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Abstract

Hospitals are a type of building with especially high energy demands;
and this is owing to the fact that they run life-saving services 24 hours a
day, 365 days a year. Moreover, the healthcare services offered by hospitals
are growing in number and complexity, which means that their energy
demands increase every year.

In order to cover the energy needs of all this activity, a vast amount
of technical installations are required. In addition, supplying energy and
liquids increasingly necessitates greater control, precision, and quality.
Due to the critical role of cooling-water systems, this thesis focuses on
these installations that are vital for both the comfort they provide through
air-conditioning and for healthcare activities.

The objective of this research is to improve the performance of hospi-
tal refrigeration plants to increase energy efficiency, while also reducing
inefficiencies in generator start-ups and maintenance, which are common-
place problems in this type of facility.

By applying Machine Learning (ML) models to predict cooling de-
mand, it has been possible to anticipate, adapt, and plan for actual ther-
mal generation to meet, but not exceed, expected demand. To obtain
said models, an already existing methodology based on genetic algorithms
called GAparsimony was utilized. This methodology allows parsimonious
models to be obtained in an automated fashion. The algorithms used in-
clude artificial neural networks (ANN), support vector machines for re-
gression (SVR), and extreme gradient boosting machines (XGBoost).

Prior to the modeling phase, an extensive general optimization of
the cooling-water facilities was carried out; and during this process a
methodology was developed to be applied in the following areas: the con-
trol system, the data acquisition system, and the physical systems. The
optimization culminated with a demand prediction model being imple-
mented in the BMS (Building Management Systems). This feature enabled
the BMS to anticipate generator programming a day in advance, thus exer-
cising predictive management.

The research presented herein has been corroborated by the results ob-
tained when the optimization methodology was applied, and by imple-
menting the demand prediction model in the BMS as well.
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Resumen

Los hospitales son edificios que tienen una gran demanda energética
debido a que en su interior albergan servicios vitales las 24 horas del dia,
los 365 dias del ano. Asi mismo, las carteras de servicios de procesos asis-
tenciales que proporcionan los hospitales son cada vez mas complejos y
numerosos lo que hace incrementar anualmente esta demanda.

Para dar cobertura a cada una de las actividades se requiere un gran
numero de instalaciones técnicas. Ademas, el suministro de energia y de
fluidos cada vez requiere mayor control, precision y calidad. Esta tesis se
ha centrado por su importancia critica, en la instalacién de generacion de
agua refrigerada que se requiere tanto para confort en los sistemas de aire
acondicionado, como en los procesos asistenciales.

El objetivo de este trabajo de investigacion consiste en mejorar el fun-
cionamiento de las plantas de refigeraciéon de los hospitales para aumen-
tar la eficiencia energética, asi mismo para reducir las ineficencias en los
arranques de los generadores y en el mantenimiento, problemas comunes
en este tipo de instalaciones.

Mediante el uso de modelos desarrollados mediante Machine learning
(ML) aplicados en la prediccién de la demanda de refrigeracién, se ha
conseguido anticipar, adaptar y planificar la generaciéon térmica real a
la demanda prevista. Para la obtencién de los mismos se ha utilizado
una metodologia existente basada en algoritmos genéticos denominada
GAparsimony. Esta metodologia permite de una manera automatizada
obtener modelos parsimoniosos. Entre los algoritmos utilizados se encuen-
tran las artificial neural networks (ANN), las suport vector machines for
regression (SVR) y las extreme gradient boosting machines (XGBoost).

Previamente, se realiz6 una extensa optimizacion general de las
instalaciones de generacion de agua refrigerada, desarrollandose una
metodologia de trabajo que se aplica en los siguientes ambitos: el sis-
tema de control; el sistema de adquisiciéon de datos; y en los sistemas fisi-
cos. El proceso culminé con la implantaciéon dentro del BMS (Building
Management Systems) del modelo de prediccion de demanda, lo que per-
mite anticipar un dia antes la programacion de los generadores necesarios,
realizandose asi un control predictivo.

Este trabajo queda respaldado satisfactoriamente por los datos de los
resultados reales obtenidos por la aplicaciéon de la metodologia de opti-
mizacion, asi como por la implementacién en el BMS del modelo de predic-
cion de demanda durante la duracion del estudio.
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Chapter 1

Introduction

1.1 Background

The Paris Climate Accord, signed 22 April 2016, conveys the interna-
tional awareness and commitment to reducing CO2 emissions at this point
in time. The objective of this agreement was designed to keep global
temperature rise below 2 °C above pre-industrial levels and to limit that
increase even further to 1.5 °C [1]. Achieving this goal requires cutting
down on CO2 and greenhouse gas emissions as soon as possible.

This goal was translated into our regional context on 28 November
2018, when the European Commission published its Climate Strategy [2]
which establishes objectives for reducing greenhouse gas emissions by the
year 2020. Likewise, it outlined regulatory guidelines to achieve these ob-
jectives by 2030, along with long-term objectives for a zero-emissions, or
climate-neutral, European Union (EU) by the year 2050. According to this
plan, by 2050, the EU will have reduced its CO2 emissions by 80%, which
would make emissions approximately equivalent to the levels of 1990.

The most recent continuation of this initiative took place in December
2019, in Madrid where United Nations member countries held the "Climate
Change Conference COP25". The aim of this gathering was to review the
progress of their previously signed commitments and extend them beyond
2020.

Buildings are the EU’s biggest energy consumers and greenhouse-gas
emitters: they represent approximately 40% of total energy consumption
and are responsible for 36% of the EU’s total greenhouse gas emissions [3].
By improving the energy efficiency of buildings, very significant energy
savings could be obtained and, in turn, CO2 emissions reduced. At present,
75% of buildings are inefficient in terms of energy, which means that much
of the energy they consume goes to waste. It is estimated that both energy
consumed and CO2 emissions could be reduced by 5% in the short term by
renovating the building stock. Currently, less than 1% of existing buildings
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are renovated each year. At this pace, we are sure to fail to reach the objec-
tives laid out in the EU climate strategy.

Cooling is the fastest-growing end-use of energy in buildings. The In-
ternational Energy Agency (IEA) found that the energy demand of cool-
ing systems more than tripled between 1990 and 2018, reaching around
2,000 TWh of electricity [4]. The increase in cooling demand is impact-
ing power generation and distribution capacity, especially during peak-
demand periods (for example, July and August in Spain) and extreme-heat
events. Space cooling in buildings is responsible for 50% of peak elec-
tricity demand. CO2 emissions from space cooling are also rising rapidly,
tripling between 1990 and 2018 to reach 1,130 million tons. Air condition-
ing accounts for nearly 20% of total electricity use in buildings around the
world today [5].

Cooling performs a critical role in hospitals for many healthcare-
related activities: air conditioning (AC) in operating rooms, intensive care
units (ICU), emergency rooms, etc. It is also fundamental for operating
medical equipment such as that used in radiology and diagnostic imaging,
scanners, refrigeration storage in blood banks, kitchens, and pharmacies;
pathology and laboratories. Computer and data center racks also require
cooled water. Studies have shown that the energy required by chilled-
water installations and AC used to create a comfortable environment and
to support healthcare activities in a medical building constitute 40% to
45% of the total energy necessary for building operations [6, 7].

Hospitals can decrease their energy consumption in chilled-water in-
stallations by more than 20% by implementing and adjusting the BMS,
adequately zoning for AC, adding activation sensors in different areas,
measuring and analyzing historical data from those systems, planning
proper-use schedules, harnessing energy from extraction air, and regulat-
ing the speed of fans and water pumps.

Chilled water plants for refrigerating technical equipment and air con-
ditioning (AC) in hospitals are massive energy consumers whose operating
and optimization problems are commonplace and widespread. Applying
improvement measures to these facilities can lead to significant energy
savings, along with the economic benefits that they entail. Generally
speaking, these types of plants are controlled by centralized BMS systems
or by their own cooling-plant systems; however, they lack the ability to
predict demand.

Some interesting related studies have been conducted to predict ther-
mal demand in buildings using different forecasting techniques: linear re-
gression for estimating cooling energy in condominiums [8], combining
ANN with an ensemble approach or clustering-enhanced adaptative ANN
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to forecast building cooling loads [9, 10], Artificial Intelligence (AI) to pre-
dict energy consumption of Low Energy Buildings (LEB) [11], and a hybrid
approach for building stock energy prediction [12]. In a field related to
this thesis, research was conducted to forecast electrical consumption in
hospital facilities based on ANN [13].

Model Predictive Control (MPC) applications for HVAC have been
tested with ANN models [14, 15], including an MPC formulation
framework for Enhancing Building and Heating, Ventilating and Air
Conditioning (HVAC) System Energy Efficiency [16].

Some recently published methods have automated and facilitated
modeling processes with hyperparameter optimization (HO) and feature
selection (FS) in [17, 18]. The GAparsimony methodology used in the arti-
cles comprising this thesis is a genetic algorithm (GA) that conducts par-
simonious model selection (PMS) [19, 20, 21]. It has been successfully
applied in a range of contexts such as steel industrial processes [22], me-
chanical design [23], to generate a landslide susceptibility map [24], and
solar radiation forecasting [25].

The actions comprising the methodology developed herein affect these
control systems by improving their performance, optimization, and energy
efficiency.

1.2 Problem statement and motivation

All the studies comprising this thesis were conducted with a real cooling
system in the San Pedro Hospital, which is the foremost hospital in the re-
gion of La Rioja (Spain) and belongs to the Spanish national public health-
care system. The collective know-how of the maintenance staff regarding
the installation was insufficient to continue further optimizing the system;
they found themselves in need of new techniques and tools. Since the BMS
was installed in 2008, it has been logging data continuously. However, the
existing data had not been analyzed prior to this study, nor had the possi-
bility of using it to forecast energy demand been considered.

Before this study began, the cooling plant was not performing effi-
ciently. The primary malfunctions were the following:

- Excessive energy consumption in the cooling plant. Especially in
winter season and extremely hot summer periods.

- Inefficient and repeated starts and stops of the cooling generators,
which were controlled exclusively by the water-distribution temper-
ature set-point. This malfunction negatively impacted energy effi-
ciency and led to significant breakdowns. Top manufacturers recom-
mend that the maximum number of starts in scroll type compressors
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be under 12 per hour [26]. In addition, it is recommended that the
working time after a chiller starts be at least 60 minutes.

- Inefficient maintenance expenses incurred due to the lack of a daily
schedule. The system required that all the cold-water pumps be
ready for a start signal from the chillers. This set-up entailed high
maintenance costs because operating all the cooling towers required
expensive antimicrobial and chemical treatments.

- Water-ring temperature below established set-points diminished
energy efficiency, e.g. two chillers began operating simultaneously
when only one of them was necessary.

- Water-ring temperature above established set-points owing to
sudden chiller stops, which adversely affected healthcare services.

The principal motivation for this research is, on the one hand, to create
a methodology capable of optimizing the operations and energy efficiency
of chilled water plants. While on the other hand, state-of-the-art machine
learning (ML) techniques are used and applied to create models that pre-
dict thermal demand for cooling and can subsequently be implemented in
a BMS, thereby providing predictive control systems.

1.3 Scope of research and objectives

This thesis focused on improving the energy efficiency of buildings, op-
timizing the electrical consumption of cooling systems, decreasing CO,
emissions, contributing to the thermal comfort of users, and minimizing
maintenance costs, all through the use of machine learning techniques.

These prediction models must be trained with data obtained from op-
timized systems for accurate model learning, and to subsequently report
useful predictions. The optimization methodology carried out prior to cal-
culating the models allowed for operating problems in the original system
to be detected and addressed. The entire methodology for preprocessing
information and creating machine learning models was based on the well-
known Knowledge Discovery in Databases (KDD) process. This process
made it possible to conduct the work prior to modeling in an orderly and
sequenced manner, which in turn facilitated the development of the opti-
mization methodology.

The methodology created herein enhances energy efficiency by adding
predictive models of thermal cooling demand to the existing BMS that can
forecast the activity of the hospital’s water-cooled generators. The final
model was an ensemble model comprised of the best individual models. By
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integrating this model into the BMS, a predicted schedule for the day ahead
for the cooling generators could be generated. This allows for supervised
and predictive control of the installation. The optimized system is capable
of reducing ineffective starts and stops that can otherwise lead to costly
breakdowns and inefficient electrical starting peaks.

The main objective of the thesis is to improve the energy efficiency
and performance of hospital cooling-water plants and solve the existing
commonplace problems in these installations. The following is a complete
list of the partial objectives of this thesis:

1.

10.

11.

12.

Improve energy efficiency of hospital cooling-water plants and
minimize electrical consumption and maintenance expenses.

. Improve plant performance by adjusting the BMS parameters and

physical devices.

. Fix the existing problems described in the Problem statement.

. Explore and analyze how the cooling plant works to develop a

methodology capable of solving the common problems of these
plants.

. Develop forecasting models for the current problem using KDD

methodology.

. Develop parsimonious models with the goal of demonstrating the

utility of models applied to forecasting thermal energy demand.

. Integrate these models into the BMS to obtain a system with model

predictive control (MPC).

. Fit expected demand to available generation by establishing a

schedule for the chillers for the day ahead and programming them
more efficiently with these schedules.

. Minimize the number of starts and stops of the chillers.

Upgrade the data acquisition and metering systems to improve the
forecasting capacity of the models and reporting.

Measure energy savings and chiller start-up savings.

Test the improvements and the performance of the plant in a real
installation by applying the knowledge obtained through the use of
this methodology and draw conclusions.
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1.4 Thematic unit

The thematic unit of this thesis is centered on improving energy efficiency
and optimizing the operation of cooling-water plants in hospitals. To this
end, ML techniques were proposed to predict the maximum thermal de-
mand for cooling on the following day. Therefore, it is possible to create
the most optimal programming for the plant with the most efficient com-
bination of cooling generators, in addition to forecasting the need for other
equipment, such as the cooling towers.

During the process of searching for patterns in the data and for the
most influential variables in prediction, the KDD process was utilized.
This structured process made it possible for the pre-optimization phase
of the dataset to bring to light existing problems in the plant, which are
common in this type of facility. By classifying the action points, a method-
ology capable of achieving the objectives could be created.

1.5 Contributions presented in the thesis

The main findings of this thesis are presented in three scientific papers,
published in journals listed in the Journal Citation Reports® and also in
Scimago Journal Rank®.

1.5.1 Publication I

Dulce, E., Martinez-de Pison, F]., Parsimonious modeling for estimating
hospital cooling demand to reduce maintenance costs and power consumption.
In: Pérez Garcia, H., Sanchez Gonzilez, L., Castejon Limas, M., Quintian
Pardo, H., Corchado Rodriguez, E., eds. Hybrid Artificial Intelligent Systems.
Cham: Springer International Publishing. ISSN: 0302-9743, 2019:181-192.
https://doi.org/10.1007/978-3-030-29859-3 16

The publisher and copyright holder corresponds to Springer Interna-
tional Publishing®. The online version of this journal published for
the Hybrid Artificial Intelligent Systems conference is the following
URL: https://link.springer.com/conference/hais as part of the
Lecture Notes in Computer Science book series (LNCS, volume 11734).
https://www.springer.com/gp/book/9783030298586

This article was published in a journal ranked by the Scimago Jour-
nal Rank (SJR) as Q2 (best quartile in 2019), "Lecture Notes in Computer
Science", Computer Science (miscellaneous). The SJR rank in 2019 is 0.427,
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https://www.scimagojr.com/journalsearch.php?q=25674&tip=sid

The main objective of this first article was to develop a predictive model
to forecast the activity of the water-cooled generators. A procedure was
used to search for low-complexity models through feature selection, pa-
rameter tuning, and parsimonious model selection. This methodology
followed throughout the development of this thesis is called GAparsimony
and can be found in the R application repository or on Github [27], and
used for free in similar applications. The methodology was tested with
neural networks, support vector machines, and gradient boosting algo-
rithms.

The "Case study description” of this article relates the existing
problems in the cooling plant (uncontrolled starts and stops, break-downs,
sub-cooling ring water, etc.); and a series of improvements are proposed to
be implemented and tested. In this first phase of the thesis research, an
adequate dataset covering more than two years was not available; thus fur-
ther conclusions, beyond model suitability based on reported errors, could
not be made. The time period studied during this first phase was from
2017 to the beginning of 2019, as can be seen in Figure 1.1.

Ficure 1.1: Evolution of generated thermal energy from
2017 to first early months of 2019.

The most significant progress of this initial research, which also pro-
vided the foundation for the subsequent studies, was the development
of the scripts used to extract the BMS data, as well as the preprocessing
conducted according to the KDD methodology. To this end, a script in R
language was made to extract data from the BMS Sauter NovaPro Open.
The BMS database stored only those records corresponding to when a vari-
able value changed with respect to its previous recording. The script ex-
tracted the data and grouped it into hourly segments, a fact which further
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facilitated interpreting the model, since energy is commonly measured on
an hourly basis [kWh)].

Likewise, the script implemented: feature engineering (FE) tasks to
create new variables such as one determining if a day “is a holiday"
(Is_holiday); the calculation of the average daily temperature (TMEAN);
and more importantly, the creation of a variable measuring thermal energy
generation (ENERGIAKWHPOST). Since the installation did not measure
generated thermal energy, this variable was obtained by calculating the in-
stantaneous thermal power, and later by calculating its temporal grouping
in energy during the time period of one hour.

Thanks to the other variables availables in the measurement system
and the fact that the pump flow had a set value in this system; the thermal
power could be calculated by the following formula:

Thermal Power = Flow * Thermal jump = Ce (1.1)

Thermal power is expressed in watts [W]. Flow rate in 1/h. Thermal jump
in the chiller is expressed in degrees Celsius [°C]. The specific heat of the
water is 1.16 Wh/kg °C. The specific weight is 1 kg/I.

Subsequently, a filter was applied to the calculated energy to smooth
out the peaks due to untimely starts or stops, which would later facilitate
more accurate learning in the model. Different functions were tested, as
shown in Table 1.1. The Gaussian method was the method selected to fil-
ter the variable of thermal energy, ENE_GAUSSFILT?. This method was
chosen for its low RMSE and MAE errors, and because the accumulated
energy in the tested month was similar to the real amount of accumulated
energy.

TasLe 1.1: Data filtering of the prediction vari-
able thermal energy generated by the cooling system
(ENERGYKWHPOST) tested with data from September,

2017.
Filter: accu.ENERGY [kWh] RMSE MAE
ENERGIAKWHPOST 886,726.7 0 0
ENE_MEANFILT3 885,650.3 802.3 691.2
ENE_MEANFILT5 885,776.3 658.2 562.5
ENE_MEANFILT?7 885,541.9 695.5 599.5
ENE_GAUSSFILT3 886,191.2 400.5 345.0
ENE_GAUSSFILT5 885,854.9 630.0 5434

ENE_GAUSSFILT? 885,745.9 666.6 574.9
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The root mean squared error (RMSE) is defined as the average predic-
tion error (square root of mean squared error), where y; is the prediction
and x; the true value:

Yy —xi)? (1.2)

n

RMSE =

The mean absolute error (MAE) is defined as an arithmetic average of
the absolute errors, where y; is the prediction and x; the true value:

Mg < Szt =% (1.3)
n

Likewise, the script cleaned and filtered the rest of the variables.
Among these processes, a "Not Available" (NA) data resolution was realized,
along with a filtering of null values and those out of the range of possibili-
ties of maximum thermal generation.

Due to the prior adjustment of incorrect starts/stops and set-
points in the generators, the generated variable of Thermal Energy,
ENERGIAKWHPOST, exhibited a sawtooth graph during 2017, see Figure
1.2. Thus, the training, test, and validation of the model in this time range
were not used.

And lastly, once an adequate database was available, the first models
were made, as mentioned above, with SVR, ANN, and XGB algorithms
using the GAparsimony methodology.

The author of this thesis contributed in all stages of this study. FEJ.

Martinez-de-Pisén assisted in developing the R scripts, applying the ma-
chine learning techniques, plotting the figures, and proofreading the text.

1.5.2 Publication II

Dulce-Chamorro, E., Martinez-de Pison, F]J., Parsimonious Mod-
elling for Estimating Hospital Cooling Demand to Improve Energy
Efficiency. Logic Journal of the IGPL, 2021, ISSN 1367-0751,
https://doi.org/10.1093/jigpal/jzab008

The publisher and copyright holder corresponds to Oxford Aca-
demic®. The online version of this journal is the following URL:
https://academic.oup.com/jigpal

The "Logic Journal of the IGPL" has a Journal Impact Factor in 2019
of 0.931 (ranked in Logic-Science: 3/21 (Q1), Mathematics-Science:
126/324 (Q2), Mathemathics applied-Science: 171/260 (Q3)). This
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Ficure 1.2: Evolution of the thermal energy generated
by the cooling system (ENERGYKWHPOST) from 2017 to
2020.
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information is taken from the Journal Citation Reports (JCR).

In this research article, there were several significant advances
achieved in the modeling of the cooling water plant as compared to the
first study. These improvements involved enhanced data pre-processing
to reduce the noise that caused inadequate learning in the models. The
decision to make this modification was based on the observation that the
best model of the first generation (that of the SVR algorithm) used just
three variables to adapt to the noise of the dataset during training. Among
the improvement measures implemented in preprocessing, a new Gaus-
sian filter with a larger window size was applied that further smoothed the
real peaks of starts and stops in the calculated thermal generation curve
ENERGYKWHPOST (see Figure 1.3).

In the present study, a hybrid model composed of the best models of
each type of algorithm was used to create the final model, which improved
upon the individual error of each of the initial models.

Different filters were tested, but the Gaussian filter with a window size
of 11 (ENE_GAUSSFILT11) function was the method selected to filter and
smooth thermal energy because of its slow error rate, as shown in Table 1.2,
and because the accumulated energy in the tested year was similar to the
real amount of accumulated energy. Therefore, ENE_GAUSSFILT11, was
eventually selected as the target variable. This feature was considered close
to the hospital’s energy demand, which primarily depends upon weather
conditions and the use of the facilities.

TaBLE 1.2: Data smoothing of prediction variable with dif-
ferent filters, year 2018.

Filter: accu.ENERGY [kWh] RMSE MAE
ENERGYKWHPOST 10.266.880,7 0 0
ENE_GAUSSFILT3 10.266.843,3 166,4 37,4
ENE_GAUSSFILT5 10.266.883,6 278,3 2,9
ENE_GAUSSFILT7 10.266.917,9 312,3 37,2
ENE_GAUSSFILT9 10.266.911,1 328,2 304
ENE_GAUSSFILT11 10.266.889,9 338,5 9,2

Likewise, a more exhaustive filtering of the data was conducted:
especially the energy generated due to both abnormalities in plant oper-
ations and specific consumption peaks caused by chiller start-ups at max-
imum power due to programming errors or driver failures.
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Ficure 1.3: Filtering thermal energy generated by the cool-
ing system (ENERGYKWHPOST) with different Gaussian
steps.

The range of data available for this second study was much greater,
with comprehensive data available for the years 2017, 2018 and 2019.
This is why, thanks to improvements made during the optimization of
April 2018, plant behavior changed significantly: the number of starts and
stops decreased. This fact led to the training, validation, and testing of the
models being carried out with the data collected between April 2018 and
December 2019; while all previous data was discarded, as indicated in the
published article.

In addition to the enhanced preprocessing, other improvements were
proposed and implemented in the cooling water plant and are outlined in
the third article.

The root mean squared error (RMSE) measure was chosen for model
validation to evaluate the predictive model accuracy by training the model
on a training dataset and testing on a test dataset. The dataset was
splited into a training, validaton and test dataset, this method is known
as "cross-validation".

Data modeling was done with SVR, ANN, and XGB models. These
models were combined by means of an R script in such a way that takes
into account the weight of each model to create an ensemble model with an
error that is less than that of the best of the individual algorithm models,
while also obtaining RMSE,,;; and RMSE;; errors lower than the best
errors of each model tested in the first study.

This article laid the foundation for the above described optimization
methodology, organizing the measures in a conceptual framework without
detailing the results and conclusions corresponding to each of action.

The author of this thesis contributed in all stages of this study. FE.J.
Martinez-de-Pison assisted in developing the R scripts, applying the ma-
chine learning techniques, plotting the figures, and proofreading the text.
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1.5.3 Publication III

Dulce-Chamorro, E., Martinez-de Pison, F.J., An Advanced Methodology
to Enhance Energy Efficiency in a Hospital Cooling Water System.
Journal of Building Engineering, 2021, 102839, ISSN 2352-7102,
https://doi.org/10.1016/j. jobe.2021. 102839

The publisher and copyright holder corresponds to Elsevier BV®.
The online version of this journal is the following URL: https:
[ /www. journals.elsevier.com/journal-of-building-engineering

The "Journal of Building Engineering" has a Journal Impact Factor in
2019 of 3.379 (ranked in Construction and Building Technology: 15/63
(Q1), Civil Engineering: 22/134 (Q1)). This information is taken from the
Journal Citation Reports (JCR).

This article outlines a complete methodology to enhance energy efficiency
and solve common problems in hospital cooling-water systems based
on the know-how acquired during the prior optimization conducted to
create a thermal demand model of the system. The optimizations were
determined through the prior KDD process and exploratory data analysis
(EDA) applied in the modeling process. The methodology developed
addresses the general cooling system adjustments in three main areas,
which are described in Chapter II "Methodology". The implementation
timeline can be observed in Figure 1.4.

4th optimization
of the cooling systemn

of the cooling system
ospital 1st optimization 2nd optimization 5th optimization and model's
pening of the cooling system of the cooling system Implementation in the BMS.
—~— A —
2006 _, 2310 2002 2014 2016 2018 zg?zd . 2022 2004

BMS implementation 1st generation 3rd generation

energy demand energy demand
models

3rd optimization i

o

PES mi
BMS optimization start ude
2nd generation
energy demand
models

Ficure 1.4: Case study methodology timeline indicating
the most influential improvements, model generations,
and implementation of the model inside the BMS.

As compared to the models of the previous articles, new variables were
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implemented herein to test and prove their influence on the final predic-
tion models. The features implemented were time of measurement (tine)
0-24 h and relative humidity (RH).

Various machine learning models were trained to implement the im-
provements during the process of updating the cooling demand model.
The task of searching for low-complexity models was accomplished as
in the previous studies following the GAparsimony methodology. In this
study, the final model consisted of a weighted combination of Artificial
Neural Network (ANN) and Support Vector Regression (SVR) models.

Another innovative feature was that the cooling demand model was in-
tegrated into the control system (CS). The system designed was capable
of forecasting and transmitting a schedule for maximum thermal energy
requirements to the BMS a day in advance. Figure 1.5 represents the
classification of states depending on the maximum demand for the next
day. The BMS was now able to preselect the maximum number of chillers
necessary for the predicted demand and the system could also preselect
the combination of chillers that best fit the demand, while also providing
the greatest energy efficiency. As a result of these newfound capabilities,
Figure 1.6 shows the real cooling power generation as a combination of the
necessary chillers’ cooling capacity. Maintenance operations also benefited
from the improvements because operations in the water towers can be
foreseen which reduces maintenance expenses like expensive antimicro-
bial and chemical treatments, etc.
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Ficure 1.5: Energy demand classification based on the
rank of maximum energy demand for the next day. Each
state provides an appropriate schedule for the chillers.
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Ficure 1.6: Cooling power generated July 21st — 23th,
2020. Note the reinforcement obtained by EF3 in addition
to EF4 chiller to fit maximum demand.

The article quantified the estimated energy and percentage savings
achieved by applying this methodology. In order to make an annual com-
parison, the method based on cooling degree days (CDD) was used. The
base temperature for estimating the cooling degree days was derived by an-
alyzing the outdoor temperature since as it increases, the cooling demand
also grows from its averaged minimum value of 800 kWh, Figure 1.7. With
the meteorological data and the energy recorded on a yearly basis, it was
possible to normalize the energy each year to quantify the savings. The
saving generated by reducing the number of chiller starts each year was
also estimated after the aforementioned improvements had been imple-
mented.
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Ficure 1.7: CDD base temperature determination graph.

Outside temperature (TEXT) of 17 °C was chosen as the

base temperature for estimating CDD since it requires ad-

ditional energy. The energy demand (red line) grows from
that temperature.

This study was significantly impacted by the recommendations for in-
creased ventilation issued to combat the COVID-19 pandemic, which en-
tailed an increase in energy consumption in 2020, which was also the
year in which the model was finally integrated. Energy consumption sky-
rocketed as plant operations were atypical since all areas of the hospital
equipped with Air Handling Units (AHU), see Figure 1.8, were configured
to avoid air recirculation and increase ventilation flow to prevent the
spread of COVID-19 [28] by closing the return air dampers.

The author of this thesis contributed in all stages of this study. FEJ.
Martinez-de-Pisén assisted in developing the R scripts and applying the
machine learning techniques.

Exhaust air l i Qutside air
Return air

-r@

Supply air

» B

Return air damper

Ficure 1.8: AHU internal scheme. A general recommenda-

tion for the SARS-CoV-2 virus is to avoid central air recir-

culation by closing recirculation dampers either using the
BMS or manually.
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1.6 Thesis outline

This dissertation is organised in seven chapters. The present chapter in-
cludes an introduction to energy efficiency in hospital cooling-water sys-
tems, and outlines the main objectives and issues to be addressed herein.
The motivation of the thesis, its objectives, and a brief description of
each article also can be found in this chapter. Chapter 2 describes the
Methodology applied in the research and the scientific basis underlying
the study. Chapters 3 through 5 contain the scientific publications con-
tributing to this thesis. Chapter 6 presents the most remarkable results;
and a general discussion of each publication, along with their limitations,
is also included in this chapter. Finally, Chapter 7 summarizes the main
conclusions and proposes future lines of research.
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Chapter 2

Methodology

The methodology provided a structured process to review all the main as-
pects related to the hospital cooling-water system. The task began with a
deep optimization of the installation, the goal being to solve the problems
described in Subsection "Problem statement and motivation". A timeline
of the study and the stages of the methodology is depicted in Figure 1.4.
The research was conducted in a structured fashion applying the KDD
methodology, depicted in Figure 2.1, to develop the forecasting model and
with a prior exploratory data analysis (EDA), thereby unveiling existing
problems that otherwise would have not been discovered. As the final
step, a forecasting demand model was implemented, which is capable of
communicating the maximum energy required for the next day to the BMS.

Selection

| Data Mining

Preprocessed
Data [
Transformed L &

Data

Interpretation/
Evaluation

Tested Data/
Patterns Knowledge

Ficure 2.1: Knowledge discovery in databases (KDD)
methodology schema.

With the knowledge acquired and with the improvements applied, this
optimization methodology was developed to focus on three main areas of
improvement: the control system (CS), the data acquisition system (DAS),
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and the physical system (PS). This methodology can be replicated in simi-
lar installations.

2.1 Control system improvements

These improvements were applied to the existing control system (CS)
operated by the BMS. The CS manages the energy installations grouped
in the following main areas: lighting, HVAC distribution, and heating
and cooling generation. The methodology detailed herein supervised ad-
justments to better control the cooling system and incorporated some in-
novations. Among other improvements described in the aforementioned
studies, the implementation of the following should be highlighted:

* A linear set-point temperature for the cooling plant.
* A minimum working time for the water-cooled generators

* A new generation schedule for Summer and Winter to adjust the de-
mand to the appropriate chiller capacity.

* A supervised control system. The forecasting model communicates
the maximum cooling-power demand for the next day to the BMS
and allows the system to foresee how many chillers will be necessary.
In Figure 1.6, the contribution of EF4 (1 MW) chiller to EF3 (3.5 MW)
can be appreciated.
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Ficure 2.2: Thermal power generation and electrical power

demand of EF1 chiller data obtained with LON cards in-

stalled during the optimization of the data acquisition sys-
tem (DAS).
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2.2 Improvements in the data acquisition system

These improvements affected the information acquisition and data pro-
cessing system, as well as the measurement systems. Among other im-
provements described in the articles, the following should be noted:

* Installation of Local Operating Network (LON) communication cards
in the chillers. These communication cards allow the BMS to moni-
tor the internal operating parameters of the machine and modify the
working conditions and limits.

¢ Installation and integration of electrical power meters into the BMS
system. As an example can be visualized in Figure 2.2.

2.3 Improvements in the physical system

These improvements were made by integrating new physical systems into
the existing installation, as an example:

* Installation of frequency inverter system in the screw type chillers.
These systems allow that generation of cooling energy can be adapted
to the demand. The effect over energy modulation can be appreciated
in Figure 2.3.

F1GURE 2.3: Detail of thermal generation showing behavior
after installation of frequency inverter in the EF4 chiller in
2019.

2.4 Predictive control scheme

The activity of the hospital’s water-cooled generators was improved by im-
plementing a predictive model for cooling demand within the BMS control
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system that anticipates decisions, detailed in the Methodology as a Control
system improvement. The incorporated control scheme is depicted in Fig-
ure 2.4.

Internal system Cooling
conditions BMS Power

Qutside temperature Cooling energy

forecast prediction model

e

Ficure 2.4: Control scheme. The cooling-energy predic-

tion model communicates to the BMS the maximum ther-

mal demand for the next day. The model reads the weather
forecast conditions for the day ahead.

With this control scheme the prediction model foresees the maximum
thermal energy demanded in the cooling system for the next day. This
allows the BMS to anticipate the most efficient combination of chillers
necessary to cover the demand or schedule the cooling towers. To do this,
an R language script is executed daily. The code loads the updated external
meteorological features from XML available on the Spanish State Meteoro-
logical Agency (AEMET) website and predicts the hourly energy demand
for the next 24 hours and communicates it to the BMS.

2.5 Parsimonious Modeling

The search for parsimonious models (low complexity models) is one of the
current challenges in the field of Machine Learning (ML). Among models
of a similar degree of precision (accuracy), choosing those that are less
complex (have less features) is recommended, given that these models will
be better at generalizing the problem, perform more robustly against noise
and disturbances; and they are easier for experts to interpret, and less ex-
pensive to maintain and update. Mechanisms used within KDD processes,
such as regularization or feature selection, make valuable contributions in
this regard.

In the studies included in this thesis, training and selecting the
best parsimonious models were conducted using the GAparsimony
methodology. This methodology performs a search for parsimonious ma-
chine learning models through optimization with genetic algorithms (GA).
The final objective is to obtain models that are high in precision, yet low
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in complexity, using feature selection (FS), hyperparameter optimization
(HO), and parsimonious model selection (PMS). In GAparsimony, the PMS
of the best individuals of each generation is carried out in two steps: se-
lecting the most accurate models and, from among them, choosing those
with the least complexity.

The three ML algorithms that showed the best results in previous tests
were selected: artificial neural networks (ANN), support vector machines
for regression (SVR) with kernel based on radial basis functions (RBF), and
extreme gradient boosting machines (XGB). For the third generation, the
use of the XGB model was ruled out as the improvement it provided was
minimal when compared to the significant computing effort it required.
The final selected model was a weighted blending of the two best models
obtained with ANN and SVR. All the experiments were implemented with
the GAparsimony [27] package developed in the R language.

2.6 GAparsimony settings

To perform GA optimization with GAparsimony, it is necessary to define
the chromosomes of each individual to be trained with the corresponding
machine learning algorithm. In this methodology, the chromosome is
defined by a combination of the algorithm’s training parameters and the
input attributes selected for that individual. In particular, for the SVR and
ANN algorithms, each individual i of each generation g is defined by the
/\é chromosome, which is formed by the combination of two vectors P and
Q, where the values of the vector P correspond to the training parameters
of the algorithm, and Q corresponds to a vector of probabilities used for
the selection of each input attribute j if g; > 0.5:

SVR(/\;) = [P(cost, gamma, epsilon), Q]

. 2.1
ANN (Ag) = [P(size, decay, num_epochs), Q] 1)

As a function of ] (fitness function), GAparsimony uses the Root Mean
Squared Error (RMSE) obtained with the validation database, RMSE,,.
The RMSE error measured with the test database, RMSE;,;, is used to
check the generalizability of the model. Finally, the complexity of the
model is defined by Ngg, the number of attributes selected. This measure
of complexity has proven to be very effective in past experiences when
searching for parsimonious models with GAparsimony [22, 29, 23, 25].

The optimization process with GAparsimony genetic algorithms,
represented in Figure 2.5, was defined with a population of 40 individuals
evaluated in 100 iterations but with a stop criterion if the RMSE,,; error
did not improve in 20 consecutive generations. The selection process
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used 20% of the best individuals (elite individuals) and was based on a
two-step algorithm: In the first step, the selected models were ordered in
an increasing manner based on the RMSE,,; error. In the second step, the
individuals with similar values of RMSE,, were re-ordered prioritizing
lower complexity. This helped promote those less complex solutions
(simpler because they have fewer variables) to the top positions. In this
second step, two individuals were considered similar if the absolute
difference of their RMSE,,;; was less than a ReRank parameter, defined by
the user. In this study, and after several experiments, ReRank was set at
0.1 as it showed a satisfactory balance between complexity and RMSE,;.
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Define: 7»; J,P,G,a 2nd 10.5 100
g <0 ; Normalize DB 3rd 10.7 80
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Figure 2.5: Flowchart of the GAparsimony with sample
data.

After selecting the best individuals of a generation (the elite popula-
tion), GAparsimony performs the traditional processes of crossing the chro-
mosomes of the best individuals to create the next generation of individu-
als, as well as chromosome mutation to create more diversity of solutions
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in later generations. The crossover function for the P vector of the chro-
mosomes was heuristic blending with alpha = 0.1. For the Q vector of the
chromosomes, random swapping was performed. In this case, the elite in-
dividuals of the previous generation also pass on to the new generation.
The first generation of individuals was created randomly, but with 90%
of the characteristics of the individuals selected. This allowed the search
for models to start with models that have a high number of entries.
Finally, the mutation was applied to the chromosomes of the new gen-
eration, except for the two best individuals. For the P vector of chromo-
somes, a random variation of 10% of the values was performed. In the case
of vector Q, the probability of changing 0 to 1 was set at 10% in order to
facilitate reducing the number of attributes in subsequent generations.
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Chapter 6

Results and Discussion

This chapter summarizes and discusses the most relevant results included
in the publications contributing to the thesis. Each of the three sections
details the results of one of the publications and includes a general discus-
sion on the implications and limitations of the study.

6.1 Results in Publication I

The complete results corresponding to this part of the research are found
in the article "Parsimonious modeling for estimating hospital cooling de-
mand to reduce maintenance costs and power consumption." (Dulce, E.
and Martinez-de Pison, EJ., 2019).

6.1.1 Results and objectives

The objective of this study was to develop and evaluate an optimal and
efficient model based on a genetic methodology that searches for low-
complexity models to forecast the activity of water-cooled generators.

The study found that the model based on the SVR algorithm obtained
the best validation and testing error with only 3 attributes:

e month,
* outside temperature (TEXT),
* minimum daily temperature (TMIN).

The ANN model came in second with 7 features and, finally, the XGB
model had only 4 features.

Table 6.1 displays the validation and testing errors, and the final se-
lected features of the best model from the last generation of SVR, ANN,
and XGB, respectively.
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TasLe 6.1: Best individual model for each algorithm ob-
tained with GAparsimony in the first generation models.

SVR ANN XGB
RMSE,,; 294.9 327.4 347.8
RMSE, 342.4 363.3 371.1
month 1 1 1
day_of_week 0 1 1
Is_holiday 0 1 0
TIMP 0 1 1
TEXT 1 1 1
TMEAN 0 0 0
TMAX 0 1 0
TMIN 1 1 0
complexity 3 7 4

6.1.2 Discussion of Publication I

GAparsimony with the SVR algorithm was capable of obtaining a parsimo-
nious model with only 3 attributes and acceptable validation and testing
errors. An explication for these results can be found in the algorithm be-
haviour. The SVR algorithm obtained a model with a low-complexity so-
lution that averaged ‘the noise” and reduced the differences of the training
database created based on the first year, and the validation/testing data
compiled within the previous 12 months. This fact can be observed in Fig-
ure 1.1. Moreover, the ANN model overfits the learning process, which
could explain why it used up to 7 variables to adapt to the noise of the
dataset.

The study demonstrated that GAparsimony was an adequate method
for selecting the best cooling demand model among different forecasting
methodologies, and to adjust internal parameters as well.

6.2 Results in Publication 11

The complete results corresponding to this part of the research are found
in the article "Parsimonious modeling for estimating hospital cooling de-
mand to improve energy efficiency" (Dulce, E. and Martinez-de Pisén, FJ.,
2021).
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6.2.1 Results and objectives

This study delved deeper into the research initiated in the first article by
improving the system and updating the first generation cooling demand
model. In order to create the second set of energy-demand models, the
first dataset, which recorded a high level of noise produced by inefficient
starts and stops prior to April 2018, was discarded given that significant
optimizations had been implemented in the cooling system after this pe-
riod.

The model was trained and tested with the information collected from
April 2018 to December 2019. The training dataset corresponded to the
period between January 2018 and February 2019. The validation data base
corresponded to the even weeks between March 2019 and December 2019;
and the testing database to the odd weeks of the same time period.

GAparsimony was used again to choose the best models among the dif-
ferent algorithms, adjust the internal parameters, and develop feature se-
lection as well. Errors, parameters, and selected features are listed in Ta-
ble 6.2. This table shows that the error values were moderately better than
those obtained with the first generation models.

TaBLE 6.2: Best models of the 2" generation with results
and complexity.

SVR ANN XGB
RMSE, 231.9 233.2 239.8
RMSE,; 260.9 268.2 267.7
month 1 1 1
day_of_week 0 0 1
Is_holiday 0 1 0
TIMP 0 1 0
TEXT 1 1 1
TMEAN 1 1 1
TMAX 1 0 0
TMIN 0 0 0
complexity 4 5 4

The best SVR model was obtained with 4 features: month, outside
(TEXT), averaged (TMEAN), and maximum daily temperature (TMAX).
Figure 6.1 shows, in white and gray box-plots, the RMSE,;; and RMSE;;
SVR evolution for the most elite population of the best GAparsimony itera-
tion.
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This time, the best ANN model converged this time with 5 features (2
less than in the first generation model):month, if the day was a bank holiday
(Is_holiday), ring temperature (TIMP), and outside (TEXT) and averaged
daily temperature (TMEAN). ANN errors were only slightly superior to
those of the SVR model.

The best XGB model was obtained with 4 features: month, day of
week (day_of_week), and the external (TEXT) and averaged temperature
(TMEAN) of the day.

Results for the best individual: val.cost (white)=—231.9, tst.cost (gray)=—260.9, complexity=4300.6
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Ficure 6.1: Evolution of errors of most elite solutions for

SVR algorithm in 2" generation models. White and gray

box-plots represent RMSE,;; and RMSE;,; evolutions re-

spectively; and continuous and shaded lines indicate the

best individual of each population. The gray area covers

the maximum and minimum number of features Ngg (righ-
taxis).

The best SVR, ANN and XGB models were combined to obtain an
ensemble model with an enhanced performance. Table 6.3 shows the
RMSE,,;; and RMSE; of the weighted combined model. The process was
conducted by weighting the predictions of each learner. The optimum
model was comprised by the following weights:

Ensemble Model = (w1 *SVR+ w2+ ANN +w3*XGB)/3 (6.1)

Ensemble Model =(1.36*SVR+1.41+ANN +0.23+XGB)/3 (6.2)

Number of features of best indiv.
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TaBLE 6.3: Ensemble validation and test errors versus sin-
gle models and their contribution to the hybrid model.

SVR ANN XGB HYBRID

RMSE, 231.9 233.2 239.8 224.8
RMSE;s 260.9 268.2 267.7  257.4
Weight % 45.3 47 7.7 -

complexity 4 5 4 7

6.2.2 Discussion of Publication II

In this phase of the research the model error values were moderately better
than in the first generation models. Furthermore, the final ensemble model
errors were slightly better than those of the best single model (SVR) as
can be observed in Table 6.3. Complexity increased due to the number
of features needed as input for the models comprising the hybrid model.
The reduction in the number of features from 7 to 5 in the ANN model
demonstrate that the overfitting found in the first generation model had
been solved. Unlike the first generation models the variable of minimum
daily temperature (TMIN) was not utilized in any model.

The models obtained with the ensemble model have similar errors and
use similar features; and this fact demonstrates that the prior optimization
process was a worthwhile endeavor.

The final ensemble model which combines the three best parsimonious
models would be easy to maintain because information is directly avail-
able from sensors and external meteorological forecasting. The error rate,
although not an insignificant error, does facilitate forecasting that will
allow control engineers to program the chillers to supply the maximum
demand for the coming hours. In addition, with the improvements made
in modulating the cooling system, it will be able to buffer variations not
programmed into the day-to-day activity.

The analysis conducted in the study over the course of more than three
years demonstrates the pressing need to optimize cooling systems before
creating effective prediction models. The datasets obtained from opti-
mized systems avoid models learning from systems with noise, and there-
fore prevent model predictions from being erroneous.

6.3 Results in Publication III

The complete results corresponding to this part of the research are found
in the article "An Advanced Methodology to Enhance Energy Efficiency in
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a Hospital Cooling-Water System" (Dulce, E. and Martinez-de Pison, FJ.,
2021).

6.3.1 Results and objectives

The objective of this study was to implement the forecasting model within
the BMS and then test the real response in order to validate the model
and the improvements made to the cooling water plant. The model was
updated with a third generation that improved upon the previous gen-
erations errors. To this end, new features such as time of measurement
0—24 h (time) and relative humidity (RH), were added to the model.

The third generation of models were calculated with data collected
from April 2018 to December 2019. The training dataset corresponded
to the period between January 2018 and February 2019. The valida-
tion database consisted of the even weeks between March 2019 and De-
cember 2019; and the test database, the odd weeks of the same period.
GAparsimony was used to choose the best models trained with SVR and
ANN algorithms, discarding the XGB model because of its limited con-
tribution. Table 6.4 shows the best SVR and ANN models: RMSE,,;; and
RMSE;;, selected features with the percentage of appearance in the most
elite models during the last generations, and model complexity (Ngs).

TaBLE 6.4: 3™ generation best models with RMSE errors,
complexity and features used and their percentage of ap-
pearance in the group of elite models.

SVR ANN

RMSE,; 222.9 226.0

RMSE; 256.1 264.0
used % appear. used % appear.
time 1 99.7 1 100
month 1 99.6 1 98.6
day_of_week 0 11.8 0 11.5
Is_holiday 0 1.9 0 7.7
TIMP 0 13.7 1 99.2
TEXT 1 99.6 1 100
TMEAN 1 99.5 1 96.4
TMAX 1 634 1 95.8
TMIN 0 8.5 0 11.9
RH 0 32.2 0 11.1

Complexity 5 6
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The best SVR model was obtained with 5 features: time; month, out-
side temperature (TEXT), averaged temperature (TMEAN), and maximum
daily temperature (TMAX).

The best ANN model converged with 6 features: time, month, ring
temperature (TIMP), outside temperature (TEXT), averaged temperature
(TMEAN), and maximum daily temperature (TMAX). ANN errors were
moderately higher than those of the SVR model. Figure 6.3 shows the
evolution for the elitist population of the best GAparsimony iteration for
the ANN model in the third generation models. The box-plots represent
the RMSE,,; (white) and RMSE; (grey) evolutions respectively on the left
axis. The continuous line indicates the best individual error for validation,
and the dash-dotted line indicates the best test error of each population.
The gray area covers the range of features of the most elite individuals,
and the dashed line indicates the minimum number of features Ngg on the
right axis.

FIGURE 6.3: Error evolution of most elite solutions for ANN
algorithm for 3" generation.

The SVR and ANN models were combined to reduce the RMSE,,; and
to obtain the blending model.

Table 6.5 shows the improvement of the RMSE,,;; and RMSE;; of the
hybrid model as compared to the single models. The error rate was slightly
better in the ensemble model than the best single model (SVR). Figure 6.4
shows the combined prediction for the hybrid model.
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TaBLE 6.5: Ensemble validation and test errors versus best
single models of 3" generation and their contribution to
the hybrid model.

SVR ANN HYBRID

RMSE,,; 2229 2260  220.8
RMSE,,  256.1 264.0  253.2
Weight % 825 17.5 -

complexity 5 6 6

Actual test target vs combined model prediction [R-squared=0.853, RMSE_tst=253.2]
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FiGURE 6.4: Combined prediction for the 3" generation hy-
brid model.

The graphs in Figures 6.5 compare the real registered thermal energy
generated (ENERGYKWHPOST) to the energy demand forecasted by the
ensemble model (ENE_GAUSSFILT11), which uses data predicted by the
Spanish State Meteorological Agency as input). Furthermore, these graphs
show the influence of the outside temperature (TEXT*100) on demand in
the dotted line: its impact increases when the outside temperature TEXT
is more extreme (during July and August).
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FIGURE 6.5: Energy demand forecasted

(ENE_GAUSSFILT11) by 3" generation ensemble model

versus real thermal energy generated (ENERGYKWH-

POST) obtained from LON cards, 1-29 June and 1-30 July
of 2020.

The results exhibited herein consisted of measuring the energy param-
eters that had been optimized, both during the initial phases and after all
the updates implemented in 2020. To measure energy savings, the elec-
trical energy records extracted from the electrical power meter located in
the hospital’s power plant were utilized. Annual energy savings were cal-
culated by comparing energy demand before and after the optimizations
and the model were installed. The method of cooling degree days (CDD)
was used to normalize the energy consumptions for an adequate year-to
year-comparison. The outside temperature of 17 °C was chosen as the
base temperature for estimating CDD since it requires additional energy
to maintain the cooling system. The meteorological data for the study was
obtained from the official La Rioja Government weather station [30].

Table 6.6 shows the normalization of the annual electricity consump-
tion in the cooling system building from the year 2016 (prior to the study)
to the year 2020. To perform this normalization, the annual average degree
days CDD17 in the interval 2016 — 2020 (which was 587.3 degree days),
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multiplied by each value of Energy/CDD17 provides the normalized en-
ergy for each year (Norm.Energy).

TaBLE 6.6: Normalized energy per year [kWh] prior to and
over the course of the study, based on CDD17.

Year CDD17 Energy [kWh] Norm.Energy [kWh]

2016 590 5,968,990 5,942,682
2017 597 6,258,184 6,156,502
2018 576 6,124,609 6,242,594
2019 620 5,864,247 5,553,164
2020 553 6,400,075 6,794,584

The average cost of electrical energy during the 2017 — 2020 period for
this building supplied from a 66 kV high voltage substation was 0.0988521
€/kWh.

Depending on whether the comparison is between the year 2016, prior
to this study, or 2017, the first year of the study, and the year 2019,
the energy savings obtained by implementing this methodology repre-
sent between 7% and 10%, which indicates economic saving of between
€38,504.63 and €59,641.20 per year, as shown in Table 6.7.

TaBLE 6.7: Estimated savings owing to the methodology

applied.
Year Saving (%) Saving (€)
2016 vs 2019 7% 38,504.63
2017 vs 2019 10% 59,641.20

Unfortunatelly, during the 2020 period of the model’s implemen-
tation, higher electrical consumption was registered than that of 2019
(+22.3%,+€122,716.97). The reason is that plant operations were atypical
since all areas of the hospital equipped with Air Handling Units (AHU)
had to be configured to avoid air recirculation and increase ventilation
flow to prevent the spread of COVID-19 [28], notably reducing energy ef-
ficiency.

The monthly evolution behavior of plant energy demand during 2020
can be analyzed in Table 6.8. This table facilitates analysis of the months
of higher degree days CDD17, which are July and August, where the com-
parison of normalized data is more suitable. The satisfactory evolution of
the optimizations leading up to the pandemic in 2020 can be appreciated.
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TasLE 6.8: Normalized energy of most demanding months
[kWh], monthly CDD17.

Year CDD17 July CDD17 August

2016 177.5 691,762 180.2 627,752
2017 176.9 715,953 160.6 738,306
2018 183.8 713,190 185.9 671,673
2019 211.2 638,511 180.2 686,522
2020 180.7 675,942 164.0 711,752

The number of starts per chiller after the optimizations dropped sig-
nificantly as can be observed in Figure 6.6. The results concerning the
reduction in the number of starts are shown in Table 6.9, and presented by
year and chiller. If the year 2017 is compared with 2019, the total number
of starts decreased by 82.7%. During the year 2020, this number rose in a
controlled manner due to the night-mode schedule of the EF4 chiller.

TaBLE 6.9: Number of starts per chiller from 2017 to 2020,
and % reduction compared to 2017 (* EF4 Chiller was dam-
aged during 2017).

Year EF1 EF2 EF3 EF4 TOTAL Reduction
2017 1,911 783 1.234 0(*) 3,928 -

2018 971 210 137 498 1,816 53.8%
2019 155 122 196 206 679 82.7%
2020 91 177 192 427 887 77.4%

In order to be able to compare the evolution of the number of starts
during the year 2020, when the forecasting models were implemented, and
observe the influence of COVID-19, Table 6.10 indicates the total number
of starts of all the chillers per month.

TasLe 6.10: Total number of chiller starts for each month
and each year. The number of starts since the model was
implemented in the BMS is marked in bold.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2017 159 207 292 315 450 416 424 442 391 348 235 249
2018 273 280 213 125 160 251 200 115 62 56 24 57
2019 26 29 34 36 55 121 111 47 62 85 35 38
2020 44 47 61 62 46 55 111 166 88 82 37 88
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FiGURE 6.6: Number of starts per chiller from 2017 to 2020.
The diagram shows the notable reduction in the number of
chiller starts thanks to the optimizations.

6.3.2 Discussion of Publication III

Based on the aforementioned results, the methodology applied to opti-
mize the cooling-water plant has demonstrated its ability to solve the pre-
existing problems and to improve energy efficiency, as well as to optimize
chiller start-ups.

Optimizing the control system (CS) by adjusting parameters (such as
set-point temperature and minimum machine working time) led to the
most significant reduction in the number of chiller starts.

The number of starts per chiller decreased significantly, especially in
chillers not equipped with inverter systems (centrifugal cooling genera-
tors EF1 to EF3) because of the adjustments to set-point temperature and
the minimum cycle duration established as 1 hour. The number of starts
decreased by 82.7% when comparing the year 2017 to 2019. During the
year 2020 when the forecasting model was implemented, the total num-
ber of starts was greater than the year before. This fact can be explained
by the night programming that had been activated. This modification was
enacted in a controlled manner and improves energy efficiency since this
chiller gives its maximum Energy Efficiency Ratio (EER) in loads within
that range.

Implementing the BMS with a cooling-demand prediction model
allowed plant operations and performance to be optimized. Thanks to the
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optimizations and features implemented in this 3" generation, errors de-
creased as compared to the 2" generation models. The model was simpli-
fied since the previous model was composed of 3 algorithms (SVR, ANN,
XGBoost), and it is less complex as it uses less features. Therefore, this
model is easier to maintain and more robust against noise. The XGBoost
model was discarded because its high level of resource consumption was
not compensated by the improvements it offered.

In the models comprising the final ensemble model (SVR and ANN),
it should be noted that the common features influencing predictions were:
time, month, outdoor temperature (TEXT), average temperature(TMEAN)
and maximum daily temperature (TMAX). The prediction model behaves
effectively, although in the months with the highest cooling energy de-
mand (July and August), it is a conservative model and the feature "outside
temperature” may have better correlation than the ensemble model (which
would not be overtrained). On the other hand, it was observed that the ex-
ternal model that implements the weather-forecast information: outdoor
temperature (TEXT), average temperature (TMEAN), and maximum daily
temperature (TMAX), was dragging errors into the prediction results.

Improvements in the data acquisition system (DAS) enhanced the accu-
racy of the data collected from the chillers. However, the last models made
did not include the more accurate data since this improvement occurred at
the end of the optimization process.

Regarding the improvements made to the physical system (PS), it is
worth highlighting the significant improvement in the modulation of the
screw chiller after an inverter system was installed. This allowed the plant
to work at maximum energy efficiency and significantly reduced the num-
ber of starts and electrical demand.

The methodology has achieved energy savings between 7% and 10%,
but the most remarkable effect was the improvement in overall plant per-
formance. It should also be noted that the unexpectedly greater energy
demand due to increased ventilation to prevent the spread of COVID-19
obviously impacted this study. Hence, the electrical consumption data
from 2020 (+22.3% as compared to 2019) cannot be factored in when cal-
culating savings derived from implementing the prediction model.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The methodology developed in this study has proven to be effective in
meeting the objectives: increasing seasonal energy efficiency, reducing in-
efficient start-ups of cold generators, and improving overall cooling plant
performance. The methodology has also innovated on the status quo in
another significant way: by implementing a demand prediction model ca-
pable of communicating maximum daily demand to the BMS in advance
so that it can preselect the most efficient grouping of thermal generation
equipment.

As part of this thesis, three generations of demand prediction models
were created until an optimal model was obtained. The final model is a
simplified but more efficient ensemble model consisting of the best SVR
and ANN individual models. The model could be further synthesized in
practice because the regression generated by the SVR algorithm error is
quite close to that of the ensemble model. Furthermore, as described in Ar-
ticle I1I, a linear regression model that used only the outdoor temperature
variable was able to perform satisfactorily in certain seasonal climate con-
ditions, though its performance was unsatisfactory at other times. Hence,
the performance of a hybrid model is significantly superior thanks to its
smaller seasonal error.

The features selected for the final third generation hybrid model
that influence demand prediction are as follows: time, month, outdoor
temperature (TEXT), average temperature (TMEAN), and maximum daily
temperature (TMAX). Their influence on the model is detailed in Table 6.4.
The model is easy to maintain and the variables are comprehensive and
easy to implement. The fact that the variable Is_holiday was not selected as
a variable for the final hybrid model attests to this assessment of the model.
This variable is a Boolean indicator of whether a day is a holiday; thus it
was eliminated from the model because the hospital BMS does not have a
special schedule for weekends or holidays, as the desired temperatures for
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hospital rooms are determined by setpoints transmitted by individually-
controlled thermostats or remote controls. All other refrigeration demands
are programmed and, as in the case of operating rooms, demand is daily
and continuous and does not depend on the day of the week or holidays,
given that most healthcare services involve ongoing activity, with the ex-
ception of outpatient appointments and administrative activities. Other
variables that were discarded are minimum daily temperature (TMIN) and
relative humidity (RH). The latter variable did not influence this model
as compared to its role in other models created in other studies using this
variable. The explanation may be found in the regional inland climate of
the area under study, in which RH is constant and in an optimal range as
compared to the extreme humidity of coastal areas.

The meteorological features (outdoor temperature (TEXT), average
temperature (TMEAN) and maximum daily temperature (TMAX)), are im-
plemented in the demand forecasting model in a simple way: by import-
ing models from the national weather agency’s forecasting system. These
models can therefore transmit their own errors into our model’s predic-
tions; nevertheless the errors are minor and restricted to certain situations.

The KDD methodology used to discover intrinsic knowledge within the
data by making prediction models and the initial exploratory data analysis
(EDA) enabled the research to be conducted in an organized manner, while
also revealing existing problems that otherwise would not have been de-
tected. Based on the knowledge acquired herein and the improvements
achieved, this methodology was successful in implementing a prior opti-
mization along with other improvements; and it can also be replicated in
similar facilities.

The optimization of the plant and the KDD process are long-term pro-
cesses: the present research was conducted over the course of more than
4 years. And in order to apply this methodology in similar hospitals, a
database period of at least two years would need to be created. Hence, it
is exceedingly difficult to implement this methodology from scratch in a
short period of time. The analysis conducted in this thesis demonstrates
the pressing need to optimize cooling systems before effective prediction
models can be created. The datasets obtained from optimized systems
avoid models learning from systems with noise, thereby preventing these
models from making erroneous predictions.

The GAparsimony tool used to adjust the parameters of each algorithm
and the number of variables to make parsimonious models was fundamen-
tal in this research. This tool has proven to be practical, saving enormous
effort in testing, and selecting features.

The demand prediction model has been corroborated against real
recorded data and graphs. Normalizing the energy made it possible to
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compare data across various years. Total energy savings based on imple-
menting the complete methodology are estimated to be between 7% and
10%, as compared to the energy consumed prior to the implementation of
this methodology. But, the most remarkable effect of the methodology was
the improvement in the overall plant performance that can be appreciated
in Figure 1.2.

The exceptional circumstances of COVID-19 that came about during
the last year of this study (2020) spurred an increase in the electrical
energy consumed by the cooling system, estimated at +22.3% as com-
pared to 2019. On the other hand, the methodology managed to reduce
the number of inefficient starts significantly: between 77.4% and 82.7% as
described in publication III.

7.2 Future work

In terms of future ways to further improve the cooling plant within the
same line of research, the forecasting model should be updated using the
data obtained after the special measures implemented due to COVID-19
are lifted and a period of at least one year has passed.

Possible improvements to be incorporated into the data acquisition sys-
tem include installing a physical system for measuring thermal energy
generated by means of water flow meters and differential temperature
probes in the chiller pipes. By referencing the information on electrical
energy consumed and actual thermal energy generated, it is possible to
examine actual plant efficiency and optimal working setpoints for each
chiller to later transfer this information to the BMS.

Following an energy efficiency audit of the facility in 2020, new
proposals emerged to enhance energy efficiency, including special standby
mode programming for temperature and humidity in operating rooms dur-
ing off-hours. Improving the insulation of the condensation return pipes
in the towers was also proposed in order to prevent temperature increases
due to solar radiation in the summer. Another possible measure would
be to incorporate photovoltaic energy panels into the hospital’s electri-
cal systems for self-consumption. In this case, these systems do not re-
quire energy storage since all generated energy is immediately consumed
by the large demand: the electricity generation and demand curves are
correlated.

In terms of future physical improvements, there are plans to install a
system that would capture surplus energy from the condensation cooling
towers, which would reinforce the overall energy efficiency of the power
plant. By means of a refrigerant gas evaporation system, these systems
manage to capture excess heat from the pipes leading to the cooling towers,
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and subsequently transfer the energy acquired through condensation to
the hot water storage tanks, which improves the building’s overall energy
efficiency by cutting down on gas consumption in the boilers.

This thesis focused on thermal generation for refrigeration. However,
in 2020, during the period of study detailed in publication III, thermal
energy meters were installed in the hospital boiler facilities. Thus, thermal
generation data has been recorded since their date of installation. These
meters will facilitate the creation of a methodology to optimize the effi-
ciency of the heat generation plant, which would involve a demand pre-
diction model and performance optimization.

7.3 Conclusiones

La metodologia desarrollada en esta tesis doctoral ha demostrado ser eficaz
en el cumplimiento de los objetivos, aumentando la eficiencia energética
estacional, reduciendo los arranques ineficientes de los grupos generadores
de frio, y mejorando el funcionamiento general de la planta de generacion
de agua refrigerada del hospital. La metodologia aplicada ha innovado
el estado del arte por medio de la implantaciéon de un modelo de predic-
cién de demanda capaz de comunicar al BMS anticipadamente la demanda
maxima diaria para que este preseleccione la agrupacién mas eficiente de
equipos de generacion térmica disponibles.

Durante el desarrollo de la tesis se han desarrollado tres generaciones
de modelos de prediccion de la demanda hasta obtener un modelo 6p-
timo. Este modelo final es un modelo hibrido simplificado y parsimo-
nioso, que se compone de los mejores modelos individuales SVR y ANN. El
modelo podria sintetizarse aun mas en la practica debido a que la predic-
cion generada por el algoritmo SVR tiene un error bastante aproximado
al error del modelo hibrido. Incluso como se describe en el articulo III
un modelo de regresion lineal que empleara Gnicamente la variable tem-
peratura exterior (TEXT) podria ser satisfactorio en ciertas condiciones
climaticas temporales, aunque seria insatisfactorio en otras ya que el de-
sempeno estacional de un modelo hibrido es muy superior si atendemos al
error acumulado.

Los atributos seleccionados en el modelo hibrido final de la tercera
generacion y que influyen en la prediccién de la demanda son: hora (time),
mes (month), temperatura exterior (TEXT), temperatura media (TMEAN),
y la temperatura maxima diaria (TMAX). Su influencia en el modelo ha
quedado expuesta en la Tabla 6.4. El modelo es sencillo de mantener y
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las variables son coherentes y faciles de implementar. Sirva como moti-
vacién de esta afirmaciéon que la variable estudidada Is_holiday, que in-
dica de manera booleana si el dia es festivo no ha sido una variable selec-
cionada, lo que tiene sentido debido a que el BMS del edificio no dispone
de una programacion horaria especial para los fines de semana o festivos,
siendo las temperaturas demandadas controladas por las consignas trans-
mitidas por termostatos locales de las estancias. El resto de demandas de
refrigeraciéon son programadas y al igual que ocurre en quir6fanos la de-
manda es continua y diaria y no depende del dia de la semana o de si nos
encotramos en un festivo, ya que la mayor parte de la actividad sanitaria es
de atencién continuada a excepcion de las consultas externas y de la activi-
dad administrativa. Otras variables desechadas han sido la temperatura
minima (TMIN) y la humedad relativa (RH). Esta altima variable no ha in-
fluido en este modelo frente a otros modelos estudiados en otros articulos
referenciados en los que si se emplea. La razén puede estar motivada en
las caracteristicas climaticas locales de la zona estudiada, muy estables y
Optimas en lo que respecta a la humedad relativa si lo comparamos por
ejemplo con lo extremo de las zonas costeras.

Las variables meteoroldgicas que emplea el modelo (TEXT, TMEAN y
TMAX), son implementadas en el modelo de predicciéon de demanda de
manera sencilla mediante la importacion de los datos desde el sistema de
prediccion de la agencia nacional AEMET. Estos modelos a su vez pueden
transmitir sus propios errores a la prediccion realizada en nuestro modelo,
no obstante son menores y restringidos a ciertas situaciones climaticas ac-
cidentales.

La metodologia KDD para el descubrimiento de conocimiento in-
trinseco dentro de los datos y el exploratory data analysis (EDA) iniciales
han dado como resultado realizar el trabajo de una manera organizada, y
sacando a la luz problemas previos que de otra manera no hubieran sido
detectados. Con el conocimiento adquirido y las mejoras efectuadas se ha
desarrollado esta metodologia de optimizacion previa y de revisiéon de la
mejora energética que puede ser replicada en instalaciones similares.

La optimizacién de la planta de generacion y el proceso KDD son pro-
cedimientos que requieren de mucho tiempo para su implementacion. Este
trabajo se ha realizado a lo largo de mas de 4 anos. Para la aplicacién de
esta metodologia en hospitales similares seria necesario disponer de una
base de datos que tuviera registros de mas de dos anos completos. Ademas,
el analisis realizado en esta tesis demuestra la necesidad imperiosa de op-
timizar previamente la planta y sus subsistemas para obtener modelos de
prediccion efectivos. Las bases de datos obtenidas de sistemas optimizados
evitan el proceso de aprendizaje de sistemas con ruido, lo que previene que
las predicciones obtenidas de estos modelos sean erroneas.
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La herramienta GAparsimony empleada para ajustar los parametros de
cada algoritmo y ajustar el nimero de variables para hacer modelos par-
simoniosos ha resultado fundamental en el desarrollo del trabajo. Esta
herramienta se ha mostrado practica, ahorrando un enorme esfuerzo en la
realizacion de pruebas, ajustes y en la seleccion de las variables.

Los datos obtenidos del modelo de prediccion de demanda se han po-
dido contrastar con la generacion real de la planta de agua refrigerada por
medio de los datos y graficas registradas, realizandose una comparacién y
disponiéndose de resultados reales. La realizacion de una normalizaciéon
de la energia por medio del sistema de grados dia ha permitido porder
comparar datos interanuales. La estimaciéon de la mejora energética to-
tal por toda la metodologia ha conseguido ahorrar anualmente entre un
7% y un 10% de la energia consumida previamente a la implementacion
de la metodologia. Pero, la aportacion mas importante de la metodologia
es la mejora notable en el funcionamiento general de la planta de agua
refrigerada.

La afeccion del COVID-19 en el estudio durante el altimo ano de tra-
bajo (2020), ha supuesto un aumento en la energia eléctrica consumida por
el sistema de refrigeracion estimada en un +22.3% si lo comparamos con el
periodo del afio 2019. Por otro lado la metodologia ha conseguido reducir
el nimero de arranques ineficientes en un alto porcentaje entre un 77.4%
y un 82.7% como queda descrito en la publicacién III.

7.4 Futuras lineas de investigacion

En lo relativo a futuras lineas de investigacion que permitan mejorar la efi-
ciencia energética de la planta de frio, el modelo de prediccion deberia ser
actualizado utilizando datos de una duracién minima de un ano, y toman-
dolos posteriormente a las medidas especiales de ventilacion impuestas
por el COVID-19.

Entre las posibles mejoras a incorporar al sistema de adquisicion de
datos se encuentra la instalacién de un sistema fisico de medicién de la
energia térmica generada mediante medidores de caudal de agua y son-
das de temperatura diferencial en las propias tuberias de las enfriadoras.
Mediante la informacioén de la energia eléctrica consumida y de la energia
térmica real generada se podra estudiar detalladamente la eficiencia real
de la planta y los puntos 6ptimos de trabajo adecuados de cada enfriadora,
para trasladarlos posteriormente al BMS.

Tras la auditoria de eficiencia energética realizada a la instalacion du-
rante el ano 2020 han surgido nuevas propuestas de mejora de eficiencia
energética como la programacion especial de consignas de temperatura y
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humedad en modo de espera para los quir6fanos, en horarios fuera de ac-
tividad quirargica. También se ha propuesto como mejora aumentar el
aislamiento de las conducciones de retorno de agua de condensacion de
las torres para evitar que en la temporada estival aumente la temperatura
por efecto de la radiacion solar. Otra de las medidas propuestas es la in-
corporacion en los sistemas eléctricos del hospital de paneles de energia
fotovoltaica para su autoconsumo. Estos sistemas no requieren instalar
dispositivos de almacenamiento de energia (baterias o similares), debido a
que no son necesarios puesto que toda la energia generada es consumida
instantaneamente debido a la gran demanda, y siendo ademas las curvas
de generacion y demanda eléctrica correlativas.

En lo que respecta a mejoras en el sistema fisico (PS) de la planta,
existen planes para instalar un sistema que capture la energia del agua
que se envia a las torres de enfriamiento para su condensacién. Estos
nuevos sistemas extraen los excedentes de energia mediante un sistema de
evaporacion de gas refrigerante, consiguiendo capturar el calor excedente
del agua de las tuberias que se dirigen a las torres de refrigeracion, cedi-
endo posteriormente la energia adquirida mediante condensacion a los de-
positos de acumulacion de agua caliente sanitaria (ACS). Con ello ademas
se mejora la eficiencia energética general del edificio al ahorrarse ese con-
sumo de gas en las calderas.

Este estudio se ha centrado en la generacion térmica para refrigeracion,
no obstante y durante la realizacion de la publicacion III (en el ano 2020),
se instalaron en las instalaciones de las calderas del hospital contadores de
energia térmica, registrando desde entonces datos de generacion térmica
real. Este hecho permitira analogamente poder estudiar una metodologia
de optimizacion de la eficiencia de la planta de generacion de calor, pu-
diendo realizarse igualmente un modelo de prediccién de demanda y una
optimizacion del funcionamiento de la misma.
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