E

(sn − sr) d (Πk ◦ m)
∥∥∥∥

k

=
∥∥∥∥∫

E

(sn − sr) dmk

∥∥∥∥
k

−→ 0
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asn, r → ∞ because of the dominated convergence theorem for vector measures, [12, Theorem II.4.2],
applied to the Banach-space-valued measuremk, i.e.,limn→∞

∫
E

sn dmk =
∫

E
f dmk in Xk. �

A Fréchet latticeX has the AL-property, [23], if its topology can be defined by a sequence of continuous
lattice seminormsp1, p2, . . . that are additive in the positive coneX+, that is, such that

pk(x + y) = pk(x) + pk(y), x, y ∈ X+, k ∈ N.

It is a consequence of Kantorovic̆’s theorem, [1, Theorem 1.7], that a Fréchet lattice is an AL-space if and
only if equicontinuous subsets ofX ′ are order bounded inX ′.

Let X be a Fŕechet space andm : Σ → X be a vector measure. Fork ∈ N, the variation measure|mk|
of mk : Σ → Xk has already been defined. Thenp1 ≤ p2 ≤ . . . implies that|m1| ≤ |m2| ≤ . . . on Σ.
An elementf ∈ L1(m) is calledm-null if fm is the zero vector measure. Equivalently,pk(m)(f) = 0 for
all k ∈ N, which in turn is equivalent tof being|mk|-null for everyk ∈ N; this is based on the inclusions
L1(m) ⊆ L1(mk) which follow from mk := Πk ◦ m (see Section 2 of [18]). The closed subspace of
L1(m) consisting of allm-null functions is denoted byN (m). Of course,N (m) =

⋂∞
k=1N (mk) =⋂∞

k=1N (|mk|). The quotient spaceL1(m) := L1(m)/N (m) becomes a Fréchet lattice when equipped
with the quotient topology determined by the seminorms (3). Unlike in Banach spaces, wherem and|m|
have the same null sets, for a Fréchet-space-valued measurem there is no single positive measure which
plays the role of the variation. It follows from Lemma 2 that( ∞⋂

k=1

L1(|mk|)

)/
N (m) ⊆ L1(m) =

( ∞⋂
k=1

L1(mk)

)/
N (m), (8)

with a continuous inclusion. We adopt the notation of [9] and denote the left-hand-side of (8) byL1(|m|),
even though the symbol|m| has no meaning by itself ifX is not normable. So,L1(|m|) is continuously
included inL1(m) and both spaces have the same order. Furthermore,L1(|m|) is a Fŕechet lattice which
has the AL-property for the (induced quotient) seminorms (6); see [9]. The following result is (part of)
Theorem 2.1 in [9], where it is proved for spaces overR; the extension fromR to C is straightforward. The
Banach space version is due to G. Curbera, [6, Proposition 2].

Lemma 3 Let X be a Fŕechet space andm be anX-valued vector measure. Then the Fréchet lattice
L1(m) is (orderwise and topologically) isomorphic to a Fréchet AL-lattice if and only if the natural inclu-
sionJ : L1(|m|) → L1(m) is a bicontinuous lattice isomorphism ofL1(|m|) ontoL1(m). �

The next result is of interest in its own right.

Proposition 1 Let X be a Fŕechet space andm be anX-valued vector measure. Then the Fréchet AL-
latticeL1(|m|) is normable if and only if there existsr ∈ N such thatL1(|m|) is orderwise and topologically
isomorphic to the Banach AL-latticeL1(|mr|).

PROOF. Suppose thatL1(|m|) is normable. LetΠ : L1(|m|) → L1(|m|) denote the canonical quotient
map ofL1(|m|) :=

⋂∞
k=1 L1(|mk|) ontoL1(|m|). If Q is a norm determining the topology ofL1(|m|),

thenq := Q ◦ Π is a seminorm determining the topology ofL1(|m|). In other words, the following two
statements hold:

(a) Givenk ∈ N, there isαk > 0 such that

|||f |||k ≤ αk q(f), f ∈ L1(|m|);

and

(b) There existr ∈ N andβr > 0 such that

q(f) ≤ βr|||f |||r, f ∈ L1(|m|).
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Let k ∈ N satisfyk ≥ r. Then

|mr|(E) ≤ |mk|(E) ≤ αk βr|mr|(E), E ∈ Σ. (9)

In fact, the first inequality follows becausepr ≤ pk implies |mr| ≤ |mk| on Σ. By (a) and (b) above we
have

|mk|(E) ≤ αk q(χ
E

) ≤ αk βr|mr|(E)

so that (9) holds.
An immediate consequence of (9) is thatL1(|mr|) = L1(|mk|) for everyk ≥ r and hence, that

L1(|m|) =
∞⋂

k=1

L1(|mk|) = L1(|mr|)

becauseL1(|m1|) ⊇ L1(|m2|) ⊇ . . . ⊇ L1(|mr|). Similarly, (9) implies thatN (m) =
⋂∞

k=1N (mk) =
N (mr) after recalling thatN (mj) = N (|mj |) for eachj ∈ N. So,L1(|m|) = L1(|mr|) as ordered vector
spaces. From the definition of the topology onL1(|m|) it follows that the identity map from the Fréchet
spaceL1(|m|) onto the Banach spaceL1(|mr|) is continuous. This map is then an isomorphism by the
open mapping theorem, [22, p. 172], and hence,L1(|m|) is isomorphic to the Banach AL-latticeL1(|mr|).

The converse statement is obvious.�

Corollary 1 Let X be a Fŕechet space andm be anX-valued vector measure. Then the Fréchet lattice
L1(m) is a Banach AL-lattice if and only if there existsr ∈ N such thatL1(m) is isomorphic toL1(|mr|).

PROOF. If L1(m) is a Banach AL-lattice, then it is also a Fréchet AL-lattice and so, by Lemma 3,
L1(m) = L1(|m|) with equality meaning orderwise and topologically isomorphic. But,L1(m) is also
normable and soL1(|m|) = L1(|mr|) for somer ∈ N (see Proposition 1). Hence,L1(m) is isomorphic to
L1(|mr|).

The converse statement is obvious.�

Recall that a continuous linear mapT from a locally convex spaceY into a Fŕechet spaceX is compact
if there is a neighbourhoodU of 0 ∈ Y such that the closure ofT (U) is compact inX, [22, p. 483].

The sequence spaceω := CN is defined in Section 3; see Remark 1.

Proposition 2 Let X be a Fŕechet space andm be anX-valued vector measure whose integration op-
erator Im : L1(m) → X is compact. ThenL1(m) is a Banach AL-lattice. In particular,L1(m) cannot
contain an isomorphic copy of the Fréchet spaceω.

PROOF. By [18, Theorem 2] there existsr ∈ N such thatImk
: L1(mk) → Xk is compact andL1(mk) =

L1(mr) for all k ≥ r. In particular,

L1(mk) = L1(mr) and N (mk) = N (mr), k ≥ r. (10)

SinceN (m1) ⊇ N (m2) ⊇ . . . we conclude thatN (m) =
⋂∞

k=1N (mk) =
⋂∞

k=r N (mk) = N (mr).
Moreover,L1(m1) ⊇ L1(m2) ⊇ . . . together with (5) and (10) yields

L1(m) =
∞⋂

k=1

L1(mk) =
∞⋂

k=r

L1(mk) = L1(mr).

Accordingly,
L1(m) = L1(m)/N (m) = L1(mr)/N (mr) = L1(mr).

But, the compactness ofImr , with mr being Banach-space-valued, implies thatmr has finite variation and
L1(mr) is isomorphic toL1(|mr|); see Theorems 1 and 4 of [17]. Hence,L1(m) is isomorphic to the
Banach AL-latticeL1(|mr|).
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Sinceω is non-normable and subspaces of a Banach space are normable, it follows thatL1(m) cannot
contain an isomorphic copy of the Fréchet spaceω. �

The remainder of this section is devoted to Bochner integrable functions, in so far as we record some
appropriate results needed to prove the main theorems.

Let X be a Fŕechet space andλ : Σ → [0,∞) be a finite measure defined on a measurable space
(Ω,Σ). A function G : Ω → X is calledstrongly measurable(for λ) if there areΣ-simple functions
Hn : Ω → X, for n ∈ N, with limn→∞Hn(w) = G(w), in X, for λ-a.e.w ∈ Ω. A strongly measurable
functionG : Ω → X is said to beBochnerλ-integrableif

∫
Ω
(pk ◦ G) dλ < ∞ for eachk ∈ N, where

p1 ≤ p2 ≤ . . . are continuous seminorms determining the topology ofX. Equivalently, there exists a
sequence ofΣ-simple functionsGn : Ω → X, for n ∈ N, which converges pointwiseλ-a.e. toG and∫
Ω

pk ◦ (G − Gn) dλ → 0 asn → ∞, for eachk ∈ N, [18, Lemma 2.5]. For eachE ∈ Σ, the “integral
of G over E” is defined to be the element

∫
E

G dλ := limn→∞
∫

E
Gn dλ of X, which exists by the

completeness ofX and by using the obvious definition of
∫

E
Gn dλ. This definition is independent of the

choice of the sequence{Gn}∞n=1. Furthermore, theindefinite Bochnerλ-integral G·λ : E 7→
∫

E
G dλ is

anX-valued vector measure of finite variation and satisfies

|(G·λ)k|(E) =
∫

E

(pk ◦ G) dλ, E ∈ Σ, (11)

for eachk ∈ N, [18, Lemma 2.8].
A function G : Ω → X is calledPettisλ-integrableif it is weakly measurable(i.e., the scalar function

〈G, x′〉 : w 7→ 〈G(w), x′〉 is Σ-measurable for allx′ ∈ X ′), if 〈G, x′〉 ∈ L1(λ) for eachx′ ∈ X ′, and if for
eachE ∈ Σ there exists a vector(P )-

∫
E

G dλ in X satisfying〈
(P )-

∫
E

G dλ, x′
〉

=
∫

E

〈G, x′〉 dλ, x′ ∈ X ′,

[2, p. 88]. By the Orlicz-Pettis theorem, theindefinite Pettisλ-integral E 7→ (P )-
∫

E
G dλ is anX-valued

vector measure onΣ. Every Bochnerλ-integrable function is clearly Pettisλ-integrable, but not conversely
in general.

A vector measurem : Σ → X of finite variation is calledλ-continuousif, for eachk ∈ N, we have
|mk|(E) → 0 wheneverλ(E) → 0, [3, p. 336]. In particular,m is alwaysνm-continuous for the finite
measureνm : Σ → [0,∞) defined by

νm(E) :=
∞∑

k=1

|mk|(E)/2k
(
1 + |mk|(Ω)

)
, E ∈ Σ. (12)

The following folklore result presents a different characterization of nuclear Fréchet spaces than that
given in Theorem 1.

Proposition 3 LetX be a Fŕechet space. ThenX is nuclear if and only if, for each finite, positive measure
space(Ω,Σ, λ) the class of allX-valued Pettisλ-integrable functions onΩ coincides with the class of all
X-valued Bochnerλ-integrable functions onΩ.

PROOF. Let X be nuclear and let(Ω,Σ, λ) be any finite, positive measure space. Then everyX-valued
Pettisλ-integrable function onΩ is known to be Bochnerλ-integrable, [21, Theorem 6]. As already noted,
Bochnerλ-integrable functions are always Pettisλ-integrable and so these two classes ofλ-integrable
functions coincide.

Suppose now that for each finite, positive measure space(Ω,Σ, λ), the classes ofX-valued Pettisλ-
integrable and Bochnerλ-integrable functions coincide. Let{xn}∞n=1 be any unconditionally summable
sequence inX. Let Ω := N andΣ := 2N, and define a finite, positive measureλ on Σ by λ(E) :=
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∑
n∈E n−2, for eachE ∈ Σ. The functionG : Ω → X defined byG(n) := n2 xn for n ∈ Ω is clearly

weakly measurable, since

〈G, x′〉 : n 7→ 〈G(n), x′〉 = n2〈xn, x′〉, n ∈ Ω,

for eachx′ ∈ X ′. Moreover,〈G, x′〉 ∈ L1(λ) for eachx′ ∈ X ′, because∫
Ω

|〈G, x′〉| dλ =
∞∑

n=1

|〈G(n), x′〉|λ({n}) =
∞∑

n=1

|〈xn, x′〉|

is finite; this follows from the unconditional summability of{xn}∞n=1 and Riemann’s theorem, stating that
a sequence of complex numbers is absolutely summable if and only if it is unconditionally summable.
Finally, if we define(P )-

∫
E

G dλ :=
∑

n∈E xn, for eachE ∈ Σ, then it is routine to verify the identity
〈(P )-

∫
E

G dλ, x′〉 =
∫

E
〈G, x′〉 dλ for eachx′ ∈ X ′. Accordingly,G is Pettisλ-integrable and hence,

by hypothesis, also Bochnerλ-integrable. In particular, the indefinite Bochnerλ-integralG·λ has finite
variation and, fork ∈ N arbitrary, (11) implies that

∞∑
n=1

pk(xn) =
∫

Ω

(pk ◦ G) dλ < ∞.

So,{xn}∞n=1 is absolutely summable inX. In view of [19, Theorem 4.2.5] it follows thatX is nuclear. �

Proposition 4 LetX be a Fŕechet space and(Ω,Σ, λ) be a finite, positive measure space. LetG : Ω →
X be a Bochnerλ-integrable function andm denote the vector measureG·λ. Then

L1(|m|) = {f : Ω → C is Σ-measurable andfG is Bochner-integrable} (13)

and
L1(m) = {f : Ω → C is Σ-measurable andfG is Pettis-integrable}. (14)

PROOF. To establish (13) letf : Ω → C be aΣ-measurable function such that the functionfG : Ω → X
is Bochnerλ-integrable. ClearlyfG is strongly measurable. By [18, Lemma 2.8] applied tomfG :=
(fG)·λ it follows that the vector measuremfG : Σ → X has finite variation and, for eachk ∈ N,

|(mfG)k|(E) =
∫

E

(
pk ◦ (fG)

)
dλ, E ∈ Σ.

That is,pk ◦ (fG) ∈ L1(λ), for eachk ∈ N. Again by [18, Lemma 2.8], now applied tom, we have∫
Ω

|f | d|mk| =
∫

Ω

|f | d|(G·λ)k| =
∫

Ω

|f |·(pk ◦ G) dλ =
∫

Ω

(
pk ◦ (fG)

)
dλ < ∞

and hence,f ∈ L1(|mk)|. Sincek ∈ N is arbitrary it follows thatf ∈
⋂∞

k=1 L1(|mk|) = L1(|m|).
Conversely, suppose thatf ∈ L1(|m|), that is,f ∈ L1(|mk|) for all k ∈ N. As already noted,fG is

strongly measurable. Moreover, fork ∈ N, Lemma 2.8 of [18] again applies to yield∫
Ω

(
pk ◦ (fG)

)
dλ =

∫
Ω

|f |·(pk ◦ G)dλ =
∫

Ω

|f | d|mk| < ∞,

which means precisely thatfG is Bochnerλ-integrable. The identity (13) is thereby established.
The equality (14) is a direct consequence of the various definitions involved combined with the formulae

〈hG, x′〉 = h〈G, x′〉, x′ ∈ X ′,

and

〈m,x′〉(E) =
∫

E

〈G, x′〉 dλ, x′ ∈ X,

valid for eachE ∈ Σ and eachΣ-measurable functionh : Ω → C. �

For Banach space versions of the previous result we refer to Propositions 8 and 13 of [20].
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3. Proofs of main theorems

We begin immediately with the proof of Theorem 1.
Suppose first thatX is a Fŕechet space with the property thatL1(m) is a Fŕechet AL-lattice for everyX-

valued vector measurem. According to Lemma 3,L1(m) is then isomorphic toL1(|m|). Since the function
1 (constantly equal to 1 onΩ) belongs toL1(m) it also belongs toL1(|m|) and hence,1 ∈ L1(|mk|)
for everyk ∈ N. So, m has finite variation. Then Corollary 4.3 of [15], together with the paragraph
immediately following its proof, imply thatX is nuclear.

For the proof of the converse implication, suppose thatX is a nuclear Fŕechet space (with topology
determined by the seminormsp1 ≤ p2 ≤ . . .) and thatm : Σ → X is a vector measure. Again by [15,
Corollary 4.3] it follows thatm has finite variation. Letνm : Σ → [0,∞) be the finite, positive measure
given by (12), in which casem is νm-continuous; see Section 2. Since nuclear Fréchet spaces have the
Radon-Nikod́ym property, [3, p. 338], there exists a functionG : Ω → X which is integrable by seminorm
(relative toνm), in the sense of [3, p. 336], and satisfies

m(E) =
∫

E

G dνm, E ∈ Σ. (15)

Nuclear Fŕechet spaces are necessarily separable, [19, p. 82], and hence, are Suslin spaces. So Proposition
2.3 of [2] implies thatG is strongly measurable. Moreover,

∫
Ω
(pk ◦ G) dνm < ∞ for eachk ∈ N, [2,

Proposition 2.5(ii)]. Accordingly,G is Bochnerνm-integrable. Moreover,m = G·νm by (15).
Now let f ∈ L1(m), in which casef is Σ-measurable andfG : Ω → X is Pettisνm-integrable;

see (14) of Proposition 4. Then Proposition 3 implies thatfG is also Bochnerνm-integrable. By (13) of
Proposition 4 we conclude thatf ∈ L1(|m|). This shows thatL1(m) ⊆ L1(|m|) and hence, thatL1(m) ⊆
L1(|m|). Since the reverse inclusionL1(|m|) ⊆ L1(m) always holds, we conclude thatL1(m) = L1(|m|)
as ordered vector spaces. But, the identity map from the Fréchet spaceL1(|m|) onto the Fŕechet space
L1(m) is continuous and so the open mapping theorem ensures thatL1(m) andL1(|m|) are isomorphic.
According to Lemma 3 we conclude thatL1(m) is a Fŕechet AL-lattice. This concludes the proof of
Theorem 1. �

For the case whenX is nuclear Fŕechet , the inclusionL1(m) ⊆ L1(|m|) also follows from part (3)
of Corollary 4.3 in [15]. In the previous proof we provided an alternative argument of this fact, since our
method can also be applied in other settings.

We now turn to the proof of Theorem 2. So, suppose thatX is a Fŕechet Montel space andm is an
X-valued vector measure.
(i) ⇐⇒ (ii) is true in every Fŕechet space; see Corollary 1.
(ii) =⇒ (iii) is obvious.
(iv) =⇒ (i) is true in every Fŕechet space; see Proposition 2.
(iii) =⇒ (iv). Since the integration operatorIm is always continuous, the normability ofL1(m) implies
that the open unit ballB of the norm determining the topology ofL1(m), with B also aboundedsubset of
L1(m), gets mapped byIm to a bounded subset ofX. SinceX is Montel,Im(B) is relatively compact in
X and hence,Im is a compact operator. The proof of Theorem 2 is thereby complete.�

Remark 1 In statement (i) of Theorem 2 it isnot possible to replace “Banach AL-lattice” with “Fréchet
AL-lattice”. Indeed, letX := ω = CN be equipped with the topology determined by the increasing
sequence of seminorms

pk(x) :=
k∑

j=1

|xj |, x = (x1, x2, . . .) ∈ X,

for eachk ∈ N, in which caseX is a nuclear (hence, Montel) Fréchet space. LetΩ := N andΣ := 2N, and
define anX-valued vector measurem : Σ → X by

m(E) :=
(
χ

E
(1), χ

E
(2), . . .

)
, E ∈ Σ.

312
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Observe thatN (m) = {0} and soL1(m) = L1(m). Moreover,L1(m) = CN as an ordered vector space
and, for any functionf : N → C, we have

∫
E

f dm = fχ
E

for E ∈ Σ. Hence, forf ∈ L1(m) andk ∈ N
it is the case that

pk(m)(f) = sup
{
pk(fχ

E
) : E ∈ Σ

}
=

k∑
j=1

|f(j)| = pk(f).

This shows thatL1(m) is isomorphic toX. Since the lattice seminormsp1, p2, . . . have the AL-property,
we see thatL1(m) is a Fŕechet AL-lattice. However,L1(m) is not normable and so (iii) of Theorem 2
fails. �
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