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ABSTRACT

In this work we consider the operator J (α,β) associated with the three-term re-
currence relation for the Jacobi polynomials and we study some classical operators
in Harmonic Analysis in this context. Particularly, we are interested in the heat and
Poisson semigroups and in the maximal operators related to them, in the Riesz trans-
forms, and in the Littlewood-Paley-Stein gk-functions. We obtain weighted `p(N)-
inequalities for the heat and Poisson maximal operators and for the Riesz transforms
when 1 < p < ∞ and α, β ≥ −1/2, and weighted weak inequalities in the case
p = 1 and α, β ≥ −1/2. We give weighted `p(N)-estimates for the gk-functions when
1 < p <∞ and α, β ≥ −1/2.

The method to prove these inequalities is based on the vector-valued Calderón-
Zygmund theory in spaces of homogeneous type.
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RESUMEN

En esta memoria consideramos el operador J (α,β) asociado a la relación de recu-
rrencia a tres términos de los polinomios de Jacobi y estudiamos varios operadores
clásicos del análisis armónico en este contexto. En concreto estamos interesados en
los semigrupos del calor y de Poisson, que dan lugar al operador maximal del calor
y al operador maximal de Poisson, respectivamente, en las transformadas de Riesz y
en las gk-funciones de Littlewood-Paley-Stein. Para los operadores maximales y las
transformadas de Riesz se obtienen acotaciones de tipo fuerte en espacios `p(N) con
peso, 1 < p < ∞ y α, β ≥ −1/2, y acotaciones de tipo débil con peso cuando p = 1
y α, β ≥ −1/2. En el caso de las gk-funciones se presentan acotaciones de tipo fuerte
con peso en estos espacios para 1 < p <∞ y α, β ≥ −1/2.

El método para probar estas acotaciones se basa en la teoría de Calderón-Zygmund
en espacios de tipo homogéneo para operadores con valores vectoriales.
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chapter i
INTRODUCTION

Harmonic Analysis is a very active and fruitful branch of Mathematics with many
applications to other branches and fields such as Partial Differential Equations, Er-
godic Theory, Group Theory, Number Theory, Probability Theory, Signal Processing,
and Quantum Physics. Historically, classical Harmonic Analysis was intimately con-
nected with Fourier Analysis. The beginnings of the story go back to some research
carried out by D. Bernoulli, J.-B. le Rond D’Alembert, J.-L. Lagrange, and L. Eu-
ler while trying to solve the vibrating string problem during the mid and late 17th
century. However, the landmark is the work Théorie analytique de la chaleur [23] by
J.-B. J. Fourier. There, Fourier formulates and solves the heat initial value problem
involving the heat equation

∂u(x, t)
∂t

= ∂2u(x, t)
∂x2 ,

which is a second order partial differential equation that describes the variation of
temperature in a region over time. To do so, he introduced an original technique
called Fourier’s method or the method of separation of variables where the key step
in the process was to assume that a periodic function f (the initial data) of period
say 1 can be represented by a trigonometric series of the form

(I.1)
∑
k∈Z

f̂(k)e2πikx.

The series in (I.1) is called the Fourier series (in its complex form) of the function f
and the coefficients f̂(k) are the so-called Fourier coefficients of f given by

f̂(k) =
∫ 1

0
f(t)e−2πikt dt, k ∈ Z.

These notions are easily reformulated when the function f is no longer periodic.
In that case, we have the so-called Fourier integral∫

Rd
f̂(ξ)e2πix·ξ dξ,

where now the Fourier transform of f is defined by

f̂(ξ) =
∫
Rd
f(x)e−2πix·ξ dx.

The central problem in Fourier Analysis is to study when and in what sense
the Fourier series (equivalently, the Fourier integral) of a function converges to the
function which represents. Most of the efforts in classical Harmonic Analysis focused
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I. Introduction

on investigating this representation and led the research on this topic until the mid-
19th century.

Fourier Analysis was initially in close connection with Complex Analysis and
boundary values of analytic functions. Some operators can be studied naturally in
this context. Concerning Fourier series we have the conjugate function

f̃(x) =
∞∑

k=−∞
−i sgn(k)f̂(k)e2πikx.

The analogue operator in the one-dimensional Fourier integral setting is the Hilbert
transform

Hf(x) = 1
π

∫
R

f(y)
x− y

dy.

Due to the singularity the integral must be interpreted in the principal value sense,
that is,

(I.2) Hf(x) = 1
π

p. v.
∫
R

f(y)
x− y

dy.

The interest lay in obtaining Lp bounds for these operators. An example of the
applications of this is that the Lp boundedness of the conjugate function (equivalently,
the Hilbert transform of a function) implies the Lp-norm convergence of the Fourier
series (equivalently, Fourier integral) of that function.

In dimension one, the first proofs [52] of the boundedness for both conjugate func-
tion and Hilbert transform used methods of Complex Analysis and this was an ob-
stacle to study higher dimensions. This problem originated a second era in Harmonic
Analysis in the mid-past century. The first step to deal with the multidimensional
case was due to A. P. Calderón and A. Zygmund and appeared in their seminal paper
[14]. They considered singular integral operators of convolution type of the form

Tf(x) = p. v.
∫
Rd
f(y)K(x− y) dy

and obtained mapping properties for them under certain decay conditions on the
kernel K which presents a singularity at the diagonal x = y. The main ingredient was
the so-called Calderón-Zygmund decomposition. The work of Calderón and Zygmund
initiated a new line of research in Harmonic Analysis known as Calderón-Zygmund
theory.

The above discussion shows the huge development that underwent Harmonic Anal-
ysis on Euclidean spaces. Later on, B. Muckenhoupt and E. M. Stein investigated
Harmonic Analysis associated with ultraspherical expansions in [41]. The idea was
to study the analogue of the conjugate function in this context. The former author
continued the analysis for other orthogonal families of polynomials in [38] and [39].
These papers are the starting point of the so-called Harmonic Analysis associated
with classical orthogonal expansions which we outline below.

Let {φn(x)}n∈N be a complete orthonormal system on L2(X, dµ), X ⊂ R. Then,
we have that

〈φn, φm〉dµ =
∫
X
φn(x)φm(x) dµ(x) = δnm,
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where δnm is the Kronecker’s delta function. In analogy with classical Fourier theory,
we form the Fourier expansion of a function f with respect to the system {φn}n∈N by
means of the expression

(I.3)
∞∑
n=0

cn(f)φn(x),

where now the Fourier coefficients cn(f) are given by

cn(f) = 〈f, φn〉dµ =
∫
X
f(y)φn(y) dµ(y).

One can ask for the same representation problem as in the classical Fourier theory,
that is, when and in what sense the series (I.3) converges to the function f .

The next stage in the development of Harmonic Analysis is the seminal work
[59] by E. M. Stein in 1970. The main goal was to carry out some topics in classical
Harmonic Analysis such as Littlewood-Paley theory, Riesz transforms (generalisations
of the Hilbert transform (I.2)), and maximal operators to the abstract setting of
symmetric diffusion semigroups and Lie groups.

Harmonic Analysis has also been analysed from a discrete point of view. Let us
focus on the one-dimensional case. It turns out that the mapping f 7→ {f̂(n)}n∈N
is an isometry from L2(0, 1) to `2(Z). Therefore, for an appropriate sequence f =
{f(n)}n∈Z we can define the discrete Fourier transform by

Ff(x) =
∑
n∈Z

f(n)e2πinx, 0 ≤ x < 1,

and try to recover the sequence f from the inverse of the discrete Fourier transform

F−1g(n) =
∫ 1

0
g(x)e−2πinx dx,

by the formula F−1Ff(n).
This idea is the basis of discrete Fourier Analysis, the discrete counterpart of

Fourier Analysis.
It may be say that this theory began with the work [52] by M. Riesz (see also

[71]). He observed that the Lp-bound of the Hilbert transform (I.2) implies that of
the discrete analogue

∼
Hd given by

∼
Hdf(n) = 1

π

∑
m∈Z
m 6=n

f(m)
n−m

,

on `p(N). The same procedure is found in [14] were `p-bounds are obtained for
discrete singular integrals from the Lp-bounds in the continuous setting. Moreover,
one can apply this technique to other classical operators such as the discrete maximal
function. However, there are some cases were it is not possible such an immediate
conclusion (see for example [49]). A proper study of the latter was initiated with
the work of J. Bourgain in the late eighties (see [12] and [13]) and was continued in
several papers, for example, [61, 62, 63, 64], and [36].
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I. Introduction

Our work here aims to be a generalisation of the ones in [17] and [10]. The former
is a study of discrete Harmonic Analysis associated with the discrete Laplacian

∆df(n) = f(n− 1)− 2f(n) + f(n+ 1), n ∈ Z.

In particular, the authors study the heat semigroup related to ∆d and mapping
properties of the heat maximal operator. The same inequalities are obtained for the
Poisson maximal operator by subordination. In addition, they analise the Littlewood-
Paley-Stein g-functions and give weighted inequalities for them. The main tools to
prove these results are semigroup theory, vector-valued Calderón-Zygmund theory in
spaces of homogeneous type, and certain properties of the modified Bessel functions.
They also consider the fractional Laplacian (−∆d)σ, 0 < σ < 1, and prove maximum
and comparison principles for it. Finally, the authors deal with the Riesz transforms.
The definition is based on a factorization of ∆d as a composition of first order dif-
ference operators. However, the usual construction of the Riesz transforms is not
well defined in this setting and a limiting procedure is carried out. These operators
turn out to be bounded on `p(N, w) spaces and reduce to convolution operators with
{1/(π(n + 1/2))}n∈Z or {1/(π(n − 1/2))}n∈Z. One of them is precisely the discrete
Hilbert transform (see [71] and Footnote 1 on page 40).

In [10], a study of discrete Harmonic Analysis associated with ultraspherical ex-
pansions is presented. They consider the discrete λ-Laplacian

∆λf(n) = aλn−1f(n− 1)− 2f(n) + aλnf(n+ 1), n ∈ N, λ ≥ 0,

where f(−1) = 0 and the elements of the sequence {aλn}n∈N are the ones involved in
the three-term recurrence relation for the ultraspherical polynomials. In this way, the
identity ∆0 = ∆d holds. That paper develops discrete vector-valued local Calderón-
Zygmund theory which plays a fundamental role in proving mapping properties for
the heat and Poisson maximal operators associated with ∆λ, a transplantation result
for ultraspherical coefficients, and the boundedness on `p(N, w) of the Littlewood-
Paley-Stein gk-functions.

In this dissertation we consider a discrete Laplacian related to the three-term
recurrence relation for Jacobi polynomials and we analise some classical operators in
Harmonic Analysis for it. We are especially concern in the heat and Poisson maximal
operators, the Riesz transforms, and Littlewood-Paley-Stein gk-functions that arise in
this discrete Jacobi setting. We have tried to make the present chapter independent
of the rest of the dissertation. In this way, we will consider again and recall some
topics or definitions that have already appeared in this chapter. The rest of the work
is organised as follows:

In Chapter II we set some notation and we review some concepts and results
of Jacobi polynomials that we will use throughout the next chapters. We reserve
the final part of the chapter to include some aspects of the discrete vector-valued
local Calderón-Zygmund theory of [10, Section 2]. All of this material is known and
nothing original is found in it. Nevertheless, we believe that it is convenient to recall
some of it in order to facilitate the reading.

In Chapter III we define the discrete Laplacian J (α,β) associated with the three-
term recurrence for Jacobi polynomials that will be the main object in the disser-
tation. We analyse the initial-value problem for the heat equation and the heat
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semigroup associated with J (α,β) and we obtain some necessary conditions for the
positivity of the heat semigroup {W (α,β)

t }t≥0. We also note that it is possible to carry
out some of these notions to the Jacobi matrix setting. Finally, we prove weighted
`p inequalities for the heat and Poisson maximal operators, 1 < p < ∞ and weak
estimates when p = 1. The boundedness of the former is obtained by using the
discrete vector-valued local Calderón-Zygmund theory of Chapter II. The latter is
readily obtained by subordination.

In Chapter IV, we study the Riesz transforms. As in [17], we find an appropriate
factorization of the operator J (α,β). Again, a limiting procedure is used to define the
Riesz transforms. In the last part of the chapter we include mapping properties of
the Riesz transforms in weighted `p(N, w)-spaces, 1 ≤ p < ∞ (weak estimates when
p = 1). In this occasion, we apply the discrete local Calderón-Zygmund theory in the
scalar case in the proof.

In Chapter V, we consider the Littlewood-Paley-Stein gk-functions associated with
both the heat and Poisson semigroups. By means of a duality argument, a trans-
plantation theorem for Jacobi coefficients, and the classical vector-valued Calderón-
Zygmund theory in spaces of homogeneous type we get weighted `p(N, w)-inequalities
for the former, 1 < p < ∞. The bound for the latter is deduced by expressing the
gk-functions associated with the Poisson semigroup in terms of the gk-functions as-
sociated with the heat semigroup. As a consequence of these results, we obtain some
corollaries about Laplace type multipliers and then, for imaginary powers of J (α,β).

At the end of the work it is possible to see the main conclusions and some further
work as well as the publications related to the dissertation and the bibliography.
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chapter ii
PRELIMINARIES

This chapter must be conceived as preparatory and it contains some notions, facts
and results that we will use frequently in the forthcoming chapters. Most of them are
well known and can be found in the wide specific literature dedicated to them (see,
for example, [54, 20, 24, 67], [45, Section 6], and [10, Section 2]). We distinguish three
main sections. First, we set the main spaces which we are interested in. Second, we
review some well-known facts concerning Jacobi polynomials. Finally, the remaining
section is devoted to discrete vector-valued local Calderón-Zygmund theory.

II.1 Notation and basic spaces
Let (X,Σ, µ) (also (X,µ) or simply X) be a positive measure space and p a

positive real number. We define the classical Lebesgue spaces Lp(X, dµ) to be the
class of all measurable functions f on X for which

(II.1) ‖f‖Lp(X,dµ) =
(∫

X
|f(x)|p dµ(x)

)1/p

is finite. As usual, we identify functions that are equal almost everywhere in X so
that the elements of Lp(X, dµ) are in fact equivalence classes of functions with (II.1)
finite. If p = ∞, we say that a measurable function f on X is essentially bounded
on X if

(II.2) µ({x ∈ X : |f(x)| > C}) = 0

for some constant C > 0. We denote by ‖f‖L∞(X,dµ) the infimum of the constants
C satisfying (II.2) and L∞(X, dµ) the class of all measurable functions f on X with
‖f‖L∞(X,dµ) finite.

In addition, when p = 1, we define the weak version of (II.1) by

‖f‖L1,∞(X,dµ) = sup
t>0

t µ({x ∈ X : |f(x)| > t})

and we define L1,∞(X, dµ) in a similar way to L1(X, dµ) replacing ‖ · ‖L1(X,dµ) by
‖ · ‖L1,∞(X,dµ).

Given 1 ≤ p ≤ ∞, the conjugate exponent of p is denoted by p′ and satisfies
1/p+ 1/p′ = 1. Two important inequalities very useful for our purposes are Hölder’s
and Minkowski’s inequalities.

Theorem II.1.1 (Hölder’s inequality). Let (X,µ) be a positive measure space and
1 ≤ p ≤ ∞. Let f ∈ Lp(X, dµ) and g ∈ Lp′(X, dµ). Then, fg ∈ L1(X, dµ) and

‖fg‖L1(X,dµ) ≤ ‖f‖Lp(X,dµ)‖g‖Lp′ (X,dµ).

7



II. Preliminaries

Theorem II.1.2 (Minkowski’s inequality). Let (X,µ) be a positive measure space
and 1 ≤ p ≤ ∞. Let f ∈ Lp(X, dµ) and g ∈ Lp(X, dµ). Then, f + g ∈ Lp(X, dµ) and

‖f + g‖Lp(X,dµ) ≤ ‖f‖Lp(X,dµ) + ‖g‖Lp(X,dµ).

Theorem II.1.2 can be proved via Theorem II.1.1 (see [54, Chapter 3]). It is now
clear that the functional ‖·‖Lp(X,dµ) is a norm on Lp(X, dµ), 1 ≤ p ≤ ∞. Furthermore,
we have that Lp(X, dµ) is a Banach space for 1 ≤ p ≤ ∞.

Another important inequality is the so-called Minkowski’s inequality for integrals.

Theorem II.1.3 (Minkowski’s inequality for integrals). Let (X,µ) and (Y, ν) be
measures spaces with σ-finite positive measures and f(x, y) a measurable function on
the σ-finite product measure space X × Y . Then,(∫

Y

∣∣∣∣∫
X
f(x, y) dµ(x)

∣∣∣∣p dν(y)
)1/p
≤
∫
X

(∫
Y
|f(x, y)|p dν(y)

)1/p
dµ(x).

When the underlying measure µ is the counting measure on a countable set A, it
is common to write `p(A) instead of Lp(A, dµ). In this particular case the elements
of `p(A) are sequences f = {f(n)}n∈A satisfying

‖f‖`p(A) =
(∑
n∈A
|f(n)|p

)1/p

<∞, 1 ≤ p <∞,

and
‖f‖`∞(A) = sup

n∈A
|f(n)| <∞.

Set A = N = {0, 1, 2, 3, . . . }. A weight on N is a strictly positive sequence
w = {w(n)}n∈N = {w(n)}n≥0. We define the weighted spaces `p(N, w) by

`p(N, w) =

f = {f(n)}n≥0 : ‖f‖`p(N,w) :=
 ∞∑
m=0
|f(m)|pw(m)

1/p

<∞

 ,
1 ≤ p <∞, and the weighted weak space `1,∞(N, w) by

`1,∞(N, w) =

f = {f(n)}n≥0 : ‖f‖`1,∞(N,w) := sup
t>0

t
∑

{m∈N:|f(m)|>t}
w(m) <∞

 ,
and we simply write `p(N) and `1,∞(N) when w(n) = 1 for all n ∈ N.

In this context, we say that a weight w = {w(n)}n≥0 belongs to the discrete
Muckenhoupt Ap(N) class provided

sup
0≤n≤m
n,m∈N

1
(m− n+ 1)p

 m∑
k=n

w(k)
 m∑

k=n
w(k)−1/(p−1)

p−1

<∞,

for 1 < p <∞, and

sup
0≤n≤m
n,m∈N

1
m− n+ 1

 m∑
k=n

w(k)
 max
n≤k≤m

w(k)−1 <∞,

for p = 1.
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II.2. Jacobi polynomials

II.2 Jacobi polynomials
Jacobi polynomials were introduced for the first time by C. G. J. Jacobi in Unter-

suchungen über die Differentialgleichung der hypergeometrischen Reihe [32] in 1859.
He arrived at such a definition while studying Gauss’s hypergeometric differential
equation.

Given α and β real numbers and n ∈ N, the Jacobi polynomials P (α,β)
n (x) may be

defined by means of Rodrigues’ formula (see [67, p. 67, eq. (4.3.1)]), by

(II.3) P (α,β)
n (x) = (−1)n

2n n! (1− x)α(1 + x)β
dn

dxn

(
(1− x)α+n(1 + x)β+n

)
.

Note that we can apply Leibniz’ rule to calculate the nth derivative in this identity
and then,

P (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ β

j

)(
x− 1

2

)j (x+ 1
2

)n−j
,

where the symbol
(
a
b

)
stands for the binomial coefficient. From this expression we

readily obtain the normalisation

P (α,β)
n (1) =

(
n+ α

n

)
.

For α, β > −1, Jacobi polynomials are orthogonal on the interval [−1, 1] with
respect to the measure

dµα,β(x) = (1− x)α(1 + x)β dx.

By using Rodrigues’ formula and integrating by parts n times it is not difficult to see
that ∫ 1

−1
P (α,β)
n (x)P (α,β)

m (x) dµα,β(x) = (w(α,β)
n )−2δnm,

where
(w(α,β)

n )−2 = ‖P (α,β)
n ‖2

L2([−1,1],dµα,β)

= 2α+β+1Γ(n+ α + 1)Γ(n+ β + 1)
(2n+ α + β + 1)Γ(n+ 1)Γ(n+ α + β + 1)

(if n = 0, we replace the product (2n+α+β+1)Γ(n+α+β+1) by Γ(n+α+β+2))
and we have denoted Kronecker’s delta by δnm (that is, 0 if n 6= m and 1 if n = m).

Therefore, the family {p(α,β)
n (x)}n≥0, given by p(α,β)

n (x) = w(α,β)
n P (α,β)

n (x) is a com-
plete orthonormal system in the space L2([−1, 1], dµα,β). We will adopt the notation
P (α,β)
n (capital letter) for the (orthogonal) Jacobi polynomials and p(α,β)

n (small letter)
for the orthonormalised Jacobi polynomials in the rest of this dissertation.

It turns out that there exists a three-term recurrence relation for the orthogonal
Jacobi polynomials, namely [67, eq. (4.5.1), p. 71]

2n(n+ α + β)(2n+ α + β − 2)P (α,β)
n (x)

(II.4)

= (2n+ α + β − 1)
(
(2n+ α + β)(2n+ α + β − 2)x+ α2 − β2

)
P

(α,β)
n−1 (x)

− 2(n+ α− 1)(n+ β − 1)(2n+ α + β)P (α,β)
n−2 (x)

9
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for n ≥ 2, with

P
(α,β)
0 (x) = 1, and P

(α,β)
1 (x) = α + β + 2

2 x+ α− β
2 .

An important fact is that the Jacobi polynomials P (α,β)
n (x) satisfy the linear ho-

mogeneous differential equation of second order

(1− x2)d
2y

dx2 + (β − α− (α + β + 2)x)dy
dx

+ n(n+ α + β + 1)y = 0.

Thus, we define the differential operator Lα,β by

Lα,β = −(1− x2) d
2

dx2 − (β − α− (α + β + 2)x) d
dx
.

Clearly, the Jacobi polynomials are eigenfunctions of Lα,β with eigenvalue λ(α,β)
n =

n(n+ α + β + 1), i.e.,
Lα,βp(α,β)

n = λ(α,β)
n p(α,β)

n .

It is well known that Lα,β is a symmetric operator on the domain C2
c (−1, 1) ⊂

L2([−1, 1], dµα,β) and for some interval [r, s] ⊂ [−1, 1], r < s, it is satisfied that

(II.5)
∫ s

r
f(x)Lα,βg(x) dµα,β(x) = Uα,β(f, g)(x)

∣∣∣∣x=s

x=r
+
∫ s

r
g(x)Lα,βf(x) dµα,β(x),

with
Uα,β(f, g)(x) = (1− x)α+1(1 + x)β+1

(
g(x) df

dx
(x)− f(x)dg

dx
(x)
)
.

To prove this identity put

Lα,βg(x) = −1
(1− x)α(1 + x)β

d

dx

(
(1− x)α+1(1 + x)β+1 dg

dx
(x)
)

and then integrate by parts twice to get

∫ s

r
f(x)Lα,βg(x) dµα,β(x) = −

∫ s

r
f(x) d

dx

(
(1− x)α+1(1 + x)β+1 dg

dx
(x)
)
dx

= Uα,β(f, g)(x)
∣∣∣∣x=s

x=r
+
∫ s

r
g(x)Lα,βf(x) dµα,β(x).

Moreover, we have some connection formulas between Lα,β. More precisely,

(II.6)

Lα,β(h1h2)(x) = h2(x)Lα+1,βh1(x)− (1 + x)h2(x)dh1

dx
(x)− 2(1− x2)dh1

dx
(x)dh2

dx
(x)

− (1− x2)h1(x)d
2h2

dx2 (x)− (β − α− (α + β + 2)x)h1(x)dh2

dx
(x)

10
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and

(II.7)

Lα+1,β(h1h2)(x) = h2(x)Lα,βh1(x) + (1 + x)h2(x)dh1

dx
(x)− 2(1− x2)dh1

dx
(x)dh2

dx
(x)

− (1− x2)h1(x)d
2h2

dx2 (x)− (β − α− 1− (α + β + 3)x)h1(x)dh2

dx
(x).

It is very useful to have identities and estimates for the Jacobi polynomials and
its derivatives. Here we include some of them which we will use later.

First, note that

(II.8) w(α,β)
n ' n1/2, α, β ≥ −1

2 , n > 0,

and w(α,β)
0 = C.

For the Jacobi polynomials we have the following identities (see [67, p. 94,
eq. (4.10.1)] or [48, p. 446, eq. 18.9.16] and [67, p. 71, eq. (4.5.4)]):

(II.9) d

dx

(
(1− x)α(1 + x)βP (α,β)

n (x)
)

= −2(n+ 1)(1−x)α−1(1 +x)β−1P
(α−1,β−1)
n+1 (x)

and

(II.10) 2n+ α + β + 2
2 (1− x)P (α+1,β)

n (x) = (n+ α+ 1)P (α,β)
n (x)− (n+ 1)P (α,β)

n+1 (x),

where α, β > −1. In addition, from [48, 18.9.6] it is possible to conclude that
(II.11)
−2n+ α + β + 2

2 (1− x)P (α+1,β)
n (x) + αP (α,β)

n (x) = (n+ 1)(P (α,β)
n+1 (x)− P (α,β)

n (x)),

where α, β > −1.
There is also a formula for the derivatives of the Jacobi polynomials (see [48,

18.9.15] or [67, p. 63, eq. (4.21.7)])

(II.12) dP (a,b)
n

dx
(x) = n+ α + β + 1

2 P
(α+1,β+1)
n−1 (x), n > 0.

Finally, the estimates of the Jacobi polynomials are given by (see [40, eq. (2.6)
and (2.7)])

(II.13) |p(α,β)
n (x)|

≤ C


(n+ 1)α+1/2, 1− 1/(n+ 1)2 < x < 1,
(1− x)−α/2−1/4(1 + x)−β/2−1/4, −1 + 1/(n+ 1)2 ≤ x ≤ 1− 1/(n+ 1)2,

(n+ 1)β+1/2, −1 < x < −1 + 1/(n+ 1)2,

where C is a constant independent of n and x. Note that for α, β ≥ −1/2 the previous
bound can be replaced by the simpler one (see [67, eq. 7.32.6])

(II.14) |p(α,β)
n (x)| ≤ C(1− x)−α/2−1/4(1 + x)−β/2−1/4, −1 ≤ x ≤ 1.
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Since L2(X, dµ) is a Hilbert space with the usual inner product, we also have
some facts about Fourier theory that can be adapted to the Jacobi setting. As it is
well known, for each function f ∈ L2([−1, 1], dµα,β) its Fourier-Jacobi coefficients are
given by

c(α,β)
m (f) =

∫ 1

−1
f(x)p(α,β)

m (x) dµα,β(x)

and
f(x) =

∞∑
m=0

c(α,β)
m (f)p(α,β)

m (x),

where the equality holds in L2([−1, 1], dµα,β). Moreover, {c(α,β)
m (f)}m≥0 is a sequence

in `2(N). Conversely, for each sequence f ∈ `2(N), the function

(II.15) Fα,β(x) =
∞∑
m=0

f(m)p(α,β)
m (x)

belongs to L2([−1, 1], dµα,β) and Parseval’s identity

(II.16) ‖f‖`2(N) = ‖Fα,β‖L2([−1,1],dµα,β)

holds. Moreover, c(α,β)
m (Fα,β) = f(m).

Note that an obvious consequence of (II.16) is the useful polarisation type identity

(II.17)
∞∑
m=0

f(m)g(m) =
∫ 1

−1
Fα,β(x)Gα,β(x) dµα,β(x), f, g ∈ `2(N),

where Fα,β is given by (II.15) and Gα,β is defined in a similar way.
The Jacobi polynomials form one of the so-called classical orthogonal families

of polynomials for which there is a vast theory (see for example [67] and [15]). To
conclude this section we mention some specific cases of the Jacobi polynomials which
are of interest in this dissertation. For α = β = λ − 1/2, λ > −1/2 we obtain the
ultraspherical (or Gegenbauer) polynomials Cλ

n(x). For α = β = −1/2 we have the
Chebyshov polynomials of the first kind, i.e.,

(II.18) p(−1/2,−1/2)
n (x) =

√
2
π
Tn(x) =

√
2
π

cos(nθ),

for n 6= 0 and where x = cos θ, 0 ≤ θ ≤ π, and p(−1/2,−1/2)
0 (x) = 1/

√
πT0(x) = 1/

√
π.

Finally, the Legendre polynomials Pn appear when α = β = 0.

II.3 Discrete vector-valued local
Calderón-Zygmund theory

In the 1950s, A. P. Calderón and A. Zygmund [14] developed real-variable tech-
niques to obtain boundedness properties of the so-called Calderón-Zygmund operators
(of convolution type) on Rd. The subsequent years brought further research on the
topic and consequently a better understanding of it.
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All of this was mainly achieved on the Euclidean space Rd for complex-valued func-
tions. A. Benedek, A. P. Calderón, and R. Panzone [9] considered a more general
setting consisting on Banach space valued Calderón-Zygmund operators of convo-
lution type on Rd but applied the results essentially to Hilbert spaces. In [53] the
authors revisited the theory in [9] and presented an extent account of the Calderón-
Zygmund theory in a vector-valued setting which allows the use of weights. Later
on, two of those authors [55] investigated vector-valued singular integrals on spaces
of homogeneous type in the sense of R. Coifman and G. Weiss [19]. In this spirit, see
also the paper by L. Grafakos, L. Liu, and D. Yang [28].

In [45], A. Nowak and K. Stempak introduced the notion of local Calderón-
Zygmund operator in dimension one to obtain weighted mapping properties for the
Hankel transform transplantation operator. Some aspects of the local Calderón-
Zygmund theory of [45, Section 4] have their discrete counterpart in [10, Section 2]
and have been stated in a vector-valued setting. In this section we are interested in
this discrete vector-valued local Calderón-Zygmund theory and we believe that it is
more convenient for the reader to recall briefly some of the notions and results of this
theory below.

Suppose that B1 and B2 are Banach spaces. We denote by L(B1,B2) the space of
bounded linear operators from B1 into B2. Let us suppose that

K : (N× N) \D −→ L(B1,B2),

where D := {(n, n) : n ∈ N}, is (strongly) measurable (see [28] or [20, p. 105]) and
that for certain positive constant C and for each n, m ∈ N, the following conditions
hold:

(a) The size condition:
‖K(n,m)‖L(B1,B2) ≤

C

|n−m|
;

(b) The regularity properties:

(b1) for |n−m| > 2|m− l| and 2m/3, 2l/3 ≤ n ≤ 3m/2, 3l/2,

‖K(n,m)−K(n, l)‖L(B1,B2) ≤ C
|m− l|
|n−m|2

,

(b2) for |n−m| > 2|n− s| and 2n/3, 2s/3 ≤ m ≤ 3n/2, 3s/2,

‖K(n,m)−K(s,m)‖L(B1,B2) ≤ C
|n− s|
|n−m|2

.

We say that a kernel K is a semi-local L(B1,B2)-standard kernel if it satisfies con-
ditions (a) and (b). A local L(B1,B2)-standard kernel K(n,m) will be a semi-
local L(B1,B2)-standard kernel supported in the region 2n/3 ≤ m ≤ 3n/2. Local
L(B1,B2)-standard kernels are discrete vector-valued analogues of the local Calderón-
Zygmund kernels introduced in [45, Definition 4.1]. Here we have followed the ter-
minology used in [45] and we have added the prefix “semi” to refer to the kernels
in [10].
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These kind of kernels define Calderón-Zygmund operators in a natural way. Let
us denote by BN

0 the space of B-valued sequences f = {f(n)}n≥0 such that there exists
j ∈ N such that f(n) = 0 for all n > j. By a (discrete) semi-local Calderón-Zygmund
operator we mean a linear and bounded operator T from `rB1(N) into `rB2(N), for some
1 < r <∞, and such that there exists a semi-local L(B1,B2)-standard kernel K such
that, for every sequence f ∈ (B1)N0 ,

Tf(n) =
∞∑
m=0

K(n,m) · f(m),

for every n ∈ N such that f(n) = 0.
A (discrete) local Calderón-Zygmund operator is a linear and bounded operator

T from `rB1(N) into `rB2(N), for some 1 < r < ∞, and such that there exists a local
L(B1,B2)-standard kernel K such that, for every sequence f ∈ (B1)N0 ,

Tf(n) =
∑
m∈N

2n/3≤m≤3n/2

K(n,m) · f(m),

for every n ∈ N such that f(n) = 0.
Here we are only interested in semi-local Calderón-Zygmund operators. To see

some applications of local Calderón-Zygmund operators see [6] and [4].
For a Banach space B and a weight w = {w(n)}n≥0, we consider the space

`pB(N, w) = {B-valued sequences f = {f(n)}n≥0 : {‖f(n)‖B}n≥0 ∈ `p(N, w)}

for 1 ≤ p <∞, and

`1,∞
B (N, w) =

{
B-valued sequences f = {f(n)}n≥0 : {‖f(n)‖B}n≥0 ∈ `1,∞(N, w)

}
;

in both cases, and in what follows, we tacitly assume that the sequences f are
(strongly) measurable. As usual, we simply write `pB(N) and `1,∞

B (N) when w(n) = 1
for all n ∈ N.

We conclude this section stating the main result concerning discrete vector-valued
local Calderón-Zygmund theory. In forthcoming sections we will always apply it in
the case when r = 2 in the definition of semi-local Calderón-Zygmund operator but
we present it here in full generality. In addition, we give the proof to make the
dissertation as self-contained as possible.

Theorem II.3.1 (Theorem 2.1 in [10]). Let B1 and B2 be Banach spaces and T a
semi-local Calderón-Zygmund operator. Then,

(i) for every 1 < p < ∞ and w ∈ Ap(N) the operator T can be extended from
`rB1(N) ∩ `pB1(N, w) to `pB1(N, w) as a bounded operator from `pB1(N, w) into
`pB2(N, w).

(ii) for every w ∈ A1(N) the operator T can be extended from `rB1(N)∩ `1
B1(N, w) to

`1
B1(N, w) as a bounded operator from `1

B1(N, w) into `1,∞
B2 (N, w).
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Proof. First, we split the operator in the local and global version of it by defining

Tglobf(n) = T (χN\Wnf)(n), n ∈ N,

and
Tlocf(n) = Tf(n)− Tglobf(n), n ∈ N,

for all f = {f(n)}n∈N ∈ (B1)N0 and where

Wn = {j ∈ N : 2n/3 ≤ j ≤ 3n/2}.

We first deal with the global part. Let f ∈ (B1)N0 and note that

Tglobf(n) =
∑

m∈N\Wn

K(n,m) · f(m)

since χN\Wn(n) = 0 for all n ∈ N. By the size condition (a) we have that (we adopt
the usual convention for empty sums)

‖Tglobf(n)‖B2 ≤ C
∑

m∈N\Wn

‖f(m)‖B1

|n−m|
≤ C

n+ 1
∑
m∈N

m<2n/3

‖f(m)‖B1 + C
∑
m∈N

m>3n/2

‖f(m)‖B1

m+ 1

≤ C (P (‖f‖B1)(n) +Q(‖f‖B1)(n)) ,

where ‖f‖B1 = {‖f(m)‖B1}m∈N and P and Q are the discrete Hardy operators defined
by

Pg(n) = 1
n+ 1

n∑
m=0

g(m)

and
Qg(n) =

∞∑
m=n

g(m)
m+ 1 ,

for g = {g(m)}m∈N ∈ CN. These operators are bounded on `p(N, w) (see [1]) so we
have that Tglob can be extended to `pB1(N, w) as a bounded operator from `pB1(N, w)
into `pB2(N, w) if 1 < p <∞ and w ∈ Ap(N), and to `1

B1(N, w) as a bounded operator
from `1

B1(N, w) into `1,∞
B2 (N, w).

We analyse now the local operator Tloc. Given f ∈ (B1)N0 , for all n ∈ N such that
f(n) = 0 we have

Tlocf(n) =
∑

m∈Wn

K(n,m) · f(m).

For n,m ∈ N, n 6= m, define the local kernel
∼
K(n,m) = χWn(m)K(n,m). Note that

χWn(m) = χWm(n).
It turns out that

∼
K satisfies certain Hörmander type conditions that are natural

discrete (vector-valued) analogues of (4.4) and (4.5) in [45]. More precisely, if a, b ∈ N,
a ≤ b, an interval in N is given by I = [a, b]∩N and we set I = ∅ if b < a. Furthermore,
we will denote by 2I the interval

2I =
[
a− b− a

2 , b+ b− a
2

]
∩ N =

[
3a− b

2 ,
3b− a

2

]
∩ N.
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In this way, we have that

(II.19)
∑

n∈N\2I
‖
∼
K(n,m)−

∼
K(n, l)‖L(B1,B2)‖f(n)‖B1 ≤ CM(‖f‖B1)(m), m, l ∈ I,

and

(II.20)
∑

m∈N\2I
‖
∼
K(n,m)−

∼
K(s,m)‖L(B1,B2)‖f(m)‖B1 ≤ CM(‖f‖B1)(n), n, s ∈ I,

for all intervals I in N, f ∈ (B1)N0 , and where M denotes the discrete Hardy-
Littlewood maximal function given by

Mg(n) = sup
I interval
n∈I

1
#(I)

∑
m∈I

g(m), n ∈ N.

The proof of (II.19) and (II.20) follows essentially the same ideas of [45, Proposi-
tion 4.1]. Moreover, the proofs of both Hörmander type conditions are similar so we
only prove (II.19).

Let a, b ∈ N, a < b, I = [a, b] ∩ N, and f ∈ (B1)N0 . We assume that m, l ∈ I and
m < l. The case l < m is similar.

First, observe that we have that

(II.21) |m− n|
3 < |l − n| < 3|m− n|

if n ∈ N\ I. For a proof of this fact see [10, eq. (20)]. Now we split the sum in (II.19)
into three terms:

(II.22)
∑

n∈N\2I
‖
∼
K(n,m)−

∼
K(n, l)‖L(B1,B2)‖f(n)‖B1

=
∑

n∈N\2I
n∈Wm∩Wl

‖K(n,m)−K(n, l)‖L(B1,B2)‖f(n)‖B1

+
∑

n∈N\2I
n∈Wm\Wl

‖K(n,m)‖L(B1,B2)‖f(n)‖B1

+
∑

n∈N\2I
n∈Wl\Wm

‖K(n, l)‖L(B1,B2)‖f(n)‖B1

=: S1(m, l) + S2(m, l) + S3(m, l).

We consider two cases. If 9m < 4l, we have thatWm∩Wl = ∅ and then S1(m, l) =
0. In addition, by using (a) and (II.21) we obtain that

S2(m, l) + S3(m, l) ≤
∑

n∈N\2I
n∈Wm

‖f(n)‖B1

|n−m|
+

∑
n∈N\2I
n∈Wl

‖f(n)‖B1

|n−m|
.

Note that if n ∈ N \ 2I, |n−m| > (b− a)/2 ≥ (l −m)/2 > 5l/18 and then,

S2(m, l) + S3(m, l) ≤ C

l

∑
n∈N\2I

n∈Wm∪Wl

‖f(n)‖B1 ≤
C

l

∑
n∈J
‖f(n)‖B1 ,
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where J = [2m/3, 3l/2] ∩ N. Since 3l/2 ≥ 3l/2− 2m/3 > 65l/54,

(II.23) S2(m, l) + S3(m, l) ≤ CM(‖f‖B1)(m).

Now we suppose that 9m ≥ 4l. In this case m 6= 0 because m < l. We have that

Wm ∩Wl =
[

2l
3 ,

3m
2

]
∩ N,

Wm \Wl =
[

2m
3 ,

2l
3

]
∩ N,

and

Wl \Wm =
[

3m
2 ,

3l
2

]
∩ N.

Clearly, l/3 < l − n if n ∈ Wm \Wl and m/2 < m − n if n ∈ Wl \Wm. So, by (a)
and (II.21),
(II.24)

S2(m, l) + S3(m, l) ≤ C
∑

n∈N\2I
2m/3≤n<2l/3

‖f(n)‖B1

|l − n|
+ C

∑
n∈N\2I

3m/2<n≤3l/2

‖f(n)‖B1

|m− n|

≤ C

l

∑
n∈N

1≤n≤l

‖f(n)‖B1 + C

m

∑
n∈N

m≤n≤4m

‖f(n)‖B1 ≤ CM(‖f‖B1)(m).

To study S1 we decompose the sum into two terms:

(II.25)

S1(m, l) =
∑

n∈N\2I
2l/3≤n≤3m/2
|n−m|≤2|m−l|

‖K(n,m)−K(n, l)‖L(B1,B2)‖f(n)‖B1

+
∑

n∈N\2I
2l/3≤n≤3m/2
|n−m|>2|m−l|

‖K(n,m)−K(n, l)‖L(B1,B2)‖f(n)‖B1

=: S1,1(m, l) + S1,2(m, l).

To estimate S1,1 we use (a) and (II.21) to get

S1,1(m, l) ≤ C
∑

n∈N\2I

|m− l|
|n−m|2

‖f(n)‖B1

and the same estimate holds for S1,2 by using (b1). Therefore,
(II.26)

S1,1(m, l) + S1,2(m, l) ≤ C
∞∑
k=1

∑
n∈2k+1I\2kI

|m− l|
|n−m|2

‖f(n)‖B1

≤ C
∞∑
k=1

#(I)
22k(#(I))2

∑
n∈2k+1I

‖f(n)‖B1 ≤ CM(‖f‖B1)(m).
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II. Preliminaries

The Hörmander type condition (II.19) follows from (II.22), (II.23), (II.24), (II.25),
and (II.26).

Now, it is clear that Tloc is bounded from `rB1(N) into `rB2(N) because so are T and
Tglob. By Theorem 1.1 in [28] (note that (N, µc, | · |), where µc is the counting measure
and | · | is the usual metric on N, is a space of homogeneous type), (II.19), and (II.20),
for 1 < p < ∞, Tloc can be extended from `rB1(N) ∩ `pB1(N) to `pB1(N) as a bounded
operator from `pB1(N) into `pB2(N) and Tloc can be extended from `rB1(N) ∩ `1

B1(N) to
`1
B1(N) as a bounded operator from `1

B1(N) into `1,∞
B2 (N). Moreover, these properties

also hold for T because Tglob also verifies them.
Finally, by adapting the arguments in Lemmas 5.15, 7.9, and 7.10, and Theo-

rems 7.11 and 7.12 in [20] to vector-valued homogeneous settings, we conclude that
Tloc, and therefore T , can be extended from `rB1(N)∩`pB1(N, w) to `pB1(N, w) as bounded
operators from `pB1(N, w) into `pB2(N, w), for 1 < p < ∞ and w ∈ Ap(N), and from
`rB1(N) ∩ `1

B1(N, w) to `1
B1(N, w) as bounded operators from `1

B1(N, w) into `1,∞
B2 (N, w),

for every w ∈ A1(N).
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chapter iii
THE HEAT SEMIGROUP

One of the most fundamental partial differential equations in Mathematics is the
so-called heat equation. Its classical form is

∂u(x, t)
∂t

= ∆u(x, t)

where the spatial variable x is in (an open set U of) Rd and the time variable t is a
non-negative real number. Here,

u : Rd × [0,+∞) −→ R
(x, t) 7−→ u(x, t)

and the Laplacian is taken with respect to x. Physically speaking, the heat equation
describes the variation in temperature in a given region over time. In this way, u(x, t)
is the temperature at position x at time t.

One typically considers the initial-value (or Cauchy’s) problem

(III.1)


∂u(x, t)
∂t

= ∆u(x, t),

u(x, 0) = f(x).

A solution, the heat semigroup, is given by the convolution of the initial data f and
the so-called fundamental solution (or heat kernel)

Φ(x, t) = 1
(4πt)d/2 e

−|x|2
4t , x ∈ Rd, t > 0.

More precisely,
u(x, t) = et∆f(x) =

∫
Rd
f(y)Φ(x− y, t) dy.

The heat equation may be regarded as the beginning of Harmonic Analysis. In-
deed, the theory of classical Fourier Analysis emerged from the necessity of explaining
the distribution of heat along a region over time. It was J.-B. J. Fourier who solved
(III.1) introducing the method of separation of variables in [23].

As we have mentioned in Chapter I, the study of Harmonic Analysis associated
with orthogonal expansions was initiated in the seminal paper by B. Muckenhoupt
and E. M. Stein [41]. Briefly, let (X,Σ, µ) be a positive measurable space, X ⊂ R,
and {φn}n≥0 be a complete orthonormal system in L2(X, dµ), that is,

span{φn}n≥0 = L2(X, dµ) (closure in L2(X, dµ))

and
〈φn, φm〉dµ =

∫
X
φn(x)φm(x) dµ(x) = δnm,
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III. The heat semigroup

where we have denoted by “span” the set of all finite linear combinations of φn. In
this setting, we construct the Fourier expansion of a suitable function f with respect
to this system by the expression

∞∑
n=0

cn(f)φn(x),

where the Fourier coefficients of f are

cn(f) = 〈f, φn〉dµ =
∫
X
f(y)φn(y) dµ(y).

The Jacobi setting was revisited using the semigroup theory and vector-valued
Calderón-Zygmund methods in [42] (see also [43]). The Jacobi differential operator
L(α,β) is given by (see Section II.2)

L(α,β) = (x2 − 1) d
2

dx2 + (α− β + (α + β + 2)x) d
dx

+
(
α + β + 1

2

)2

.

We have that L(α,β)p(α,β)
n = (λ̃(α,β))2p(α,β)

n , with λ̃(α,β) = n + (α + β + 1)/2. In this
setting, the natural semigroup to study is the Poisson semigroup given by

P(α,β)
t (x)f = e−t

√
L(α,β)

f(x) =
∞∑
n=0

e−t|λ̃
(α,β)
n |〈f, p(α,β)

n 〉dµα,βp(α,β)
n (x), −1 ≤ x ≤ 1.

Between a great variety of operators considered in [42], the authors analyse the Pois-
son maximal operator

P(α,β)
∗ f(x) = sup

t≥0
|P(α,β)

t f(x)|

obtaining mapping properties in weighted Lp spaces.
There exists a discrete analogue of the classical Laplacian operator, the discrete

Laplacian
∆df(n) = f(n− 1)− 2f(n) + f(n+ 1), n ∈ Z,

where now f = {f(n)}n∈Z is an appropriate sequence on Z. A natural question is to
study discrete harmonic analysis associated with ∆d. In this context, the initial-value
problem (III.1) can be reformulated to obtain

∂u(n, t)
∂t

= ∆du(n, t),

u(n, 0) = f(n).

It is known [29, 30] that the heat semigroup related to ∆d is

W d
t f(n) = et∆df(n) =

∑
m∈Z

e−2tIn−m(2t)f(m),

where Iν denotes the modified Bessel function of order ν. The study of `p-mapping
properties for the maximal heat semigroup in this context was carried out in [17].

20



III.1. The discrete heat semigroup for Jacobi expansions

Shortly after, a generalization of this problem was investigated in [10]. The authors
consider the ultraspherical context and define the discrete λ-Laplacian by

∆λf(n) = aλn−1f(n− 1)− 2f(n) + aλnf(n+ 1), λ ≥ 0,

for sequences f = {f(n)}n≥0 ∈ CN and where the elements of the sequence {aλn}n≥0
are the ones involved in the three-term recurrence relation for the ultraspherical
polynomials. As a consequence, ∆0 = ∆d. Again, `p-mapping properties are derived
for the heat maximal semigroup.

In this chapter we pursue a generalization of the aforementioned results both [17]
and [10]. More precisely, we consider the Jacobi setting and we construct an operator
that generalises in a natural way both ∆d and ∆λ. The aim of this chapter is to
study the heat semigroup related to this operator.

III.1 The discrete heat semigroup for Jacobi
expansions

We consider the sequences {a(α,β)
n }n≥0 and {b(α,β)

n }n≥0, α, β > −1, given by

a(α,β)
n = 2

2n+ α + β + 2

√√√√(n+ 1)(n+ α + 1)(n+ β + 1)(n+ α + β + 1)
(2n+ α + β + 1)(2n+ α + β + 3) , n ≥ 0,

and
b(α,β)
n = β2 − α2

(2n+ α + β)(2n+ α + β + 2) , n ≥ 0

(we assume the natural interpretation when n = 0). Note that these sequences
are the ones involved in the three-term recurrence relation for the normalised Jacobi
polynomials p(α,β)

n (x), −1 ≤ x ≤ 1 (see (II.4)). For any given sequence f = {f(n)}n≥0
we define {J (α,β)f(n)}n≥0 by the relations

J (α,β)f(n) = a
(α,β)
n−1 f(n− 1) + b(α,β)

n f(n) + a(α,β)
n f(n+ 1), n ≥ 1,

and J (α,β)f(0) = b
(α,β)
0 f(0) + a

(α,β)
0 f(1).

By definition, it is immediate that

J (α,β)p(α,β)
n (x) = xp(α,β)

n (x), x ∈ [−1, 1].

It is convenient for us to work with the operator

J (α,β)f(n) = (J (α,β) − I)f(n),

rather than working with J (α,β) (here I denotes the identity operator), since the
translated operator −J (α,β) is non-negative. In fact, the spectrum of J (α,β) is the
interval [−1, 1], so that the spectrum of −J (α,β) is [0, 2]. Observe that one could also
get a positive operator by defining J̃ (α,β)

f(n) = (J (α,β) + I)f(n), where in this case
the spectrum would be the interval [0, 2] and similar results would be attained.
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III. The heat semigroup

Our main goal in this section is to give a precise and simple expression of the heat
semigroup associated with J (α,β).

In this setting, for n ≥ 0, α, β > −1, and t ≥ 0, the heat equation is given by
∂u(n, t)
∂t

= J (α,β)u(n, t)

and for each sequence {f(n)}n≥0 the corresponding initial-value problem is
∂u(n, t)
∂t

= J (α,β)u(n, t),

u(n, 0) = f(n).

Let us begin checking that W (α,β)
t f(n), where

(III.2) W
(α,β)
t f(n) =

∞∑
m=0

f(m)K(α,β)
t (m,n)

and the kernel has the form

K
(α,β)
t (m,n) =

∫ 1

−1
e−(1−x)tp(α,β)

m (x)p(α,β)
n (x) dµα,β(x),

is a solution of the initial-value problem. First, note that W (α,β)
t f is well defined for

each sequence f ∈ `2(N). Indeed,

|W (α,β)
t f(n)| ≤ ‖f‖`2(N)‖K(α,β)

t (·, n)‖`2(N)

and taking into account that

K
(α,β)
t (m,n) = c(α,β)

m (e−(1−(·))tp(α,β)
n ),

by Parseval’s identity (II.16) we have

‖K(α,β)
t (·, n)‖`2(N) = ‖e−(1−(·))tp(α,β)

n ‖L2([−1,1],dµα,β) ≤ ‖p(α,β)
n ‖L2([−1,1],dµα,β) = 1.

Following a similar argument we have that ∂
∂t
W

(α,β)
t f(n) is well defined and

∂

∂t
W

(α,β)
t f(n) = −

∞∑
m=0

f(m)
∫ 1

−1
(1− x)e−(1−x)tp(α,β)

m (x)p(α,β)
n (x) dµα,β(x).

Then, using that

J (α,β)p(α,β)
n (x) = −(1− x)p(α,β)

n (x), x ∈ [−1, 1],

we get ∂
∂t
W

(α,β)
t f(n) = J (α,β)W

(α,β)
t f(n). In addition, by means of the identity

K
(α,β)
0 (m,n) = δmn,

it is immediate to see that W (α,β)
0 f(n) = f(n).

By construction, W (α,β)
t f = etJ

(α,β)
f , where

etJ
(α,β)

f =
∫ 1

−1
e−t(1−λ) dEJ(α,β)(λ)f

and EJ is the spectral measure associated with J (α,β). Therefore, from the general
theory (see [72]), it turns out that the family of operators {W (α,β)

t }t≥0 is a is a strongly
continuous semigroup of operators on `2(N), i.e., we have the following theorem:
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III.1. The discrete heat semigroup for Jacobi expansions

Theorem III.1.1. Let W (α,β)
t be the operator defined by (III.2). Then, for each

sequence f ∈ `2(N) we have that

(III.3) ‖W (α,β)
t f‖`2(N) ≤ ‖f‖`2(N).

Moreover,

(a) W (α,β)
t1 W

(α,β)
t2 f(n) = W

(α,β)
t1+t2f(n), for t1, t2 ≥ 0, n ∈ N,

(b) W (α,β)
0 f(n) = f(n), n ∈ N, and

(c) limt→0+ ‖W (α,β)
t f − f‖`2(N) = 0.

From item (c), we have the pointwise convergence of the heat semigroup, that is,

lim
t→0+

W
(α,β)
t f(n) = f(n), n ≥ 0,

for all sequence f ∈ `2(N).
Now, for each f ∈ `2(N), bring in the heat maximal operator

(III.4) W (α,β)
∗ f(n) = sup

t≥0
|W (α,β)

t f(n)|.

Using the ideas in [59, Chapter III] and the estimate (III.3) we can conclude the
`2-boundedness of W (α,β)

∗ , that is,

(III.5) ‖W (α,β)
∗ f‖`2(N) ≤ C‖f‖`2(N).

The sketch of the proof of this inequality is as follows. Following [59, p. 74 and 75],

W (α,β)
∗ f(n) ≤M (α,β)f(n) + g(α,β)(f)(n),

where g(α,β)(f)(n) denotes the Littlewood-Paley-Stein function andM (α,β)f(n) is the
supremum of the averages of the heat semigroup in this context. They are respectively
given by

g(α,β)(f)(n) =
∫ ∞

0

∣∣∣∣∣t ∂∂tW (α,β)
t f(n)

∣∣∣∣∣
2
dt

t

1/2

and
M (α,β)f(n) = sup

s>0

∣∣∣∣1s
∫ s

0
W

(α,β)
t f(n) dt

∣∣∣∣ .
Both operators are bounded from `2(N) into itself, that is,

‖g(α,β)(f)‖`2(N) ≤ C‖f‖`2(N) and ‖M (α,β)f‖`2(N) ≤ C‖f‖`2(N),

so (III.5) follows directly. The proof for the bound (in fact, an equality is attained for
some constant) for g(α,β)(f) is given in Chapter V, Lemma V.2.1. On its behalf, the
bound for M (α,β)f is the discrete analogous of the continuous one presented in [58,
Corollary 2] and it can be proved in a similar way. The contractivity of the semigroup
{W (α,β)

t }t≥0 given in (III.3) is a requirement there.
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III. The heat semigroup

The heat semigroup for Jacobi matrices
All the results in the previous section carry over to a more general framework.

We briefly describe the details below. An infinite tridiagonal matrix

J =



b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
0 0 a2 b3 · · ·
... ... ... ... . . .

 ,

with an > 0 and bn ∈ R for all n ∈ N, is called a Jacobi matrix. We suppose
that the sequences {an}n≥0 and {bn}n≥0 are bounded so that J defines a bounded
self-adjoint linear operator on `2(N) (that we still denote by J). In this situation,
Favard’s theorem (see [22] and [15, Chapter 1, Theorem 4.4]) states that each Jacobi
matrix corresponds to a spectral measure µ with a compact support X having an
infinite number of points. Moreover, there exists a family of polynomials {pn}n≥0
orthonormalised in L2(X, dµ), i.e.,∫

X
pn(x)pm(x) dµ(x) = δnm,

satisfying the three-term recurrence relation

xpn(x) = an−1pn−1(x) + bnpn(x) + anpn+1(x), x ∈ X,

with p−1(x) = 0 and where the sequences {an}n≥0 and {bn}n≥0 are the entries of the
Jacobi matrix J associated with the measure µ.

It is known that the measure µ related to a Jacobi matrix may not be unique
(see [66, § 56]). However, if it is unique, then the family of orthonormal polynomials
{pn}n≥0 is dense in L2(X, dµ) (see [56, Theorem 2.14]). Hence, the Fourier series of
an arbitrary function in terms of the polynomials {pn}n≥0 is convergent in the space
L2(X, dµ), that is, for each f ∈ L2(X, dµ), with the Fourier coefficients given by

cm(f) =
∫
X
f(t)pm(t) dµ(t),

the identity

f(x) =
∞∑
m=0

cm(f)pm(x),

holds in L2(X, dµ). In order to guarantee the uniqueness of the measure µ, we suppose
that an → a and bn → b (with both a and b finite), so X is bounded with at most
countably many points outside the interval [b−2a, b+2a], with b±2a the limit points
of X (see [15, Chapter 2, Theorem 5.6]).

Conversely, for each sequence in f ∈ `2(N) there is a function F ∈ L2(X, dµ) such
that

(III.6) F (x) =
∞∑
m=0

f(m)pm(x),
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t

where the convergence holds in the L2(X, dµ) sense and we have that cm(F ) = f(m).
Furthermore, Parseval’s identity

‖F‖L2(X,dµ) = ‖f‖`2(N)

holds. Obviously, given two sequences f1, f2 ∈ `2(N), the polarisation type identity
∫
X
F1(x)F2(x) dµ(x) =

∞∑
m=0

f1(m)f2(m),

where the functions F1 and F2 are defined as in (III.6), holds.
For each Jacobi matrix J , let s be the maximum of the support of the measure µ

and s+ = max{s, 0}, and define the operator

J = J − s+I,

where I is the infinite identity matrix. Observe that now

J pn(x) = (x− s+)pn(x), x ∈ X.

Then, for n ≥ 0 and t ≥ 0, and each appropriate sequence {f(n)}n≥0, we consider
the initial-value problem corresponding to the heat equation associated with the
operator J given by 

∂u(n, t)
∂t

= J u(n, t),

u(n, 0) = f(n).

Define Wt by
Wtf(n) =

∞∑
m=0

f(m)Kt(m,n),

where
Kt(m,n) =

∫
X
e(x−s+)tpm(x)pn(x) dµ(x).

Again,
Wtf(n) = etJ f(n) =

∫
X
e−t(s

+−λ) dEJ(λ)f,

where EJ is the spectral measure associated with J , is a solution of the initial-value
problem and we have an analogue of Theorem III.1.1 in this setting.

III.2 The positivity of the heat semigroup W
(α,β)
t

In this section we study the positivity of the heat semigroup W
(α,β)
t . In other

words, we are interested in proving that W (α,β)
t f is non-negative provided f is a non-

negative sequence in `∞(N). It is not possible to us to deal with the same question
in the general setting of Jacobi matrices because we need extra information of the
associated family of orthogonal polynomials.

The first step we take in our goal is to extend the definition of W (α,β)
t to the space

`∞(N). This is attained in view of the following lemma.
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III. The heat semigroup

Lemma III.2.1. Let α, β ≥ −1/2 and n 6= m. Then,

|K(α,β)
t (m,n)| ≤ C

t1/2

|m− n|2
.

The proof of this result is quite technical and we postpone it to the last section
of this chapter.

The main tool to prove the positivity of W (α,β)
t is a well-known linearisation for-

mula for the product of two Jacobi polynomials due to G. Gasper. For the normalised
polynomials p(α,β)

n , n ≥ 0, α, β > −1, it reads as follows

(III.7) p(α,β)
m (x)p(α,β)

n (x) =
m+n∑

k=|m−n|
c(k, n,m, α, β)p(α,β)

k (x),

where all the coefficients c(k, n,m, α, β) are non-negative if and only if (α, β) ∈ V .
Here we say that (α, β) belongs to the set V if α, β > −1, α ≥ β and

(α + β + 1)(α + β + 4)2(α + β + 6) ≥ (α− β)2((α + β + 1)2 − 7(α + β + 1)− 24).

The previous general result was given in [27]. In [26], the positivity of the coefficients
c(k, n,m, α, β) was established under the simpler (but less general) conditions α ≥ β
and α + β ≥ −1.

Now we can state the main result of this section.

Theorem III.2.2. Let α ≥ β ≥ −1/2 and t ≥ 0. Then for each non-negative
sequence f ∈ `∞(N), the heat operator W (α,β)

t f is non-negative.

Proof. The operator W (α,β)
t is well defined for sequences in `∞(N) by Lemma III.2.1.

In order to prove the result it suffices to see that the kernel K(α,β)
t is non-negative.

By using the linearisation formula (III.7), we can express the kernel in the following
way:

(III.8) K
(α,β)
t (m,n) =

m+n∑
k=|m−n|

c(k, n,m, α, β)
∫ 1

−1
e−(1−x)tp

(α,β)
k (x) dµα,β(x),

with c(k, n,m, α, β) ≥ 0. So, by using that

h
(α,β)
t (k) :=

∫ 1

−1
e−(1−x)tp

(α,β)
k (x) dµα,β(x) = e−tw

(α,β)
k

∫ 1

−1
extP

(α,β)
k (x) dµα,β(x)

the proof reduces to show the non-negativity of the last integral, but it is almost
immediate from Rodrigues’ formula (II.3) and integration by parts k times. Indeed,

∫ 1

−1
extP

(α,β)
k (x) dµα,β(x) = (−1)k

2kk!

∫ 1

−1
ext

dk

dxk

(
(1− x)α+k(1 + x)β+k

)
dx

= tk

2kk!

∫ 1

−1
ext(1− x)α+k(1 + x)β+k dx,

which is clearly non-negative.
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It is worth pointing out that by means of the linearisation (III.7) it is possible
to define a positive convolution operator in `1(N) [27, Corollary 1]. Actually, this
procedure is extensible to other orthogonal polynomials and it has been widely stud-
ied for example in [68], where general orthogonal polynomials are considered. This
convolution structure is used in [10, eq. 13] to study several issues related to the
heat semigroup in the ultraspherical setting. Regarding the Jacobi case, for any two
sequences f = {f(n)}n≥0 and g = {g(n)}n≥0 the convolution operator is given by

(f ∗ g)(n) =
∞∑
m=0

f(m)τ (α,β)
n g(m), n ∈ N,

where τ (α,β)
n g(m) denotes the translation operator

τ (α,β)
n g(m) =

m+n∑
k=|m−n|

c(k, n,m, α, β)g(k).

Rewriting the equation (III.8) in terms of the translation operator as K(α,β)
t (m,n) =

τ (α,β)
n h

(α,β)
t (m) it is straightforward to give an expression for the heat semigroup as a

convolution by
W

(α,β)
t f(n) = (f ∗ h(α,β)

t )(n).
However, we will not follow this approach to analyse the heat semigroup.

III.3 Weighted inequalities for the heat and
Poisson maximal operators

In this section, we consider the heat maximal operator W (α,β)
∗ and the Poisson

maximal operator P (α,β)
∗ (see below for the definition) and we prove weighted inequal-

ities for them when α, β ≥ −1/2. We use the discrete vector-valued local Calderón-
Zygmund theory of Section II.3 as an indispensable tool.

The next theorem includes mapping properties in weighted `p-spaces of W (α,β)
∗ .

Theorem III.3.1. Let α, β ≥ −1/2 and consider the maximal operator W (α,β)
∗ de-

fined by (III.4).

(a) If 1 < p <∞ and w ∈ Ap(N), then

‖W (α,β)
∗ f‖`p(N,w) ≤ C‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C is a constant independent of f . Consequently, the operator W (α,β)
∗

extends uniquely to a bounded operator from `p(N, w) into itself.

(b) If w ∈ A1(N), then

‖W (α,β)
∗ f‖`1,∞(N,w) ≤ C‖f‖`1(N,w), f ∈ `2(N) ∩ `1(N, w),

where C is a constant independent of f . Consequently, the operator W (α,β)
∗

extends uniquely to a bounded operator from `1(N, w) into `1,∞(N, w).
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The Poisson maximal operator P (α,β)
∗ is defined by

(III.9) P (α,β)
∗ f(n) = sup

t≥0
|P (α,β)
t f(n)|,

where the Poisson semigroup {P (α,β)
t }t≥0 is given by subordination by the identity

(III.10) P
(α,β)
t f(n) = 1√

π

∫ ∞
0

e−u√
u
W

(α,β)
t2/(4u)f(n) du, t ≥ 0,

for sequences f ∈ `∞(N). Note that it is well defined by Lemma III.2.1.
As an immediate consequence of Theorem III.3.1 and the pointwise domination

P (α,β)
∗ f(n) ≤ W (α,β)

∗ f(n), n ≥ 0, α, β > −1,

which follows from the expression (III.10), we deduce the following result for P (α,β)
∗ .

Corollary III.3.2. Let α, β ≥ −1/2 and consider the maximal operator P (α,β)
∗ defined

by (III.9).

(a) If 1 < p <∞ and w ∈ Ap(N), then

‖P (α,β)
∗ f‖`p(N,w) ≤ C‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C is a constant independent of f . Consequently, the operator P (α,β)
∗

extends uniquely to a bounded operator from `p(N, w) into itself.

(b) If w ∈ A1(N), then

‖P (α,β)
∗ f‖`1,∞(N,w) ≤ C‖f‖`1(N,w), f ∈ `2(N) ∩ `1(N, w),

where C is a constant independent of f . Consequently, the operator P (α,β)
∗

extends uniquely to a bounded operator from `1(N, w) into `1,∞(N, w).

Noteworthy, the previous corollary can be stated for other subordinated semi-
groups. Due to (III.10), it is clear that the Poisson semigroup is subordinated of
the heat one, so the properties related to weighted norm inequalities for the latter
can be transferred to the former (see for instance [59, Theorem 1’, p. 46]). Unsur-
prisingly, this transfer property does not only work for the Poisson semigroup, but
also for other subordinated semigroups of the heat one. As it is explained in [72,
Chapter IX, Section 11], one possible way to construct subordinated semigroups of
W

(α,β)
t is essentially by means of the positive powers of the infinitesimal generator
J (α,β). To be more specific, the semigroup with infinitesimal generator −(−J (α,β))σ,
where 0 < σ < 1, is subordinated of W (α,β)

t . In the particular case of the Poisson
semigroup, its infinitesimal generator is given by −

√
−J (α,β).

Now, in order to prove Theorem III.3.1 we use the discrete vector-valued local
Calderón-Zygmund theory of Section II.3. Set B = L∞(0,∞). We observe first that
the operator

T : `2(N) −→ `2
B(N)

f 7−→ Tf(n, t) := W
(α,β)
t f(n),
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is bounded from `2(N) into `2
B(N). Indeed, it is a consequence of the `2-boundedness

of the heat maximal operator (see (III.5)).
To obtain the regularity properties (b1) and (b2) for the kernel K(α,β)

t it suffices
to prove the inequalities

(III.11) ‖K(α,β)
t (n,m+ 1)−K(α,β)

t (n,m)‖L∞(0,∞) ≤
C

|n−m|2
,

for n,m ∈ N, n 6= m, and 2m/3 ≤ n ≤ 3m/2, and

(III.12) ‖K(α,β)
t (n+ 1,m)−K(α,β)

t (n,m)‖L∞(0,∞) ≤
C

|n−m|2
,

for n,m ∈ N, n 6= m, and 2n/3 ≤ m ≤ 3n/2. The proof of this fact is based on the
ideas of [10, p. 17 and 18] and it actually works when the norm comes from a general
Banach space.

Let us see that (III.12) implies (b2) (the proof that (III.11) implies (b1) is anal-
ogous in a general context but note that in our case K(α,β)

t (n,m) = K
(α,β)
t (m,n)).

If n = l the conclusion follows readily. Let us suppose that n < s. By the triangle
inequality, we obtain

‖K(α,β)
t (n,m)−K(α,β)

t (s,m)‖L∞(0,∞)

≤
s−n−1∑
j=0
‖K(α,β)

t (n+ j,m)−K(α,β)
t (n+ j + 1,m)‖L∞(0,∞).

If n > m we apply (III.12) to get the desired estimate. When n < m we apply (III.12)
and then use that |n−m| > 2|n− s| so the result follows. The case n > s is similar
and we omit the details.

Lemma III.3.3. Let n,m ∈ N, n 6= m, α, β ≥ −1/2, and t ≥ 0. Then,

(III.13) ‖K(α,β)
t (n,m)‖L∞(0,∞) ≤

C

|n−m|
.

Moreover,

(III.14) ‖K(α,β)
t (n, n)‖L∞(0,∞) ≤ C.

Lemma III.3.4. Let n,m ∈ N, n 6= m, 2m/3 ≤ n ≤ 3m/2, α, β ≥ −1/2 and t ≥ 0.
Then,

‖K(α,β)
t (n+ 1,m)−K(α,β)

t (n,m)‖L∞(0,∞) ≤
C

|n−m|2
.

We postpone the proofs of both lemmas to the next section. Therefore, we have
that

W (α,β)
∗ f(n) ≤

∥∥∥∥∥∥∥∥
∞∑
m=0
m 6=n

f(m)K(α,β)
t (m,n)

∥∥∥∥∥∥∥∥
L∞(0,∞)

+ ‖f(n)K(α,β)
t (n, n)‖L∞(0,∞)

=: T1f(n) + T2f(n).
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By using Theorem II.3.1, we obtain that

‖T1f‖`p(N,w) ≤ C‖f‖`p(N,w)

and the corresponding weak inequality for p = 1. The bound

‖T2f‖`p(N,w) ≤ C‖f‖`p(N,w),

1 ≤ p <∞, becomes clear by using (III.14). Thus, Theorem III.3.1 is proved.

III.4 Technical results
Throughout this section we adopt the following notation

I
(a,b,A,B,α,β)
t (n,m) =

∫ 1

−1
e−t(1−x)P (a,b)

n (x)P (A,B)
m (x)(1− x)α(1 + x)β dx,

where n,m ∈ N, a, b, A,B, α, β > −1, and t ≥ 0.
We begin this section by giving a technical lemma related to the family of inte-

grals I
(a,b,A,B,α,β)
t (n,m) which we will use to prove Lemma III.2.1 and the required

Calderón-Zygmund estimates contained in Lemmas III.3.3 and III.3.4.

Lemma III.4.1. Let n, m ∈ N and a, b, A, B, α, β > −1 such that n+a+b+1 6= 0,
m+ A+B + 1 6= 0, and n(n+ a+ b+ 1) 6= m(m+ A+B + 1).

(a) If n, m 6= 0, we have that

I
(a,b,A,B,α,β)
t (n,m) = (n+ a+ b+ 1)(m+ A+B + 1)

2(n(n+ a+ b+ 1)−m(m+ A+B + 1))

×

 t

m+ A+B + 1I
(a+1,b+1A,B,α+1,β+1)
t (n− 1,m)

− α− a
m+ A+B + 1I

(a+1,b+1,A,B,α,β+1)
t (n− 1,m)

+ β − b
m+ A+B + 1I

(a+1,b+1,A,B,α+1,β)
t (n− 1,m)

− t

n+ a+ b+ 1I
(a,b,A+1,B+1,α+1,β+1)
t (n,m− 1)

+ α− A
n+ a+ b+ 1I

(a,b,A+1,B+1,α,β+1)
t (n,m− 1)

− β −B
n+ a+ b+ 1I

(a,b,A+1,B+1,α+1,β)
t (n,m− 1)

.
(b) If n = 0 and m ∈ N,

I
(a,b,A,B,α,β)
t (0,m) = t

2mI
(a,b,A+1,B+1,α+1,β+1)
t (0,m− 1)

− α− A
2m I

(a,b,A+1,B+1,α,β+1)
t (0,m− 1)

+ β −B
2m I

(a,b,A+1,B+1,α+1,β)
t (0,m− 1).
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(c) If n ∈ N and m = 0,

I
(a,b,A,B,α,β)
t (n, 0) = t

2nI
(a+1,b+1,A,B,α+1,β+1)
t (n− 1, 0)

− α− a
2n I

(a+1,b+1,A,B,α,β+1)
t (n− 1, 0)

+ β − b
2n I

(a+1,b+1,A,B,α+1,β)
t (n− 1, 0).

Proof. First, we prove case (a). By using the identities (II.12) and (II.9) and applying
integration by parts we have

I
(a,b,A,B,α,β)
t (n,m)

= −1
2n

∫ 1

−1
e−t(1−x) d

dx

(
P

(a+1,b+1)
n−1 (x)(1− x)a+1(1 + x)b+1

)
P (A,B)
m (x)

× (1− x)α−a(1 + x)β−b dx

= t

2nI
(a+1,b+1,A,B,α+1,β+1)
t (n− 1,m)

+ m+ A+B + 1
4n I

(a+1,b+1,A+1,B+1,α+1,β+1)
t (n− 1,m− 1)

− α− a
2n I

(a+1,b+1,A,B,α,β+1)
t (n− 1,m)

+ β − b
2n I

(a+1,b+1,A,B,α+1,β)
t (n− 1,m).

In a similar way, we obtain that

I
(a+1,b+1,A+1,B+1,α+1,β+1)
t (n− 1,m− 1)

= 2
n+ a+ b+ 1

∫ 1

−1
e−t(1−x) d

dx

(
P (a,b)
n (x)

)
×
(
P

(A+1,B+1)
m−1 (x)(1− x)A+1(1 + x)B+1

)
(1− x)α−A(1 + x)β−B dx

= −2t
n+ a+ b+ 1I

(a,b,A+1,B+1,α+1,β+1)
t (n,m− 1)

+ 4m
n+ a+ b+ 1I

(a,b,A,B,α,β)
t (n,m)

+ 2(α− A)
n+ a+ b+ 1I

(a,b,A+1,B+1,α,β+1)
t (n,m− 1)

− 2(β −B)
n+ a+ b+ 1I

(a,b,A+1,B+1,α+1,β)
t (n,m− 1)

and the result follows.
For cases (b) and (c) write

I
(a,b,A,B,α,β)
t (0,m) = − 1

2m

∫ 1

−1
e−t(1−x) d

dx

(
(1− x)A+1(1 + x)B+1P

(A+1,B+1)
m−1 (x)

)
× (1− x)α−A(1 + x)β−B dx
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in the former and

I
(a,b,A,B,α,β)
t (n, 0) = − 1

2n

∫ 1

−1
e−t(1−x) d

dx

(
(1− x)a+1(1 + x)b+1P

(a+1,b+1)
n−1 (x)

)
× (1− x)α−a(1 + x)β−b dx

in the latter and integrate by parts.

Proof of Lemma III.2.1. We only check the cases n,m ≥ 2, with n 6= m, by using (a)
in Lemma III.4.1. The remaining cases can be obtained from (b) and (c) in the same
lemma. Taking a = A = α and b = B = β in Lemma III.4.1 case (a) and noting that

n(n+ α + β + 1)−m(m+ α + β + 1) = (n−m)(n+m+ α + β + 1)

we have

(III.15) |K(α,β)
t (n,m)| ≤ Ct

|n−m|
w(α,β)
n w(α,β)

m

 ∣∣∣I(α+1,β+1,α,β,α+1,β+1)
t (n− 1,m)

∣∣∣
+
∣∣∣I(α,β,α+1,β+1,α+1,β+1)
t (n,m− 1)

∣∣∣
.

Lemma III.4.1 gives that
∣∣∣I(α+1,β+1,α,β,α+1,β+1)
t (n− 1,m)

∣∣∣ ≤ C

|n−m|

t|I(α+2,β+2,α,β,α+2,β+2)(n− 2,m)|

+ t|I(α+1,β+1,α+1,β+1,α+2,β+2)(n− 1,m− 1)|
+ |I(α+1,β+1,α+1,β+1,α+1,β+2)(n− 1,m− 1)|

+ |I(α+1,β+1,α+1,β+1,α+2,β+1)(n− 1,m− 1)|
.

Now, with the uniform bound (II.14), taking into account the asymptotic behaviour
(II.8) and the bound∫ 0

−1
e−t(1−x)(1− x)−1/2 dx =

∫ 1

0
e−t(1+x)(1 + x)−1/2 dx

≤
∫ 1

0
e−t(1−x)(1− x)−1/2 dx,

we obtain that∣∣∣I(α+1,β+1,α,β,α+1,β+1)
t (n− 1,m)

∣∣∣
≤ C√

nm|n−m|

t ∫ 1

−1
e−t(1−x)(1− x)1/2 dx+

∫ 1

0
e−t(1−x)(1− x)−1/2 dx


≤ C√

nm|n−m|

t1/2 ∫ 1

−1
e−t(1−x)/2 dx+ t−1/2

∫ ∞
0

e−ss−1/2 ds


≤ Ct−1/2
√
nm|n−m|

.
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Following the same procedure, we deduce that

∣∣∣I(α,β,α+1,β+1,α+1,β+1)
t (n,m− 1)

∣∣∣ ≤ Ct−1/2
√
nm|n−m|

.

Then, from (III.15), the result follows.

Proof of Lemma III.3.3. For the cases n,m ≥ 1, with n 6= m, the result follows
from (III.15), (II.14), and (II.8). The estimate (III.13) for the remaining cases is a
consequence of (b) and (c) in Lemma III.4.1. The bound (III.14) is obvious.

Proof of Lemma III.3.4. Note that the conditions n 6= m and 2m/3 ≤ n ≤ 3m/2
imply that n,m ≥ 2.

We begin by using the relation (II.10) to get

p(α,β)
n (x)− p(α,β)

n+1 (x) =
1− w

(α,β)
n+1

w
(α,β)
n

 p(α,β)
n (x) + w

(α,β)
n+1

p(α,β)
n (x)
w

(α,β)
n

− p
(α,β)
n+1 (x)
w

(α,β)
n+1


=
1− w

(α,β)
n+1

w
(α,β)
n

 p(α,β)
n (x)− α

n+ 1
w

(α,β)
n+1

w
(α,β)
n

p(α,β)
n (x)

+ 2n+ α + β + 2
2(n+ 1)

w
(α,β)
n+1

w
(α+1,β)
n

(1− x)p(α+1,β)
n (x).

Therefore,

K
(α,β)
t (n,m)−K(α,β)

t (n+ 1,m)

=
1− w

(α,β)
n+1

w
(α,β)
n

K(α,β)
t (n,m)− α

n+ 1
w

(α,β)
n+1

w
(α,β)
n

K
(α,β)
t (n,m)

+ 2n+ α + β + 2
2(n+ 1)

w
(α,β)
n+1

w
(α+1,β)
n

D
(α,β)
t (n,m),

with
D

(α,β)
t (n,m) = w(α+1,β)

n w(α,β)
m I

(α+1,β,α,β,α+1,β)
t (n,m).

Now, the limit

lim
n→∞

n

w(α,β)
n+1

w
(α,β)
n

− 1
 = 1

2 ,

which is a consequence of (II.8), gives us the estimate∣∣∣∣∣∣1− w
(α,β)
n+1

w
(α,β)
n

∣∣∣∣∣∣ ≤ C

n
.

The last inequality is used together with Lemma III.3.3 to obtain

sup
t≥0

∣∣∣K(α,β)
t (n,m)−K(α,β)

t (n+ 1,m)
∣∣∣ ≤ C

|n−m|2
+ C sup

t≥0

∣∣∣D(α,β)
t (n,m)

∣∣∣ .
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So the study reduces to prove that

(III.16) sup
t≥0

∣∣∣D(α,β)
t (n,m)

∣∣∣ ≤ C

|n−m|2
.

First, we apply Lemma III.4.1 to obtain that

∣∣∣I(α+1,β,α,β,α+1,β)
t (n,m)

∣∣∣ ≤ C

|n−m|

t ∣∣∣I(α+2,β+1,α,β,α+2,β+1)
t (n− 1,m)

∣∣∣
+ t

∣∣∣I(α+1,β,α+1,β+1,α+2,β+1)
t (n,m− 1)

∣∣∣
+
∣∣∣I(α+1,β,α+1,β+1,α+1,β+1)
t (n,m− 1)

∣∣∣
.

Now, applying again Lemma III.4.1 to each term on the right-hand side of the previous
inequality we have

t
∣∣∣I(α+2,β+1,α,β,α+2,β+1)
t (n− 1,m)

∣∣∣ ≤ C

|n−m|

×

t2 ∣∣∣I(α+3,β+2,α,β,α+3,β+2)
t (n− 2,m)

∣∣∣
+ t2

∣∣∣I(α+2,β+1,α+1,β+1,α+3,β+2)
t (n− 1,m− 1)

∣∣∣
+ t

∣∣∣I(α+2,β+1,α+1,β+1,α+2,β+2)
t (n− 1,m− 1)

∣∣∣
+ t

∣∣∣I(α+2,β+1,α+1,β+1,α+3,β+1)
t (n− 1,m− 1)

∣∣∣
,

t
∣∣∣I(α+1,β,α+1,β+1,α+2,β+1)
t (n,m− 1)

∣∣∣ ≤ C

|n−m|

×

t2 ∣∣∣I(α+2,β+1,α+1,β+1,α+3,β+2)
t (n− 1,m− 1)

∣∣∣
+ t2

∣∣∣I(α+1,β,α+2,β+2,α+3,β+2)
t (n,m− 2)

∣∣∣
+ t

∣∣∣I(α+2,β+1,α+1,β+1,α+2,β+2)
t (n− 1,m− 1)

∣∣∣
+ t

∣∣∣I(α+1,β,α+2,β+2,α+2,β+2)
t (n,m− 2)

∣∣∣
+ t

∣∣∣I(α+2,β+1,α+1,β+1,α+3,β+1)
t (n− 1,m− 1)

∣∣∣
,
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and∣∣∣I(α+1,β,α+1,β+1,α+1,β+1)
t (n,m− 1)

∣∣∣ ≤ C

|n−m|

×

t ∣∣∣I(α+2,β+1,α+1,β+1,α+2,β+2)
t (n− 1,m− 1)

∣∣∣
+ t

∣∣∣I(α+1,β,α+2,β+2,α+2,β+2)
t (n,m− 2)

∣∣∣
+
∣∣∣I(α+2,β+1,α+1,β+1,α+2,β+1)
t (n− 1,m− 1)

∣∣∣
.

Finally, by using the bound (II.14) and (II.8) we conclude that
∣∣∣D(α,β)

t (n,m)
∣∣∣ ≤ C

|n−m|2

×

t2 ∫ 1

−1
e−t(1−x)(1− x)(1 + x)1/2 dx+ t

∫ 1

−1
e−t(1−x)(1 + x)1/2 dx

+ t
∫ 1

−1
e−t(1−x)(1− x)(1 + x)−1/2 dx+

∫ 1

−1
e−t(1−x)(1 + x)−1/2 dx


≤ C

|n−m|2

and the proof of (III.16) is completed.
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chapter iv
THE RIESZ TRANSFORMS

This chapter is a continuation of the study of discrete Harmonic Analysis associ-
ated with the discrete Laplacian J (α,β) related to the three-term recurrence for Jacobi
polynomials. In this occasion we focus on the Riesz transforms which arise in this
setting.

The Riesz transforms are classical operators in Harmonic Analysis. In the Eu-
clidean context, they are a straightforward generalization to higher dimensions of the
Hilbert transform on the real line

Hf(x) = 1
π

∫
R

f(y)
x− y

dy,

defined for suitable functions f and where the integral is interpreted in the principal
value sense. More precisely, the Riesz transforms are singular integral operators of
the form

Rjf(x) = cd

∫
Rd

xj − yj
|x− y|d+1f(y) dy, 1 ≤ j ≤ d,

with cd a constant which depends only on the dimension d (c1 = 1/π). Mapping
properties for the Hilbert transform (and for the conjugate function) were obtained
by M. Riesz in his celebrated paper [52]. The boundedness on Lp of a wide class of
singular integrals in Rd was first studied by A. P. Calderón and A. Zygmund in the
classical article [14].

In the non-trigonometric setting, the Riesz transforms have been studied in many
situations. We recommend [44] to the interested reader and the references therein.
These operators have also been treated in very abstract settings as for example Rie-
mannian manifolds or compact Lie groups (see for example [18] and [21], respectively).

The chapter is organised as follows: the definition of the Riesz transforms is given
in the first section. It is based on the Riesz potentials (also called fractional integrals)
of J (α,β) which are also included in that section. The next section contains the main
theorem of the chapter about `p-mapping properties of the Riesz transforms. The
result generalises the one presented in [17] for the corresponding Riesz transforms
associated with the discrete Laplacian ∆d. The proof of the main theorem relies on
discrete Calderón-Zygmund theory so the last section is devoted to show the estimates
that are necessary to apply it.

IV.1 The Riesz transforms associated with
Jacobi polynomials

In Chapter III we have seen that the infinitesimal generator of the heat semigroup
{W (α,β)

t }t≥0 is J (α,β). In order to define the Riesz transforms we follow a standard
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procedure (see [59, p. 57], [69], and [70]).
First, we decompose the operator J (α,β) by noting that the sequences {dn}n≥0

and {en}n≥0 given by

dn =

√√√√ 2(n+ α + β + 1)(n+ α + 1)
(2n+ α + β + 1)(2n+ α + β + 2)

and

en =

√√√√ 2(n+ β + 1)(n+ 1)
(2n+ α + β + 2)(2n+ α + β + 3)) ,

for n ≥ 0 (we assume the natural interpretation for d0), satisfy the relations

a(α,β)
n = dnen, n ≥ 0,
b(α,β)
n = 1− d2

n − e2
n−1, n ≥ 1,

and b(α,β)
0 = 1− d2

0.
In this way, we have that

J (α,β) = −δ?δ,
where

δf(n) = dnf(n)− enf(n+ 1), n ≥ 0,
δ?f(n) = dnf(n)− en−1f(n− 1), n ≥ 1,

and δ?f(0) = d0f(0). Note that both δ and δ? are adjoint operators in `2(N).
Second, we define the Riesz potentials (also fractional integrals) (−J (α,β))σ fol-

lowing [60, Chapter 5]. So, by using the formula [51, Section 2.3.3, eq. 1]∫ ∞
0

tσ−1e−rt dt = Γ(σ)r−σ,

which holds for σ, r > 0, the Riesz potentials (fractional integrals) are given by

(−J (α,β))−σf(n) = 1
Γ(σ)

∫ ∞
0

W
(α,β)
t f(n)
t1−σ

dt, σ > 0.

Finally, we formally define the Riesz transforms R(α,β) associated with the oper-
ator J (α,β) by the composition

R(α,β)f(n) = δ(−J (α,β))−1/2f(n).

Unfortunately, the next result shows that the operator (−J (α,β))−1/2 is not well de-
fined for α, β ≥ −1/2, so we will need and alternative way to define the Riesz trans-
forms.

Throughout the rest of the work we will use the standard notation c00 instead of
the less usual (C)N0 .

Proposition IV.1.1. Let α, β ≥ −1/2, σ > 0, and f ∈ c00. Then (−J (α,β))−σ is
well defined if and only if σ < 1/2.
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Proof. First of all, we have that W (α,β)
t f is well defined for f ∈ c00 (it is well defined

for sequences in `∞(N) by Lemma III.2.1 and then for those in c00 ⊂ `∞(N)). Then,
we will prove that (−J (α,β))−σ is finite if and only if 0 < σ < 1/2.

The argument for the sufficiency is as follows. It is clear that
∣∣∣(−J (α,β))−σf(n)

∣∣∣ ≤ 1
Γ(σ)

∫ ∞
0
|W (α,β)

t f(n)| dt
t1−σ

≤ 1
Γ(σ)

(∫ 1

0
|W (α,β)

t f(n)| dt
t1−σ

+
∫ ∞

1
|W (α,β)

t f(n)| dt
t1−σ

)

=: I1 + I2

Γ(σ) .

For I1 we use the estimate (see Lemma III.2.1 for the case m 6= n and note that for
m = n is obvious)

|K(α,β)
t (m,n)| ≤ C


t1/2

|m− n|2
, m 6= n,

1, m = n,

to obtain that

I1 ≤ C

 ∞∑
m=0
m 6=n

|f(m)|
|m− n|2

∫ 1

0

dt

t1/2−σ
+ |f(n)|

∫ 1

0

dt

t1−σ


and both terms are finite for σ > 0. To deduce the convergence of I2, using that
f ∈ c00 and the bound (II.14), it is enough to show that

∫ ∞
1

∫ 1

−1

e−(1−x)t
√

1− x2
dx

dt

t1−σ
<∞.

Since ∫ 1

−1

e−(1−x)t
√

1− x2
dx ≤ C

∫ 1

0

e−(1−x)t
√

1− x
dx = C√

t

∫ t

0

e−s√
s
ds ' C√

t
,

we have ∫ ∞
1

∫ 1

−1

e−(1−x)t
√

1− x2
dx

dt

t1−σ
≤ C

∫ ∞
1

tσ−3/2 dt ≤ C,

where we have used that σ < 1/2.
To show the necessity of the condition σ < 1/2, we will use the inequality

∫ 1

−1

e−(1−x)t
√

1− x2
dx < π lim inf

n→∞

∫ 1

−1
e−(1−x)t(p(α,β)

n (x))2 dµα,β(x).

This is a particular case of a classical result due to A. Máté, P. Nevai, and V. Totik
[37, Theorem 2]. From this fact, there exists N ∈ N such that for every n ≥ N ,

C
∫ 1

−1

e−(1−x)t
√

1− x2
dx <

∫ 1

−1
e−(1−x)t(p(α,β)

n (x))2 dµα,β(x).
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Then, taking j ∈ N such that j ≥ N and the sequence {fj(m) = δjm}m≥0 we have

(IV.1)

(−J (α,β))−σfj(j) ≥
∫ ∞

1
K

(α,β)
t (j, j) dt

t1−σ

=
∫ ∞

1

∫ 1

−1
e−(1−x)t(p(α,β)

j (x))2 dµα,β(x) dt

t1−σ

> C
∫ ∞

1

∫ 1

−1

e−(1−x)t
√

1− x2
dx

dt

t1−σ
.

Now, using that t > 1, we obtain that

(IV.2)
∫ 1

−1

e−(1−x)t
√

1− x2
dx ≥

∫ 1

0

e−(1−x)t
√

1− x
dx = C√

t

∫ t

0

e−s√
s
ds ' C√

t
.

Then, since (−J (α,β))−σfj(j) is well defined, from (IV.1) and (IV.2) we deduce that
σ < 1/2.

Motivated by [17], we define the Riesz transforms R(α,β) by

(IV.3) R(α,β)f(n) = lim
σ→ 1

2
−
δ(−J (α,β))−σf(n).

This is a natural way to proceed because in that paper it was shown that the Riesz
transform associated with ∆d turns out to be the discrete one-dimensional Hilbert
transform1

Hdf(n) = 1
π

∑
m∈Z

f(m)
n−m+ 1/2 , n ∈ Z,

defined for appropriate functions f = {f(n)}n∈Z.

IV.2 Mapping properties of the Riesz transforms
In this section, we are going to prove `p-estimates for the Riesz transforms R(α,β)

for α, β ≥ −1/2. As in the proof of Theorem III.3.1, we use the discrete Calderón-
Zymgund theory of Section II.3. The difference here is that we invoke it in the simpler
scalar case.

To do so, we first express the Riesz transforms given in (IV.3) in the form of
Theorem II.3.1. Taking into account Proposition IV.1.1, for α, β ≥ −1/2, 0 < σ <

1This definition is the one given in [71]. There is another typical definition of the discrete
one-dimensional Hilbert transform for sequences in the literature given by

∼
Hdf(n) = 1

π

∑
m∈Z
m6=n

f(m)
n−m

, n ∈ Z.

In this direction see [2, 3, 31] and [8].
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1/2, and f ∈ c00, Fubini’s theorem gives

(−J (α,β))−σf(n) =
∞∑
m=0

f(m) 1
Γ(σ)

∫ ∞
0

K
(α,β)
t (m,n) dt

t1−σ

= 1
Γ(σ)

∞∑
m=0

f(m)
∫ 1

−1
p(α,β)
m (x)p(α,β)

n (x)
∫ ∞

0
tσ−1e−(1−x)t dt dµα,β(x)

=
∞∑
m=0

f(m)
∫ 1

−1

p(α,β)
m (x)p(α,β)

n (x)
(1− x)σ dµα,β(x).

By [48, 18.9.6], it is easy to check that

δp(α,β)
n (x) = (1− x)p(α+1,β)

n (x),

and therefore, for each sequence in f ∈ c00,

R(α,β)f(n) = lim
σ→ 1

2
−
δ(−J (α,β))−σf(n)

= lim
σ→ 1

2
−

∞∑
m=0

f(m)
∫ 1

−1

p(α,β)
m (x)p(α+1,β)

n (x)
(1− x)σ−1 dµα,β(x)

=
∞∑
m=0

f(m)R(α,β)(m,n),

with
R(α,β)(m,n) =

∫ 1

−1
(1− x)1/2p(α,β)

m (x)p(α+1,β)
n (x) dµα,β(x).

We now state the main theorem of this chapter.

Theorem IV.2.1. Let α, β ≥ −1/2 and let R(α,β) be the Riesz transforms defined
in (IV.3).

(a) If 1 < p <∞ and w ∈ Ap(N), then

‖R(α,β)f‖`p(N,w) ≤ C‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C is a constant independent of f . Consequently, the operator R(α,β)

extends uniquely to a bounded linear operator from `p(N, w) into itself.

(b) If w ∈ A1(N), then

‖R(α,β)f‖`1,∞(N,w) ≤ C‖f‖`1(N,w), f ∈ `2(N) ∩ `1(N, w),

where C is a constant independent of f . Consequently, the operator R(α,β)

extends uniquely to a bounded linear operator from `1(N, w) into `1,∞(N, w).

As it was mentioned above, the proof of this result relies on the discrete Calderón-
Zygmund theory of Section II.3 (in the scalar case). Below, we include the steps for
the proof of the theorem.

First, we present an auxiliary result concerning Ap(N) weights that we will use
later.
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Lemma IV.2.2. Let 1 ≤ p <∞ and w ∈ Ap(N). Then, w(n) ' w(n+ 1).

Proof. For 1 < p <∞ and w ∈ Ap(N), it is clear that

[w]Ap(N) ≥
1
2p (w(n) + w(n+ 1))(w(n)−1/(p−1) + w(n+ 1)−1/(p−1))p−1, n ∈ N.

Now, by means of the inequality (a + b)r ≥ Cr(ar + br), where a, b, r > 0 and
Cr = min{2r−1, 1}, we have

[w]Ap(N) ≥
Cp−1

2p (w(n) + w(n+ 1))(w(n)−1 + w(n+ 1)−1) > Cp−1

2p w(n)w(n+ 1)−1

and, similarly,
[w]Ap(N) >

Cp−1

2p w(n+ 1)w(n)−1.

So,
Cp−1

2p[w]Ap(N)
w(n) < w(n+ 1) <

2p[w]Ap(N)

Cp−1
w(n).

For p = 1, if we suppose first w(n) ≤ w(n+ 1), then it is clear that

[w]A1(N) ≥
1
2(w(n) + w(n+ 1)) max{w(n)−1, w(n+ 1)−1}

= 1
2(1 + w(n+ 1)w(n)−1) > w(n+ 1)w(n)−1

2
and we obtain w(n) ≤ w(n + 1) < 2[w]A1(N)w(n). On the other hand, supposing
w(n+ 1) < w(n) the procedure is exactly the same.

Let us see now that the operator R(α,β) is bounded from `2(N) into itself. Let
Fα,β(x) be defined by (II.15), which belongs to L2([−1, 1], dµα,β) for each sequence f
in `2(N). Recall that (see (II.16))

(IV.4) ‖f‖`2(N) = ‖Fα,β‖L2([−1,1],dµα,β).

Therefore, noting that

R(α,β)f(n) =
∫ 1

−1
(1− x)1/2p(α+1,β)

n (x)Fα,β(x) dµα,β(x)

= c(α+1,β)
n ((1− ·)−1/2Fα,β),

by (IV.4) we have that

‖R(α,β)f‖`2(N) = ‖c(α+1,β)
n ((1− ·)−1/2Fα,β)‖`2(N)

= ‖(1− ·)−1/2Fα,β‖L2([−1,1],dµα+1,β) = ‖Fα,β‖L2([−1,1],dµα,β) = ‖f‖`2(N)

and then R(α,β) is a bounded operator from `2(N) into itself.
Next, we note that it is possible to split the m variable into even and odd parts,

that is,

R(α,β)f(n) =
∞∑
m=0

f(2m)R(α,β)(2m,n) +
∞∑
m=0

f(2m+ 1)R(α,β)(2m+ 1, n),
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which motivates the following definitions

e,eR(α,β)f(n) =
∞∑
m=0

f(m)e,eR(α,β)(m,n), e,eR(α,β)(m,n) = R(α,β)(2m, 2n),

e,oR(α,β)f(n) =
∞∑
m=0

f(m)e,oR(α,β)(m,n), e,oR(α,β)(m,n) = R(α,β)(2m, 2n+ 1),

o,eR(α,β)f(n) =
∞∑
m=0

f(m)o,eR(α,β)(m,n), o,eR(α,β)(m,n) = R(α,β)(2m+ 1, 2n),

and

o,oR(α,β)f(n) =
∞∑
m=0

f(m)o,oR(α,β)(m,n), o,oR(α,β)(m,n) = R(α,β)(2m+ 1, 2n+ 1).

Hence, we obtain that

R(α,β)f(2n) = e,eR(α,β)f̃(n) + o,eR(α,β)f̂(n)

and
R(α,β)f(2n+ 1) = e,oR(α,β)f̃(n) + o,oR(α,β)f̂(n),

with f̃(n) = f(2n) and f̂(n) = f(2n + 1), n ∈ N. In addition, note that e,eR(α,β),
o,eR(α,β), e,oR(α,β), and o,oR(α,β) are bounded operators in `2(N) because so is R(α,β).
Indeed, let us define the functions

g(n) = f(n/2)χE(n) and h(n) = f((n− 1)/2)χO(n),

where E and O denotes the sets of even and odd numbers respectively. Then, we
have that e,eR(α,β)f(n) = R(α,β)g(2n), o,eR(α,β)f(n) = R(α,β)h(2n), e,oR(α,β)f(n) =
R(α,β)g(2n+ 1), and o,oR(α,β)f(n) = R(α,β)h(2n+ 1), so the boundedness on `2(N) of
each operator follows immediately.

Therefore, it is enough to prove that the kernels e,eR(α,β), o,eR(α,β), e,oR(α,β), and
o,oR(α,β) are semi-local L(C,C)-standard kernels. This fact is an immediate conse-
quence of the following propositions2.

Proposition IV.2.3. Let n,m ∈ N, n 6= m, α, β ≥ −1/2. Then,

(IV.5) |R(α,β)(m,n)| ≤ C

|m− n|
.

Moreover,

(IV.6) |R(α,β)(n, n)| ≤ C.

2Note that in Proposition IV.2.4 we estimate the difference R(α,β)(m + 2, n) − R(α,β)(m,n)
instead of R(α,β)(m + 1, n) − R(α,β)(m,n). The reason is that the former is more appropriate
because p(a,b)

n (x)− p(a,b)
n+2 (x) behaves better than p(a,b)

n (x)− p(a,b)
n+1 (x) (see [50]).

43



IV. The Riesz transforms

Proposition IV.2.4. Let n,m ∈ N, n 6= m, 2m/3 ≤ n ≤ 3m/2, α, β ≥ −1/2.
Then,

(IV.7) |R(α,β)(m+ 2, n)−R(α,β)(m,n)| ≤ C

|m− n|2

and

(IV.8) |R(α,β)(m,n+ 2)−R(α,β)(m,n)| ≤ C

|m− n|2
.

The proofs of these two propositions are the most delicate points of the chapter
and they are postponed to the next section.

In this way, by Theorem II.3.1 (invoked in the scalar setting), taking the weights
we(n) = w(2n) and wo(n) = w(2n + 1) (note that both of them belongs to Ap(N)
because w ∈ Ap(N)), and applying the bound (IV.6) to control the diagonal terms,
for 1 < p <∞, we have

‖e,eR(α,β)f̃‖`p(N,we) ≤ C‖f̃‖`p(N,we),

‖o,eR(α,β)f̂‖`p(N,we) ≤ C‖f̂‖`p(N,we),

‖e,oR(α,β)f̃‖`p(N,wo) ≤ C‖f̃‖`p(N,wo),

‖o,oR(α,β)f̂‖`p(N,wo) ≤ C‖f̂‖`p(N,wo),

and the corresponding weak inequalities for p = 1. To complete the proof, it is enough
to observe that, by Lemma IV.2.2,

‖f̂‖`p(N,we) ≤ C‖f̂‖`p(N,wo) ≤ C‖f‖`p(N,w)

and
‖f̃‖`p(N,wo) ≤ C‖f̃‖`p(N,we) ≤ C‖f‖`p(N,w).

IV.3 Proofs of Propositions IV.2.3 and IV.2.4
Proof of Proposition IV.2.3. The proof of (IV.6) is obvious, so we will focus on the
proof of (IV.5).

First, we suppose that n > m. We decompose R(α,β)(m,n) according to the
intervals I1 = (−1,−1 + 1/(n + 1)2), I2 = [−1 + 1/(n + 1)2, 1 − 1/(n + 1)2], and
I3 = (1−1/(n+1)2, 1) and denote the corresponding integrals by R1(m,n), R2(m,n),
and R3(m,n). From (II.13), for α, β ≥ −1/2, we have

|R1(m,n)| ≤ C(n+ 1)β+1/2(m+ 1)β+1/2
∫
I1

(1 + x)β dx ≤ C

n+ 1

and
|R3(m,n)| ≤ C(n+ 1)α+3/2(m+ 1)α+1/2

∫
I3

(1− x)α+1/2 dx ≤ C

n+ 1 ,

and these estimates are enough to prove (IV.5).
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Let us focus on R2(m,n). We consider the notation

J(m,n) =
∫
I2
Hα,β(x)p(α+1,β)

n (x)p(α,β)
m (x) dµα,β(x),

with

(IV.9) Hα,β(x) = 2β − 2α + 1− (2α + 2β + 3)x
4(1− x)1/2

and
S(m,n) = Uα,β((1− (·))1/2p(α+1,β)

n , p(α,β)
m )(x)

∣∣∣∣x=1−1/(n+1)2

x=−1+1/(n+1)2
.

To give a proper expression of the integral R2(m,n), we use (II.5), with f(x) =
(1 − x)1/2p(α+1,β)

n (x) and g(x) = p(α,β)
m (x), and (II.6), with h1(x) = p(α+1,β)

n (x) and
h2(x) = (1− x)1/2. Then, we get that

λ(α,β)
m R2(m,n) =

∫
I2

(1− x)1/2p(α+1,β)
n (x)Lα,βp(α,β)

m (x) dµα,β(x)

= S(m,n) +
∫
I2
Lα,β((1− (·))1/2p(α+1,β)

n )(x)p(α,β)
m (x) dµα,β(x)

= S(m,n) + λ(α+1,β)
n R2(m,n) + J(m,n).

Therefore, noting that λ(α,β)
m 6= λ(α+1,β)

n ,

(IV.10) R2(m,n) = S(m,n) + J(m,n)
λ

(α,β)
m − λ(α+1,β)

n

.

Now, we use the identity (II.12) (if n = 0 then dP (α,β)
n (x)/dx = 0), the estimate

(II.13), and the restrictions α, β ≥ −1/2 to obtain that

(IV.11) |S(m,n)| ≤ C(n+ 1).

In order to estimate the term J(m,n) we decompose it according to the intervals
V1 = [−1 + 1/(n + 1)2,−1 + 1/(m + 1)2), V2 = [−1 + 1/(m + 1)2, 1 − 1/(m + 1)2],
and V3 = (1 − 1/(m + 1)2, 1 − 1/(n + 1)2]. We denote the corresponding integrals
by J1(m,n), J2(m,n), and J3(m,n). In this way, by using (II.13), the estimate
|Hα,β(x)| ≤ C(1− x)−1/2 for −1 < x < 1, and the condition α, β ≥ −1/2, we deduce
the bounds

|J1(m,n)| ≤ C(m+ 1)β+1/2
∫
V1

(1 + x)β/2−1/4 dx

≤ C
∫
V1

(1 + x)−1/2 dx ≤ C,

|J2(m,n)| ≤ C
∫
V2

(1 + x)−1/2(1− x)−3/2 dx

≤ C(m+ 1),
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and

|J3(m,n)| ≤ C(m+ 1)α+1/2
∫
V3

(1− x)α/2−5/4 dx

≤ C
∫
V3

(1− x)−3/2 dx ≤ C(n+ 1).

Then, we have

(IV.12) |J(m,n)| ≤ C(n+ 1),

and, from (IV.10), (IV.11), and (IV.12), we obtain that |R2(m,n)| ≤ C|n−m|−1 and
the estimate (IV.5) is proved for n > m.

The case n < m follows from the above argument by interchanging the roles of n
and m but we include some details for the sake of completeness.

We decompose R(α,β)(m,n) according to the intervals I ′1 = (−1,−1+1/(m+1)2),
I ′2 = [−1 + 1/(m+ 1)2, 1− 1/(m+ 1)2], and I ′3 = (1− 1/(m+ 1)2, 1) and denote the
corresponding integrals by R′1(m,n), R′2(m,n), and R′3(m,n). By similar arguments
than above we obtain that

|R′1(m,n)| ≤ C

m+ 1 and |R′3(m,n)| ≤ C

m+ 1 .

Now, for R′2(m,n), by using (II.7) and noting again that λ(α,β)
m 6= λ(α+1,β)

n , we deduce
the identity

(IV.13) R′2(m,n) = S ′(m,n)− J ′(m,n)
λ

(α+1,β)
n − λ(α,β)

m

,

where
J ′(m,n) =

∫
I′2

Hα,β(x)p(α+1,β)
n (x)p(α,β)

m (x) dµα,β(x),

with Hα,β as in (IV.9), and

S ′(m,n) = Uα+1,β((1− (·))−1/2p(α,β)
m , p(α+1,β)

n )(x)
∣∣∣∣x=1−1/(m+1)2

x=−1+1/(m+1)2
.

As in the previous case, we deduce the estimate

(IV.14) |S ′(m,n)| ≤ (m+ 1).

To analyze J ′(m,n) we decompose it according to the intervals V ′1 = [−1 + 1/(m +
1)2,−1 + 1/(n + 1)2), V ′2 = [−1 + 1/(n + 1)2, 1− 1/(n + 1)2], and V ′3 = (1− 1/(n +
1)2, 1− 1/(m+ 1)2]. The corresponding integrals are denoted by J ′1(m,n), J ′2(m,n),
and J ′3(m,n), and we have

|J ′1(m,n)| ≤ C, |J ′2(m,n)| ≤ C(n+ 1), and |J ′3(m,n)| ≤ C(m+ 1).

Therefore

(IV.15) |J ′(m,n)| ≤ C(m+ 1).

Then (IV.5) is also proved for n < m and the proof of the proposition is finished.
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In the proof of the Proposition IV.2.4 we will use the following lemmas.

Lemma IV.3.1. Let n ∈ N and a, b > −1. Then,

|p(a,b)
n+2 (x)− p(a,b)

n (x)|

≤ C


(n+ 1)a−1/2, 1− 1/(n+ 1)2 < x < 1,
(1− x)−a/2+1/4(1 + x)−b/2+1/4, −1 + 1/(n+ 1)2 ≤ x ≤ 1− 1/(n+ 1)2,

(n+ 1)b−1/2, −1 < x < −1 + 1/(n+ 1)2.

Proof of Lemma IV.3.1. First of all, note that it is enough to proof that

(IV.16) |p(a,b)
n+2 (x)− p(a,b)

n (x)| ≤ C

(n+ 1)a−1/2, 1− 1/(n+ 1)2 < x < 1,
(1− x)−a/2+1/4, 0 ≤ x ≤ 1− 1/(n+ 1)2,

because the bound for −1 < x < 0 is obtained immediately from latter by using the
relation P (a,b)

n (−z) = (−1)nP (b,a)
n (z), −1 < z < 1.

It is straightforward to check that

(IV.17) p
(a,b)
n+2 (x)− p(a,b)

n (x) =
w(a,b)

n+2

w
(a,b)
n

− 1
 p(a,b)

n (x) + w
(a,b)
n+2 (P (a,b)

n+2 (x)− P (a,b)
n (x)).

From the estimate ∣∣∣∣∣∣w
(a,b)
n+2

w
(a,b)
n

− 1

∣∣∣∣∣∣ ≤ C

n+ 1

and the uniform estimate (II.13) (note that if 0 ≤ x < 1 − 1/(n + 1)2, then 1
n+1 ≤

(1− x)1/2), we conclude that

(IV.18)

∣∣∣∣∣∣
w(a,b)

n+2

w
(a,b)
n

− 1
 p(a,b)

n (x)

∣∣∣∣∣∣ ≤ C

(n+ 1)a−1/2, 1− 1/(n+ 1)2 < x < 1,
(1− x)−a/2+1/4, 0 ≤ x ≤ 1− 1/(n+ 1)2.

Now we apply the identity (II.11) to deduce the estimate

w
(a,b)
n+2 |P

(a,b)
n+1 (x)− P (a,b)

n (x)|

≤ (2n+ a+ b+ 2)
2(n+ 1) (1− x) w

(a,b)
n+2

w
(a+1,b)
n

|p(a+1,b)
n (x)|+ |a|

n+ 1
w

(a,b)
n+2

w
(a,b)
n

|p(a,b)
n (x)|.

Therefore, the uniform estimate (II.13) implies that

(IV.19) w
(a,b)
n+2 |P

(a,b)
n+1 (x)− P (a,b)

n (x)|

≤ C

(n+ 1)a−1/2, 1− 1/(n+ 1)2 < x < 1,
(1− x)−a/2+1/4, 0 ≤ x ≤ 1− 1/(n+ 1)2,

and the same bound holds for the term w
(a,b)
n+2 |P

(a,b)
n+2 (x) − P

(a,b)
n+1 (x)|. Then, (IV.16)

follows from (IV.17), (IV.18), and (IV.19).

47



IV. The Riesz transforms

Lemma IV.3.2. Let n ∈ N, a, b > −1. Then,

|(p(a,b)
n+2 − p(a,b)

n )′(x)| ≤ C(n+ 1)

×


(n+ 1)a+1/2, 1− 1/(n+ 1)2 < x < 1,
(1− x)−a/2−1/4(1 + x)−b/2−1/4, −1 + 1/(n+ 1)2 ≤ x ≤ 1− 1/(n+ 1)2,

(n+ 1)b+1/2, −1 < x < −1 + 1/(n+ 1)2.

Proof of Lemma IV.3.2. First, we assume that n 6= 0. By (II.12), it is easy to check
that

(p(a,b)
n+2 − p(a,b)

n )′(x) = w
(a,b)
n+2

w
(a+1,b+1)
n+1

n+ a+ b+ 3
2 (p(a+1,b+1)

n+1 (x)− p(a+1,b+1)
n−1 (x))

+
 w

(a,b)
n+2

w
(a+1,b+1)
n+1

n+ a+ b+ 3
2 − w(a,b)

n

w
(a+1,b+1)
n−1

n+ a+ b+ 1
2

 p(a+1,b+1)
n−1 (x).

Then, using that∣∣∣∣∣∣ w
(a,b)
n+2

w
(a+1,b+1)
n+1

n+ a+ b+ 3
2 − w(a,b)

n

w
(a+1,b+1)
n−1

n+ a+ b+ 1
2

∣∣∣∣∣∣ ≤ C,

and the estimate (II.13) and Lemma IV.3.1, the result follows. If n = 0, we proceed
in a similar way using that dP (α,β)

0 (x)/dx = 0.

Proof of Proposition IV.2.4. We will prove the estimate (IV.7) for n > m and (IV.8)
for n < m. The remaining two cases can be treated in a similar way and we omit the
details.

In this way, we first assume that n > m and prove (IV.7).
We decompose the difference R(α,β)(m + 2, n) − R(α,β)(m,n) into three integrals

R1(m,n), R2(m,n), and R3(m,n) over the intervals I1 = (−1,−1 + 1/(n + 1)2),
I2 = [−1 + 1/(n+ 1)2, 1− 1/(n+ 1)2], and I3 = (1− 1/(n+ 1)2, 1). From (II.13) and
Lemma IV.3.1 (note that by hypothesis 2m/3 ≤ n ≤ 3m/2), we have

|R1(m,n)| ≤ C(m+ 1)β−1/2(n+ 1)β+1/2
∫
I1

(1 + x)β dx ≤ C

(n+ 1)2

and

|R3(m,n)| ≤ C(n+ 1)α+3/2(m+ 1)α−1/2
∫
I3

(1− x)α+1/2 dx ≤ C

(n+ 1)2 ,

which are enough to prove (IV.7) in these cases.
We deal now with the most delicate integral R2(m,n). We recover some notation

from the proof of Proposition IV.2.3 and denote

J (m,n) =
∫
I2
Hα,β(x)p(α+1,β)

n (x)(p(α,β)
m+2 (x)− p(α,β)

m (x)) dµα,β(x)

and
S(m,n) = Uα,β((1− (·))1/2p(α+1,β)

n , p
(α,β)
m+2 − p(α,β)

m )(x)
∣∣∣∣x=1−1/(n+1)2

x=−1+1/(n+1)2
.
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By (IV.10), using that λ(α,β)
m+2 6= λ(α+1,β)

n and λ(α,β)
m 6= λ(α+1,β)

n , we obtain that

(IV.20) R2(m,n) = S(m+ 2, n) + J(m+ 2, n)
λ

(α,β)
m+2 − λ

(α+1,β)
n

− S(m,n) + J(m,n)
λ

(α,β)
m − λ(α+1,β)

n

= S(m,n) + J (m,n)
λ

(α,β)
m+2 − λ

(α+1,β)
n

− 2(2m+ α + β + 3)(S(m,n) + J(m,n))
(λ(α,β)

m+2 − λ
(α+1,β)
n )(λ(α,β)

m − λ(α+1,β)
n )

.

We use (IV.11) and (IV.12) to obtain that

(IV.21)

∣∣∣∣∣∣2(2m+ α + β + 3)(S(m,n) + J(m,n))
(λ(α,β)

m+2 − λ
(α+1,β)
n )(λ(α,β)

m − λ(α+1,β)
n )

∣∣∣∣∣∣ ≤ C

|n−m|2
.

From (II.13), (II.12), Lemmas IV.3.1 and IV.3.2, we have

|S(m,n)| ≤ C

and hence

(IV.22)

∣∣∣∣∣∣ S(m,n)
λ

(α,β)
m+2 − λ

(α+1,β)
n

∣∣∣∣∣∣ ≤ C

|n−m|2
.

Now, to analyse the term J (m,n) we will use (II.7). Therefore, taking the nota-
tion

∼
S(m,n) = Uα+1,β

(
Hα,β(p(α,β)

m+2 − p(α,β)
m ), p(α+1,β)

n

)
(x)
∣∣∣∣x=1−1/(n+1)2

x=−1+1/(n+1)2
,

where
Hα,β(x) = Hα,β(x)

1− x ,

T1(m,n) =
∫
I2

((1 + x)Hα,β(x)− 2(1− x2)H′α,β(x))

× (p(α,β)
m+2 − p(α,β)

m )′(x)p(α+1,β)
n (x) dµα+1,β(x),

and

T2(m,n) =
∫
I2

((1− x2)H′′α,β(x) + (β − α− 1− (α + β + 3)x)H′α,β(x))

× (p(α,β)
m+2 (x)− p(α,β)

m (x))p(α+1,β)
n (x) dµα+1,β(x),

we have

λ(α+1,β)
n J (m,n)

=
∫
I2
Hα,β(x)(p(α,β)

m+2 (x)− p(α,β)
m (x))Lα+1,βp(α+1,β)

n (x) dµα+1,β(x)

=
∼
S(m,n) +

∫
I2
Lα+1,β(Hα,β(p(α,β)

m+2 − p(α,β)
m ))(x)p(α+1,β)

n (x) dµα+1,β(x)

=
∼
S(m,n) +

∫
I2
Hα,β(x)Lα,β(p(α,β)

m+2 − p(α,β)
m ))(x)p(α+1,β)

n (x) dµα,β(x)

+ T1(m,n)− T2(m,n).
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We use now the identity

(IV.23) Lα,β(p(α,β)
m+2−p(α,β)

m )(x) = λ
(α,β)
m+2 (p(α,β)

m+2 (x)−p(α,β)
m (x))+(λ(α,β)

m+2−λ(α,β)
m )p(α,β)

m (x)

to deduce that

λ(α+1,β)
n J (m,n) =

∼
S(m,n) + λ

(α,β)
m+2J (m,n)

+ 2(2m+ α + β + 3)J(m,n) + T1(m,n)− T2(m,n).

In this way,
(IV.24)

J (m,n)
λ

(α,β)
m+2 − λ

(α+1,β)
n

= −
∼
S(m,n)− 2(2m+ α + β + 3)J(m,n)− T1(m,n) + T2(m,n)

(λ(α,β)
m+2 − λ

(α+1,β)
n )2

.

From (IV.12), we deduce the estimate∣∣∣∣∣∣2(2m+ α + β + 3)J(m,n)
(λ(α,β)

m+2 − λ
(α+1,β)
n )2

∣∣∣∣∣∣ ≤ C

|n−m|2
.

Then, it suffices to show that

(IV.25) |
∼
S(m,n)|+ |T1(m,n)|+ |T2(m,n)| ≤ C(n+ 1)2

because using (IV.20), (IV.21), (IV.22), and (IV.24), the proof of (IV.7) for n > m
will be completed.

From (II.13), (II.12), Lemmas IV.3.1 and IV.3.2, and using the bounds |Hα,β(x)| ≤
C(1− x)−3/2 and |H′α,β(x)| ≤ C(1− x)−5/2, for −1 < x < 1, we obtain the estimate

|
∼
S(m,n)| ≤ C(n+ 1)2.

Now we decompose T1(m,n) and T2(m,n) according the intervals V1 = [−1 +
1/(n + 1)2,−1 + 1/(m + 1)2), V2 = [−1 + 1/(m + 1)2, 1 − 1/(m + 1)2], and V3 =
(1− 1/(m+ 1)2, 1− 1/(n+ 1)2]. Using (II.13), Lemma IV.3.2, and the estimate

|(1 + x)Hα,β(x)− 2(1− x2)H′α,β(x)| ≤ C(1 + x)(1− x)−3/2, −1 < x < 1,

for 2m/3 ≤ n ≤ 3m/2 and α ≥ −1/2 we have

|T1(m,n)| ≤ C
(

(m+ 1)β+3/2
∫
V1

(1 + x)β/2+3/4 dx

+ (m+ 1)
∫
V2

(1 + x)1/2(1− x)−3/2 dx

+(m+ 1)α+3/2
∫
V3

(1− x)α/2−5/4 dx
)
≤ C(n+ 1)2.

Finally, by (II.13), Lemma IV.3.1, and the bound

|(1−x2)H′′α,β(x) + 2(β−α−1− (α+β+ 3)x)H′α,β(x)| ≤ C(1−x)−5/2, −1 < x < 1,
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we can show that for 2m/3 ≤ n ≤ 3m/2 and α ≥ −1/2,

|T2(m,n)| ≤ C
(

(m+ 1)β−1/2
∫
V1

(1 + x)β/2−1/4 dx+
∫
V2

(1− x)−2 dx

+(m+ 1)α−1/2
∫
V3

(1− x)α/2−9/4 dx
)
≤ C(n+ 1)2,

and the proof of (IV.25) is completed.
Now we will prove the estimate (IV.8) for n < m.
Again, we decompose the difference R(α,β)(m,n + 2) − R(α,β)(m,n) into three

integrals R′1(m,n), R′2(m,n), and R′3(m,n), over the intervals I ′1 = (−1,−1+1/(m+
1)2), I ′2 = [−1 + 1/(m+ 1)2, 1− 1/(m+ 1)2], I ′3 = (1− 1/(m+ 1)2, 1). We use (II.13)
and Lemma IV.3.1 and we deduce the estimates

|R′1(m,n)| ≤ C(m+ 1)β+1/2(n+ 1)β−1/2
∫
I′1

(1 + x)β dx ≤ C

(m+ 1)2

and

|R′3(m,n)| ≤ C(m+ 1)α+1/2(n+ 1)α+1/2
∫
I′3

(1− x)α+1/2 dx ≤ C

(m+ 1)2 .

We analyse now the term R′2(m,n). By (IV.13), using that λ(α+1,β)
n+2 6= λ(α,β)

m and
λ(α+1,β)
n 6= λ(α,β)

m , it is possible to prove the identity

R′2(m,n) = S ′(m,n+ 2)− J ′(m,n+ 2)
λ

(α+1,β)
n+2 − λ(α,β)

m

− S ′(m,n)− J ′(m,n)
λ

(α+1,β)
n − λ(α,β)

m

= S
′(m,n)− J ′(m,n)
λ

(α+1,β)
n+2 − λ(α,β)

m

− 2(2n+ α + β + 4)(S ′(m,n)− J ′(m,n))
(λ(α+1,β)

n+2 − λ(α,β)
m )(λ(α+1,β)

n − λ(α,β)
m )

,

where

J ′(m,n) =
∫
I′2

Hα,β(x)p(α,β)
m (x)(p(α+1,β)

n+2 (x)− p(α+1,β)
n (x)) dµα,β(x)

and

S ′(m,n) = Uα+1,β

(
(1− (·))−1/2p(α,β)

m , p
(α+1,β)
n+2 − p(α+1,β)

n

)
(x)
∣∣∣∣x=1−1/(m+1)2

x=−1+1/(m+1)2
.

By (IV.14) and (IV.15) we obtain that∣∣∣∣∣∣2(2n+ α + β + 4)(S ′(m,n)− J ′(m,n))
(λ(α+1,β)

n+2 − λ(α,β)
m )(λ(α+1,β)

n − λ(α,β)
m )

∣∣∣∣∣∣ ≤ C

|n−m|2
.

Now, from (II.13), (II.12), and Lemmas IV.3.1 and IV.3.2, we deduce the estimate

|S ′(m,n)| ≤ C

and therefore ∣∣∣∣∣∣ S ′(m,n)
λ

(α+1,β)
n+2 − λ(α,β)

m

∣∣∣∣∣∣ ≤ C

|n−m|2
.
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We deal now with the term J ′(m,n). By using (II.6) we have that

λ(α,β)
m J ′(m,n)

=
∫
I′2

Hα,β(x)(p(α+1,β)
n+2 (x)− p(α+1,β)

n (x))Lα,βp(α,β)
m (x) dµα,β(x)

=
∼
S ′(m,n) +

∫
I′2

Lα,β(Hα,β(p(α+1,β)
n+2 − p(α+1,β)

n ))(x)p(α,β)
m (x) dµα,β(x)

=
∼
S ′(m,n) +

∫
I′2

Hα,β(x)Lα+1,β(p(α+1,β)
n+2 − p(α+1,β)

n ))(x)p(α,β)
m (x) dµα,β(x)

− T ′1(m,n)− T ′2(m,n),

where

∼
S ′(m,n) = Uα,β

(
Hα,β(p(α+1,β)

n+2 − p(α+1,β)
n ), p(α,β)

m

)
(x)
∣∣∣∣x=1−1/(m+1)2

x=−1+1/(m+1)2
,

T ′1(m,n) =
∫
I′2

((1 + x)Hα,β(x) + 2(1− x2)H ′α,β(x))

× (p(α+1,β)
n+2 − p(α+1,β)

n )′(x)p(α,β)
m (x) dµα,β(x),

and

T ′2(m,n) =
∫
I′2

((1− x2)H ′′α,β(x) + (β − α− (α + β + 2)x)H ′α,β(x))

× (p(α+1,β)
n+2 (x)− p(α+1,β)

n (x))p(α,β)
m (x) dµα,β(x).

Applying (IV.23) we get

J ′(m,n)
λ

(α+1,β)
n+2 − λ(α,β)

m

= −
∼
S ′(m,n)− 2(2n+ α + β + 4)J ′(m,n) + T ′1(m,n) + T ′2(m,n)

(λ(α+1,β)
n+2 − λ(α,β)

m )2
.

From (IV.15), it is easy to show that∣∣∣∣∣∣2(2n+ α + β + 4)J ′(m,n)
(λ(α+1,β)

n+2 − λ(α,β)
m )2

∣∣∣∣∣∣ ≤ C

|n−m|2
.

To estimate the term
∼
S ′(m,n) we use (II.13), (II.12), Lemmas IV.3.1 and IV.3.2, and

the estimates |Hα,β(x)| ≤ C(1 − x)−1/2, |H ′α,β(x)| ≤ C(1 − x)−3/2, for −1 < x < 1.
Then,

|
∼
S ′(m,n)| ≤ C(m+ 1)2

and ∣∣∣∣∣∣
∼
S ′(m,n)

(λ(α+1,β)
n+2 − λ(α,β)

m )2

∣∣∣∣∣∣ ≤ C

|n−m|2
.

Finally, we estimate the terms T ′1(m,n) and T ′2(m,n). We split both of them according
to the intervals V ′1 = [−1+1/(m+1)2,−1+1/(n+1)2), V ′2 = [−1+1/(n+1)2, 1−1/(n+
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1)2], and V ′3 = (1− 1/(n + 1)2, 1− 1/(m + 1)2]. Thus, using (II.13), Lemma IV.3.2,
and the estimate

|(1 + x)Hα,β(x)− 2(1− x2)H ′α,β(x)| ≤ C(1 + x)(1− x)−1/2, −1 < x < 1,

for 2m/3 ≤ n ≤ 3m/2 and α ≥ −1/2 we have

|T ′1(m,n)| ≤ C

(
(n+ 1)β+3/2

∫
V ′1

(1 + x)β/2+3/4 dx

+ (n+ 1)
∫
V ′2

(1 + x)1/2(1− x)−3/2 dx

+(n+ 1)α+5/2
∫
V ′3

(1− x)α/2−3/4 dx

)
≤ C(m+ 1)2.

Moreover, by (II.13), Lemma IV.3.1, and the estimate

|(1− x2)H ′′α,β(x) + 2(β − α− (α + β + 2)x)H ′α,β(x)| ≤ C(1− x)−3/2, −1 < x < 1,

we conclude that for 2m/3 ≤ n ≤ 3m/2 and α, β ≥ −1/2,

|T ′2(m,n)| ≤ C

(
(n+ 1)β−1/2

∫
V ′1

(1 + x)β/2−1/4 dx+
∫
V ′2

(1− x)−2 dx

+(n+ 1)α+1/2
∫
V ′3

(1− x)α/2−7/4 dx

)
≤ C(m+ 1)2

and the proof of the proposition is finished.
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chapter v
THE LITTLEWOOD-PALEY-STEIN gk-FUNCTIONS

This chapter concludes the discrete Harmonic Analysis carried out in this dis-
sertation. After studying the heat semigroup and the Riesz transforms associated
with discrete Jacobi expansions we are now concern in the study of other classical
operators in Harmonic Analysis: the Littlewood-Paley-Stein gk-functions.

The history of gk-functions goes back to the seminal paper by J. E. Littlewood
and R. E. A. C. Paley [35], published in 1936, where they introduced the g-function
(k = 1) for the trigonometric Fourier series. The extension to the Fourier transform
on Rd was given by E. M. Stein in [57] more than twenty years later. He himself
treated the question in a very abstract setting in [59]. In the last few years, there
has been a deep research on these operators in different contexts and considering
weights. For example, for the Hankel transform they were studied in [11], for Jacobi
expansions in [46], for Laguerre expansions in [47], for Hermite expansions in [65],
and for Fourier-Bessel expansions in [16].

Our work in this chapter will generalise the ones in [17] and [10] for the discrete
Laplacian ∆d and for the λ-Laplacian ∆λ. In the first case, the corresponding gk-
functions were analysed for k = 1 and in the second one, they considered the more
general case k ≥ 1.

Let us now introduce the gk-functions associated with the discrete Laplacian
J (α,β). The definition is given via the heat semigroup that we investigated in Chap-
ter III (see (III.2)). The Littlewood-Paley-Stein g(α,β)

k -functions associated with J (α,β)

are

(V.1) g
(α,β)
k (f)(n) =

∫ ∞
0

t2k−1
∣∣∣∣∣ ∂k∂tkW (α,β)

t f(n)
∣∣∣∣∣
2

dt

1/2

, k ≥ 1.

It is very common to define gk-functions in terms of the Poisson semigroup instead
of the heat semigroup. In our case the Poisson semigroup can be defined by subordi-
nation through the identity (III.10) and then we have the g

(α,β)
k -functions

g
(α,β)
k (f)(n) =

∫ ∞
0

t2k−1
∣∣∣∣∣ ∂k∂tkP (α,β)

t f(n)
∣∣∣∣∣
2

dt

1/2

, k ≥ 1.

The chapter is organised in the following way: In the first section we state the
main theorem concerning mapping properties of the g(α,β)

k -functions on the spaces
`p(N, w), 1 < p < ∞, and we present some corollaries such as the boundedness of
g

(α,β)
k and a result about Laplace type multipliers. In the next section, we prove the

main theorem. Later, we give the estimates that allow us to apply classical vector-
valued Calderón-Zygmund theory in spaces of homogeneous type in the proof of the
main theorem. Finally, the last sections contain the proofs of the corresponding
corollaries.
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V.1 Mapping properties of the g
(α,β)
k -functions

The main result of this chapter states that the g(α,β)
k -functions defined by (V.1) are

bounded from `p(N, w) into itself for α, β ≥ −1/2. In fact, there exists an equivalence
in those spaces between the norm of an appropriate sequence f and the norm of g(α,β)

k ,
that is:

Theorem V.1.1. Let α, β ≥ −1/2, 1 < p <∞, and w ∈ Ap(N). Then,

(V.2) C1‖f‖`p(N,w) ≤ ‖g(α,β)
k (f)‖`p(N,w) ≤ C2‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C1 and C2 are positive constants independent of f .

We obtain some results that can be deduced from this theorem. The first one
establishes the same `p-estimates for the g

(α,β)
k -functions.

Corollary V.1.2. Let α, β ≥ −1/2, 1 < p <∞, and w ∈ Ap(N). Then,

C1‖f‖`p(N,w) ≤ ‖g(α,β)
k (f)‖`p(N,w) ≤ C2‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C1 and C2 are positive constants independent of f .

We also get a result about Laplace type multipliers as a consequence of Theo-
rem V.1.1. Given a bounded function M defined on [0, 2], the multiplier associated
with M is the operator, initially defined on `2(N),

TMf(n) = c(α,β)
n (M(1− ·)Fα,β),

where Fα,β is given by (II.15). We say that TM is a Laplace type multiplier when

M(x) = x
∫ ∞

0
e−xta(t) dt,

with a being a bounded function. From a spectral point of view, TM = M(J (α,β)).
The Laplace type multipliers were introduced by Stein in [59, Chapter 2]. There,

it is observed that they satisfy |xkM (k)(x)| ≤ Ck for k = 0, 1, . . . , and then form a
subclass of Marcinkiewicz multipliers. The result for the operators TM is the follow-
ing.

Theorem V.1.3. Let α, β ≥ −1/2, 1 < p <∞, and w ∈ Ap(N). Then,

‖TMf‖`p(N,w) ≤ C‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C is a constant independent of f .

In addition, from the identity

xiγ = x

Γ(1− iγ)

∫ ∞
0

e−xtt−iγ dt, γ ∈ R,

we deduce the following corollary.
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Corollary V.1.4. Let α, β ≥ −1/2, 1 < p <∞, and w ∈ Ap(N). Then,

‖(J (α,β))iγf‖`p(N,w) ≤ C‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C is a constant independent of f .

As we mentioned in the introduction of the chapter, the proof of Theorem V.1.1 is
postponed to the next section and the proofs of Corollary V.1.2 and Theorem V.1.3
are included in Sections V.4 and V.5, respectively.

V.2 Proof of Theorem V.1.1
We devote this section to prove Theorem V.1.1. First, we will see that the second

inequality in (V.2) implies the first one. Later, two appropriate reductions will show
that the former can be deduced from the case (α, β) = (−1/2,−1/2) and k = 1.
This particular case will be obtained from classical vector-valued Calderón-Zygmund
theory in spaces of homogeneous type (see [53] and [55]).

We consider the Banach space Bk = L2
(
(0,∞), t2k−1 dt

)
, with k ≥ 1, and the

operator

G
(α,β)
t,k f(n) =

∞∑
m=0

f(m)G(α,β)
t,k (m,n),

where

G
(α,β)
t,k (m,n) = ∂k

∂tk
K

(α,β)
t (m,n)

= (−1)k
∫ 1

−1
(1− x)ke−t(1−x)p(α,β)

m (x)p(α,β)
n (x) dµα,β(x).

Then, it is clear that
g

(α,β)
k (f)(n) =

∥∥∥G(α,β)
t,k f(n)

∥∥∥
Bk
.

A first tool to prove Theorem V.1.1 is the following result about the `2-boundedness
of the g(α,β)

k -functions.

Lemma V.2.1. Let α, β ≥ −1/2 and k ≥ 1. Then,

(V.3) ‖g(α,β)
k (f)‖2

`2(N) = Γ(2k)
22k ‖f‖

2
`2(N).

Proof. For a sequence f ∈ `2(N), it is satisfied that

G
(α,β)
t,k f(n) = (−1)k

∫ 1

−1
(1− x)ke−t(1−x)Fα,β(x)p(α,β)

n (x) dµα,β(x)

= (−1)kc(α,β)
n ((1− ·)ke−t(1−·)Fα,β),
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with Fα,β defined by (II.15). Then, by using Parseval’s identity (II.16), we have

‖g(α,β)
k (f)‖2

`2(N) =
∞∑
n=0

∫ ∞
0

t2k−1|c(α,β)
n ((1− ·)ke−t(1−·)Fα,β)|2 dt

=
∫ ∞

0
t2k−1

∞∑
n=0
|c(α,β)
n ((1− ·)ke−t(1−·)Fα,β)|2 dt

=
∫ ∞

0
t2k−1

∫ 1

−1
(1− x)2ke−2t(1−x)|Fα,β(x)|2 dµα,β(x) dt

=
∫ 1

−1
(1− x)2k|Fα,β(x)|2

∫ ∞
0

t2k−1e−2t(1−x) dt dµα,β(x)

= Γ(2k)
22k

∫ 1

−1
|Fα,β(x)|2 dµα,β(x)

= Γ(2k)
22k ‖f‖

2
`2(N)

and the proof is completed.

Now, let us see that

(V.4) ‖g(α,β)
k (f)‖`p(N,w) ≤ C2‖f‖`p(N,w)

implies the reverse inequality

(V.5) ‖f‖`p(N,w) ≤ C1‖g(α,β)
k (f)‖`p(N,w).

Polarising the identity (V.3), we have

∞∑
n=0

f(n)h(n) = 22k

Γ(2k)

∞∑
n=0

∫ ∞
0

t2k−1
(
∂k

∂tk
W

(α,β)
t f(n)

)(
∂k

∂tk
W

(α,β)
t h(n)

)
dt

and, obviously, ∣∣∣∣∣
∞∑
n=0

f(n)h(n)
∣∣∣∣∣ ≤ C

∞∑
n=0

g
(α,β)
k (f)(n)g(α,β)

k (h)(n).

Taking h(n) = w1/p(n)f1(n), we have∣∣∣∣∣
∞∑
n=0

f(n)w1/p(n)f1(n)
∣∣∣∣∣ ≤ C

∞∑
n=0

g
(α,β)
k (f)(n)g(α,β)

k (w1/pf1)(n)

= C
∞∑
n=0

g
(α,β)
k (f)(n)w1/p(n)w−1/p(n)g(α,β)

k (w1/pf1)(n)

≤ C‖g(α,β)
k (f)‖`p(N,w)‖g(α,β)

k (w1/pf1)‖`p′ (N,w′),

where w′ = w−1/(p−1). Note that w ∈ Ap(N) implies w′ ∈ Ap′(N) and, by (V.4),

‖g(α,β)
k (w1/pf1)‖`p′ (N,w′) ≤ C‖w1/pf1‖`p′ (N,w′) = ‖f1‖`p′ (N).
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So, we obtain that∣∣∣∣∣
∞∑
n=0

f(n)w1/p(n)f1(n)
∣∣∣∣∣ ≤ C‖g(α,β)

k (f)‖`p(N,w)‖f1‖`p′ (N)

and taking the supremum over all f1 ∈ `p
′(N) such that ‖f1‖`p′ (N) ≤ 1, we conclude

the inequality (V.5).
In this way, we have reduced the proof of Theorem V.1.1 to prove (V.4). Now,

we proceed with two additional reductions. First, we are going to use a proper
transplantation operator to deduce (V.4) from the case (α, β) = (−1/2,−1/2) for
k ≥ 1. Finally, we will see how to obtain (V.4) for g(−1/2,−1/2)

k with k > 1 from
the case k = 1. These reductions in the proof are inspired by the work in [25] (see
also [10, Section 4]).

For f ∈ `2(N) we define the transplantation operator

T γ,δα,βf(n) =
∞∑
m=0

f(m)Kγ,δ
α,β(n,m)

where
Kγ,δ
α,β(n,m) =

∫ 1

−1
p(γ,δ)
n (x)p(α,β)

m (x) dµγ/2+α/2,δ/2+β/2(x).

This operator was analysed in [5] in connection with a classical result by R. Askey
[7]. The precise result in [5] is the following theorem.

Theorem V.2.2 (Theorem 1.1 in [5]). Let α, β, γ, δ ≥ −1/2, with (α, β) 6= (γ, δ).

(i) If 1 < p <∞ and w ∈ Ap(N), then

‖T γ,δα,βf‖`p(N,w) ≤ C‖f‖`p(N,w), f ∈ `2(N) ∩ `p(N, w),

where C is a constant independent of f . Consequently, the operator T γ,δα,β extends
uniquely to a bounded linear operator from `p(N, w) into itself.

(ii) If w ∈ A1(N), then

‖T γ,δα,βf‖`1,∞(N,w) ≤ C‖f‖`1(N,w), f ∈ `2(N) ∩ `1(N, w),

where C is a constant independent of f . Consequently, the operator T γ,δα,β extends
uniquely to a bounded linear operator from `1(N, w) into `1,∞(N, w).

By a result due to J.-L. Krivine (see [34, Theorem 1.f.14]), it is possible to give,
in an obvious way, a vector-valued extension of the transplantation operator to the
space Bk, denoted by

∼
T γ,δα,β, satisfying

‖
∼
T γ,δα,βf‖`pBk (N,w) ≤ C‖f‖`pBk (N,w), 1 < p <∞,

with weights in Ap(N).
In this way, we note that

(V.6) G
(α,β)
t,k f =

∼
Tα,β−1/2,−1/2G

(−1/2,−1/2)
t,k T

−1/2,−1/2
α,β f.
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Indeed, we have

G
(−1/2,−1/2)
t,k T

−1/2,−1/2
α,β f(n) = ∂k

∂tk
W

(−1/2,−1/2)
t T

−1/2,−1/2
α,β f(n)

=
∞∑
m=0

f(m)
∞∑
j=0

G
(−1/2,−1/2)
t,k (j, n)K−1/2,−1/2

α,β (j,m)

and, by using (II.17) and the identities

G
(−1/2,−1/2)
t,k (j, n) = (−1)kc(−1/2,−1/2)

j ((1− ·)ke−t(1−·)p(−1/2,−1/2)
n )

and
K
−1/2,−1/2
α,β (j,m) = c

(−1/2,−1/2)
j ((1− ·)α/2+1/4(1 + ·)β/2+1/4p(α,β)

m ),
we deduce that
∞∑
j=0

G
(−1/2,−1/2)
t,k (j, n)K−1/2,−1/2

α,β (j,m)

= (−1)k
∫ 1

−1
(1− x)ke−t(1−x)p(−1/2,−1/2)

n (x)p(α,β)
m (x) dµα/2−1/4,β/2−1/4(x).

Applying a similar argument to the other composition the proof of (V.6) follows.
Now, let us see that it is enough to analyse the g(−1/2,−1/2)

1 -function. In fact, using
induction we can deduce the boundedness of the g(−1/2,−1/2)

k -functions for k > 1. Let
us suppose that the operator G(−1/2,−1/2)

t,k is bounded from `p(N, w) into `pBk(N, w).
Taking k = 1 and applying again Krivine’s theorem, we deduce that the operator
∼
G

(−1/2,−1/2)
t,1 : `pBk(N, w) −→ `pBk×B1(N, w), given by

{fs(n)}s≥0 7−→ {G(−1/2,−1/2)
t,1 fs}t,s≥0,

is bounded. Moreover,
∼
G

(−1/2,−1/2)
t,1 ◦G(−1/2,−1/2)

s,k is a bounded operator from `p(N, w)
into `pBk×B1(N, w). Now, using the identity

∂

∂t

(
W

(−1/2,−1/2)
t

(
∂k

∂sk
W (−1/2,−1/2)
s f

))
= ∂k+1

∂uk+1W
(−1/2,−1/2)
u f

∣∣∣∣∣
u=s+t

,

we have∥∥∥ ∼G(−1/2,−1/2)
t,1 ◦G(−1/2,−1/2)

s,k f
∥∥∥2

Bk×B1

=
∫ ∞

0

∫ ∞
0

ts2k−1
∣∣∣∣∣ ∂k+1

∂uk+1W
(−1/2,−1/2)
u f

∣∣∣∣∣
u=s+t

∣∣∣∣∣
2

ds dt

=
∫ ∞

0

∫ ∞
t

t(r − t)2k−1
∣∣∣∣∣ ∂k+1

∂uk+1W
(−1/2,−1/2)
u f

∣∣∣∣∣
u=r

∣∣∣∣∣
2

dr dt

=
∫ ∞

0

∣∣∣∣∣ ∂k+1

∂rk+1W
(−1/2,−1/2)
r f

∣∣∣∣∣
2 ∫ r

0
t(r − t)2k−1 dt dr

= 1
(2k + 1)(2k)

∫ ∞
0

r2k+1
∣∣∣∣∣ ∂k+1

∂rk+1W
(−1/2,−1/2)
r f

∣∣∣∣∣
2

dr

= g
(−1/2,−1/2)
k+1 (f)
(2k + 1)(2k) .
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Finally, to complete the proof of Theorem V.1.1 we have to prove (V.4) for (α, β) =
(−1/2,−1/2) and k = 1. This fact will be a consequence of the following propositions.

Proposition V.2.3. Let n,m ∈ N with n 6= m. Then,

(V.7) ‖G(−1/2,−1/2)
t,1 (m,n)‖B1 ≤

C

|n−m|
.

Moreover

(V.8) ‖G(−1/2,−1/2)
t,1 (n, n)‖B1 ≤ C.

Proposition V.2.4. Let n,m ∈ N with n 6= m. Then,

‖G(−1/2,−1/2)
t,1 (m+ 1, n)−G(−1/2,−1/2)

t,1 (m,n)‖B1 ≤
C

|n−m|2
.

The proofs of these propositions are found in the next section. In addition, note
that we have only included one of the estimates related to the regularity properties
of Calderón-Zygmund theory because, as in the case of the kernel K(α,β)

t for the heat
semigroup W (α,β)

t , we have that G(−1/2,−1/2)
t,1 (m,n) = G

(−1/2,−1/2)
t,1 (n,m).

Now, by using that

|g(−1/2,−1/2)
1 f(n)| ≤

∥∥∥∥∥∥∥∥
∞∑
m=0
m6=n

f(m)G(−1/2,−1/2)
t,1 (m,n)

∥∥∥∥∥∥∥∥
B1

+
∥∥∥f(n)G(−1/2,−1/2)

t,1 (n, n)
∥∥∥
B1

=: T1f(n) + T2f(n),

we can apply Lemma V.2.1, (V.7) of Proposition V.2.3, and Proposition V.2.4 to
deduce, from the classical vector-valued Calderón-Zygmund theory in spaces of ho-
mogeneous type, the inequality

‖T1f‖`p(N,w) ≤ C‖f‖`p(N,w),

and (V.8) to obtain that

‖T2f‖`p(N,w) ≤ C‖f‖`p(N,w),

finishing the proof of Theorem V.1.1.

V.3 Proofs of Propositions V.2.3 and V.2.4
The identity (see [51, p. 456])

1
π

∫ π

0
ez cos θ cos(mθ) dθ = Im(z), | arg(z)| < π,

where Im denotes the Bessel function of imaginary argument of order m, implies (see
also (II.18))

(V.9) K
(−1/2,−1/2)
t (m,n) = e−t(Im+n(t) + In−m(t)), n,m 6= 0,
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(V.10)
K

(−1/2,−1/2)
t (m, 0) =

√
2e−tIm(t), and K

(−1/2,−1/2)
t (0, n) =

√
2e−tIn(t).

To simplify notation, we set Kt(n) = e−tIn(t).
We note that the proofs of Propositions V.2.3 and V.2.4 are similar to the one

given in [17, Proposition 4] but we have included them for a self-contained exposition
of the dissertation and to fix some details.

Proof of Proposition V.2.3. The identity [48, eq. 10.29.1]

2I ′m(t) = Im+1(t) + Im−1(t)

yields

(V.11) ∂Kt(n)
∂t

= 1
2(Kt(n+ 1)− 2Kt(n) +Kt(n− 1)), n ≥ 1,

and
∂Kt(0)
∂t

= Kt(1)−Kt(0).

The next identity is known as Schläfli’s integral representation of Poisson type for
modified Bessel functions (see [33, eq. (5.10.22)]):

(V.12) Iν(z) = zν√
π 2νΓ(ν + 1/2)

∫ 1

−1
e−zs(1− s2)ν−1/2 ds, | arg z| < π, ν > −1

2 .

Integrating by parts once and twice in (V.12), we have, respectively, the identities

(V.13) Iν(z) = − zν−1
√
π 2ν−1Γ(ν − 1/2)

∫ 1

−1
e−zss(1− s2)ν−3/2 ds, ν >

1
2 ,

and

(V.14) Iν(z) = zν−2
√
π 2ν−2Γ(ν − 3/2)

∫ 1

−1
e−zs

1 + zs

z
s(1− s2)ν−5/2 ds, ν >

3
2 .

Then from (V.11), using (V.12), (V.13), and (V.14) with ν = n − 1, ν = n, and
ν = n+ 1, respectively, we deduce that, for n ≥ 1,

∂Kt(n)
∂t

= 1
2 (I1,t(n) + I2,t(n)) ,

where
I1,t(n) = tn−2

√
π2n−1Γ(n− 1/2)

∫ 1

−1
e−t(1+s)s(1− s2)n−3/2 ds

and
I2,t(n) = tn−1

√
π2n−1Γ(n− 1/2)

∫ 1

−1
e−t(1+s)(1 + s)2(1− s2)n−3/2 ds.
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Now, for n ≥ 2,

π(Γ(n− 1/2))2‖I1,t(n)‖2
B1

= 1
22n−2

∫ ∞
0

t2n−3
∫ 1

−1
e−t(1+s)s(1− s2)n−3/2 ds

∫ 1

−1
e−t(1+r)r(1− r2)n−3/2 dr

= 1
22n−2

∫ 1

−1

∫ 1

−1
sr(1− s2)n−3/2(1− r2)n−3/2

∫ ∞
0

t2n−3e−t(2+s+r) dt ds dr

= Γ(2n− 2)
22n−2

∫ 1

−1

∫ 1

−1

sr(1− s2)n−3/2(1− r2)n−3/2

(2− s− r)2n−2 ds dr

= Γ(2n− 2)
∫ 1

0

∫ 1

0

(2u− 1)(2v − 1)(u(1− u))n−3/2(v(1− v))n−3/2

(u+ v)2n−2 du dv,

where in the last step, we have applied the change of variables s = 2u − 1 and
r = 2v − 1, and

‖I1,t(n)‖2
B1 ≤ C

Γ(2n− 2)
(Γ(n− 1/2))2

∫ 1

0
(v(1− v))n−3/2

∫ 1

0

un−3/2

(u+ v)2n−2 du dv

= C
Γ(2n− 2)

(Γ(n− 1/2))2

∫ 1

0
(1− v)n−3/2

∫ 1/v

0

zn−3/2

(1 + z)2n−2 dz dv

≤ C
Γ(2n− 2)

(Γ(n− 1/2))2

(∫ 1

0
(1− v)n−3/2 dv

)(∫ ∞
0

zn−3/2

(1 + z)2n−2 dz

)

= C

(n− 1/2)2 .

In a similar way and again for n ≥ 2, we obtain that

‖I2,t(n)‖2
B1 = 16Γ(2n)

π(Γ(n− 1/2))2

∫ 1

0

∫ 1

0

(uv)n+1/2((1− u)(1− v))n−3/2

(u+ v)2n du dv

and

‖I2,t(n)‖2
B1 ≤ C

Γ(2n)
(Γ(n− 1/2))2

(∫ 1

0
v2(1− v)n−3/2 dv

)(∫ ∞
0

zn+1/2

(1 + z)2n dz

)

= C

(n+ 1/2)2 .

Hence,

(V.15)
∥∥∥∥∥∂Kt(n)

∂t

∥∥∥∥∥
B1

≤ C

n
, for n ≥ 2.

Now, we prove that

(V.16)
∥∥∥∥∥∂Kt(0)

∂t

∥∥∥∥∥
B1

+
∥∥∥∥∥∂Kt(1)

∂t

∥∥∥∥∥
B1

≤ C.
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By Theorem II.1.3, it is clear that∥∥∥∥∥∂Kt(0)
∂t

∥∥∥∥∥
B1

= 1
π

∥∥∥∥∥ ∂∂t
∫ π

0
e−t(1−cos θ) dθ

∥∥∥∥∥
B1

= 1
π

∥∥∥∥∫ π

0
e−t(1−cos θ)(1− cos θ) dθ

∥∥∥∥
B1

≤ 1
π

∫ π

0
(1− cos θ)

∥∥∥e−t(1−cos θ)
∥∥∥
B1
≤ C.

Similarly, we obtain that
∥∥∥∂Kt(1)

∂t

∥∥∥
B1
≤ C and the proof of (V.16) is finished.

Finally, using (V.9), (V.10), (V.15), (V.16), and the identity

I−n(t) = In(t),

we conclude the proof of the proposition.

Proof of the Proposition V.2.4. By using (V.9) and (V.10) the proof will follow from
the estimate

(V.17)
∥∥∥∥∥ ∂∂t(Kt(n+ 1)−Kt(n))

∥∥∥∥∥
B1

≤ C

n2 , for n 6= 0.

Using (V.11), we have

(V.18) ∂

∂t
(Kt(n+ 1)−Kt(n)) = 1

2(Kt(n+ 2)− 3Kt(n+ 1) + 3Kt(n)−Kt(n− 1)).

Integrating by parts three times in (V.12) gives

Iν(z) = − zν−3
√
π 2ν−3Γ(ν − 5/2)(V.19)

×
∫ 1

−1
e−zs

s(s2z2 + 3sz + 3)
z2 (1− s2)ν−7/2 ds, ν >

5
2 .

Then, using (V.12), (V.13), (V.14), and (V.19) with ν = n − 1, ν = n, ν = n + 1,
and ν = n+ 2, respectively, (V.18) becomes

∂

∂t
(Kt(n+ 1)−Kt(n)) = −1

2 (3J1,t(n) + 3J2,t(n) + J3,t(n)) ,

where
J1,t(n) = tn−3

√
π2n−1Γ(n− 1/2)

∫ 1

−1
e−t(1+s)s(1− s2)n−3/2 ds,

J2,t(n) = tn−2
√
π2n−1Γ(n− 1/2)

∫ 1

−1
e−t(1+s)s(1 + s)(1− s2)n−3/2 ds,

and
J3,t(n) = tn−1

√
π2n−1Γ(n− 1/2)

∫ 1

−1
e−t(1+s)(1 + s)3(1− s2)n−3/2 ds.
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To estimate these inequalities we proceed as in the previous proposition. In fact, for
n ≥ 4,

‖J1,t(n)‖2
B1 = 4Γ(2n− 4)

π(Γ(n− 1/2))2

×
∫ 1

0

∫ 1

0

(1− 2u)(1− 2v)(u(1− u))n−3/2(v(1− v))n−3/2

(u+ v)2n−4 du dv,

and

‖J1,t(n)‖2
B1 ≤ C

Γ(2n− 4)
(Γ(n− 1/2))2

(∫ 1

0
v2(1− v)n−3/2 dv

)

×
(∫ ∞

0

zn−3/2

(1 + z)2n−4 dz

)
≤ C

n6 ;

‖J2,t(n)‖2
B1 = 4Γ(2n− 2)

π(Γ(n− 1/2))2

×
∫ 1

0

∫ 1

0

(2u− 1)(2v − 1)(uv)n−1/2((1− u)(1− v))n−3/2

(u+ v)2n−2 du dv,

and

‖J2,t(n)‖2
B1 ≤ C

Γ(2n− 2)
(Γ(n− 1/2))2

(∫ 1

0
v2(1− v)n−3/2 dv

)

×
(∫ ∞

0

zn−1/2

(1 + z)2n−2 dz

)
≤ C

n4 ;

and finally,

‖J3,t(n)‖2
B1 = 16Γ(2n)

π(Γ(n− 1/2))2

∫ 1

0

∫ 1

0

(uv)n+3/2((1− u)(1− v))n−3/2

(u+ v)2n du dv,

and

‖J3,t(n)‖2
B1 ≤ C

Γ(2n)
(Γ(n− 1/2))2

(∫ 1

0
v4(1− v)n−3/2 dv

)

×
(∫ ∞

0

zn+3/2

(1 + z)2n dz

)
≤ C

n4 .

We deduce (V.17) from the previous estimates for n ≥ 4. The remainder cases can
be proved as (V.16) in the previous proposition and then,∥∥∥∥∥ ∂∂t(Kt(n+ 1)−Kt(n))

∥∥∥∥∥
B1

≤ C, n = 1, 2, 3.
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V.4 Proof of Corollary V.1.2
We are going to prove Corollary V.1.2. The Poisson semigroup {P (α,β)

t }t≥0 was
given by (III.10). Then, it is easy to check that

P
(α,β)
t f(n) =

∞∑
m=0

f(m)K(α,β)
t (m,n),

where
K(α,β)
t (m,n) =

∫ 1

−1
e−t
√

1−xp(α,β)
m (x)p(α,β)

n (x) dµα,β(x).

Hence, we have the following result for the g
(α,β)
k -functions which is the analogue of

Lemma V.2.1.

Lemma V.4.1. Let α, β ≥ −1/2 and k ≥ 1. Then,

‖g(α,β)
k (f)‖2

`2(N) = Γ(2k)
22k ‖f‖

2
`2(N).

This lemma can be proved following step by step the proof of Lemma V.2.1, so
we omit the details. Now, using polarisation, we deduce the identity

∞∑
n=0

f(n)h(n) = 22k

Γ(2k)

∞∑
n=0

∫ ∞
0

t2k−1
(
∂k

∂tk
P

(α,β)
t f(n)

)(
∂k

∂tk
P

(α,β)
t h(n)

)
dt.

From this fact, we obtain the inequality

‖f‖`p(N,w) ≤ C‖g(α,β)
k (f)‖`p(N,w)

from the direct inequality

(V.20) ‖g(α,β)
k (f)‖`p(N,w) ≤ C‖f‖`p(N,w)

as we did in the proof of Theorem V.1.1. Finally, inequality (V.20) is an immediate
consequence of the following lemma.

Lemma V.4.2. Let α, β > −1. Then

g
(α,β)
k (f)(n) ≤

[k/2]∑
j=0

Ajg
(α,β)
k−j (f)(n),

where Aj are some constants and [·] denotes the floor function.

Proof. First, we observe that

∂k

∂tk
h

(
t2

4u

)
=

[k/2]∑
j=0

Bj
∂k−j

∂sk−j
h(s)

∣∣∣∣∣
s= t2

4u

tk−2j

(4u)k−j ,

for some constants Bj. Then, from (III.10), we have

∂k

∂tk
P

(α,β)
t f(n) = 1√

π

[k/2]∑
j=0

Bj

∫ ∞
0

e−u√
u

 ∂k−j

∂sk−j
W (α,β)
s f(n)

∣∣∣∣∣
s= t2

4u

 tk−2j

(4u)k−j du

66



V.5. Proof of Theorem V.1.3

and, by Theorem II.1.3,

g
(α,β)
k (f)(n) ≤

[k/2]∑
j=0

BjPj(n),

where

Pj(n) = 1√
π

∫ ∞
0

e−u√
u(4u)k−j

∫ ∞
0

t4k−4j−1

∣∣∣∣∣∣ ∂
k−j

∂sk−j
W (α,β)
s f(n)

∣∣∣∣∣
s= t2

4u

∣∣∣∣∣∣
2

dt


1/2

du.

Now, by using an appropriate change of variables, we have

Pj(n) = 1√
2π

∫ ∞
0

e−u√
u

∫ ∞
0

s2k−2j−1
∣∣∣∣∣ ∂k−j∂sk−j

W (α,β)
s f(n)

∣∣∣∣∣
2

ds

1/2

du

= 1√
2
g

(α,β)
k−j (f)(n)

and the result follows.

V.5 Proof of Theorem V.1.3
In order to prove Theorem V.1.3, we need only prove that

(V.21) g
(α,β)
1 (TMf)(n) ≤ Cg

(α,β)
2 (f)(n),

since by Theorem V.1.1 we get that

‖TMf‖`p(N,w) ≤ C‖g(α,β)
1 (TMf)‖`p(N,w) ≤ C‖g(α,β)

2 (f)‖`p(N,w) ≤ C‖f‖`p(N,w).

Moreover, it suffices to prove (V.21) for sequences in c00. First, we have

TMf(n) = −
∫ ∞

0
a(s) ∂

∂s
W (α,β)
s f(n) ds,

which is an elementary consequence of the relation

∫ 1

−1
M(1− x)p(α,β)

m (x)p(α,β)
n (x) dµα,β(x)

=
∫ ∞

0
a(s)

∫ 1

−1
(1− x)e−s(1−x)p(α,β)

m (x)p(α,β)
n (x) dµα,β(x) ds

= −
∫ ∞

0
a(s) ∂

∂s

∫ 1

−1
e−s(1−x)p(α,β)

m (x)p(α,β)
n (x) dµα,β(x) ds.

Then, applying the semigroup property of W (α,β)
t we obtain that

W
(α,β)
t (TMf)(n) = −

∫ ∞
0

a(s) ∂
∂s
W

(α,β)
s+t f(n) ds
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and hence,

∂

∂t
W

(α,β)
t (TMf)(n) = −

∫ ∞
0

a(s) ∂
∂t

∂

∂s
W

(α,β)
s+t f(n) ds

= −
∫ ∞

0
a(s) ∂

2

∂s2W
(α,β)
s+t f(n) ds.

In this way,∣∣∣∣∣ ∂∂tW (α,β)
t (TMf)(n)

∣∣∣∣∣ ≤ C
∫ ∞
t

s

∣∣∣∣∣ ∂2

∂s2W
(α,β)
s f(n)

∣∣∣∣∣ dss
≤ Ct−1/2

∫ ∞
t

s2
∣∣∣∣∣ ∂2

∂s2W
(α,β)
s f(n)

∣∣∣∣∣
2

ds

1/2

.

Finally,

(g(α,β)
1 (TMf)(n))2 =

∫ ∞
0

t

∣∣∣∣∣ ∂∂tW (α,β)
t (TMf)(n)

∣∣∣∣∣
2

dt

≤ C
∫ ∞

0

∫ ∞
t

s2
∣∣∣∣∣ ∂2

∂s2W
(α,β)
s f(n)

∣∣∣∣∣
2

ds dt

= C
∫ ∞

0
s3
∣∣∣∣∣ ∂2

∂s2W
(α,β)
s f(n)

∣∣∣∣∣
2

ds = C(g(α,β)
2 f(n))2

and the proof of (V.21) is completed.
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CONCLUSIONS AND FURTHER WORK

The main goal of this dissertation has been to study some classical operators in
Harmonic Analysis in a discrete setting for Jacobi expansions. To do so, the central
object to consider has been the discrete Laplacian J (α,β) related to the three-term
recurrence relation for Jacobi polynomials.

After some premilinaries, in Chapter III we investigated the heat initial-value
problem associated with J (α,β) and we showed that a solution of it is the heat semi-
group {W (α,β)

t }t≥0. Some conditions on the parameters α and β imply the positivity
of the semigroup. It is interesting to ask if those conditions on α and β are also suffi-
cient to obtain a characterization of the positivity of {W (α,β)

t }t≥0. Finally, we proved
that the heat maximal operator is bounded from `p(N, w) into itself, 1 < p <∞, and
a weak type inequality in the case p = 1. As a consequence, similar bounds were
given for the Poisson maximal operator P (α,β)

∗ . The proofs rely on some size and
regularity estimates to apply discrete vector-valued local Calderón-Zygmund theory.

The Riesz transforms are the main objects in Chapter IV. In order to define them
we had to give the Riesz potentials (or fractional integrals) (−J (α,β))σ and turn to
a limit process. By using the Calderón-Zygmund theory (only the scalar case was
needed) we provided weighted `p-estimates for these operators, 1 < p < ∞, and a
weighted weak type inequality for p = 1. A deep analysis of potential operators,
namely fractional derivatives and Riesz potentials (or fractional integrals), could be
carried out in the context of Jacobi matrices as we did for the heat semigroup.

Finally, we dealt with Littlewood-Paley-Stein gk-functions in Chapter V. The main
theorem of this chapter contains mapping properties for the g(α,β)

k -functions associ-
ated with the heat semigroup W (α,β)

t . In this case, classical vector-valued Calderón-
Zygmund theory in spaces of homogeneous type plays a fundamental role in the proof
and we also used a transplantation result. The combination of both ingredients in
the proof excludes the weak type inequality. It would be interesting to study the
boundedness when p = 1. Some corollaries were derived from this result. The first
one is about mapping properties for the g

(α,β)
k -functions associated with the Poisson

semigroup {P (α,β)
t }t≥0, 1 < p < ∞. We also gave a proof of the boundedness of

Laplace type multipliers which appear naturally in this context. This allowed us to
show the same bounds for the imaginary powers of J (α,β).

It is worth pointing out that the above-mentioned results were stated for α, β ≥
−1/2. The main reason is the use of estimates for the Jacobi polynomials which hold
for α, β ≥ −1/2. It would be desirable to extend this range to α, β > −1 which is
the natural one in the Jacobi setting. In addition, an open problem is to develop the
whole analysis in a more symmetric context. Again, the formulas available for Jacobi
polynomials give somehow more importance to the parameter α over β and then, the
operator J (α,β) losses the symmetry which does have the operator ∆d.
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Also, we suggest the study of other families of classical orthogonal polynomials
such as Laguerre and Hermite polynomials. The case of the Jacobi matrices and the
higher dimensional setting seem to be much more abstract and complex.
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CONCLUSIONES Y TRABAJO FUTURO

El principal objetivo de esta memoria era estudiar algunos operadores del análisis
armónico en un contexto discreto para desarrollos de Jacobi. Para ello se ha conside-
rado el laplaciano discreto J (α,β) asociado a la relación de recurrencia a tres términos
de los polinomios de Jacobi.

Tras algunos preliminares, en el Capítulo III se analizó el problema de valor inicial
para la ecuación del calor asociada al operador J (α,β) y se obtuvo una solución en
términos del semigrupo del calor {W (α,β)

t }t≥0. Vimos que ciertas condiciones sobre los
parámetros α y β implican la positividad del semigrupo. Es interesante preguntarse
si esas condiciones sobre α y β caracterizan la positividad de {W (α,β)

t }t≥0. Por último,
probamos que el operador maximal del calor está acotado de `p(N, w) en sí mismo
cuando 1 < p < ∞ y obtuvimos una desigualdad de tipo débil en el caso en que
p = 1. Como consecuencia se dieron las mismas acotaciones para el operador maximal
de Poisson P

(α,β)
∗ . Las pruebas se basan en demostrar estimaciones de tamaño y

regularidad para poder aplicar la teoría local y discreta de Calderón-Zygmund para
operadores con valores vectoriales.

El objeto principal del Capítulo IV son las transformadas de Riesz. Para dar una
definición tuvimos que presentar los potenciales de Riesz (también llamados integrales
fraccionarias) (−J (α,β))σ y utilizar un proceso de límite. Gracias a la teoría discreta
de Calderón-Zygmund (en este caso era suficiente el caso escalar) pudimos probar
acotaciones en espacios `p con peso para esos operadores, 1 < p < ∞, y acotaciones
de tipo débil cuando p = 1. Podría plantearse un estudio con más detalle de los
operadores potenciales, es decir, las derivadas fraccionarias y los potenciales de Riesz
(o integrales fraccionarias), en el contexto de las matrices de Jacobi, algo que ya
hicimos para el semigrupo del calor.

Finalmente tratamos las gk-funciones de Littlewood-Paley-Stein en el Capítulo V.
El teorema principal aquí muestra la acotación de las g(α,β)

k -funciones asociadas al se-
migrupo del calorW (α,β)

t . En este caso, la pieza fundamental en la prueba era la teoría
clásica de Calderón-Zygmund para operadores con valores vectoriales en espacios de
tipo homogéneo, aunque también se hacía uso de un resultado de transplantación. La
combinación de ambos impide obtener desigualdades de tipo débil. Sería de interés
estudiar la acotación cuando p = 1. De este resultado obtuvimos varios corolarios. El
primero muestra la acotación de las g(α,β)

k -funciones asocidas al semigrupo de Poisson
{P (α,β)

t }t≥0, 1 < p < ∞. También se dio la misma acotación para multiplicadores
de tipo Laplace que aparecen de forma natural en este contexto. Esto implicaba de
forma inmediata la acotación de las potencias imaginarias de J (α,β).

Es importante resaltar que los resultados anteriores se obtuvieron para α, β ≥
−1/2. Esto se debe a que usamos estimaciones para los polinomios de Jacobi válidas
para α, β ≥ −1/2. Sería interesante ampliar este rango a α, β > −1 pues ese es el
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natural en el contexto de los polinomios de Jacobi. Además, queda como problema
abierto desarrollar todo este análisis en un contexto más simétrico, porque de algún
modo las fórmulas que hemos utilizado priorizan el parámetro α provocando una
pérdida de simetría en el operador J (α,β) que no ocurre en el caso de ∆d.

También sugerimos considerar otras familias de polinomios ortogonales clásicos
como las familias de los polinomios de Laguerre o Hermite. El análisis completo en
el contexto de las matrices de Jacobi y el estudio de dimensiones superiores parecen
ser mucho más abstractos y complejos.
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The third chapter of this dissertation is based on the first work on the list. There,
we studied the heat initial-value problem associated with J (α,β) and we obtain an
expression for the heat semigroup {W (α,β)

t }t≥0. We also showed the positivity of
this semigroup by assuming some conditions on the parameters α and β. Finally,
we proved weighted inequalities for the heat maximal operator (α, β ≥ −1/2) by
applying discrete vector-valued local Calderón-Zygmund theory and derived similar
ones for the Poisson maximal operator by subordination.

The fourth chapter of this dissertation is based on the second work on the list.
We defined the Riesz transforms associated with J (α,β) by a standard limit argument
and we proved weighted inequalities for them (α, β ≥ −1/2) by using discrete local
Calderón-Zygmund theory.

The fifth chapter is devoted to investigate the Littlewood-Paley-Stein g
(α,β)
k -

functions associated with J (α,β). It is based on the third item on the list. In this
work one can find weighted inequalities for g(α,β)

k and the similar ones for g(α,β)
k , the

gk-functions associated with the Poisson semigroup {P (α,β)
t }t≥0. From these results

we obtain some corollaries about the boundedness of the Laplace type multipliers
and imaginary powers of J (α,β). The proof of the main theorem for g(α,β)

k uses clas-
sical vector-valued Calderón-Zygmund theory in spaces of homogeneous type and a
transplantation result presented in [5].
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El contenido de esta memoria se basa en varios artículos de investigación que
pasamos a enumerar a continuación:

1. A. Arenas, Ó. Ciaurri y E. Labarga, Discrete Harmonic Analysis Associa-
ted with Jacobi Expansions I: The Heat Semigroup, enviado para publicación.
Disponible en arXiv: 1806.00056 (2018).

2. A. Arenas, Ó. Ciaurri y E. Labarga, Discrete Harmonic Analysis Associa-
ted with Jacobi Expansions II: The Riesz Transform, enviado para publicación.
Disponible en arXiv:1902.01761 (2019).

3. A. Arenas, Ó. Ciaurri y E. Labarga, Discrete Harmonic Analysis As-
sociated with Jacobi Expansions III: The Littlewood-Paley-Stein gk-functions
and the Laplace Type Multipliers, enviado para publicación. Disponible en ar-
Xiv:1906.07999 (2019).

El tercer capítulo de esta memoria se basa en el primero de estos trabajos. Allí
estudiamos el problema de valor inicial para la ecuación del calor asociada al operador
J (α,β) y obtuvimos una expresión para el semigrupo del calor {W (α,β)

t }t≥0. Además
mostramos la positividad del semigrupo bajo ciertas condiciones sobre los parámetros
α y β. Finalmente dimos acotaciones con peso para el operador maximal del calor
(con α, β ≥ −1/2) por medio de la teoría local y discreta de Calderón-Zygmund
para operadores vector valuados y dedujimos acotaciones análogas para el operador
maximal de Poisson por un proceso de subordinación.

El cuarto capítulo de la memoria se basa en el segundo trabajo de la lista donde
definimos las transformadas de Riesz asociadas a J (α,β) mediante un proceso de límite
y probamos acotaciones con peso para éstas (α, β ≥ −1/2) utilizando la teoría local
y discreta de Calderón-Zygmund.

El quinto capítulo se dedicó al estudio de las g(α,β)
k -funciones de Littlewood-Paley-

Stein asociadas a J (α,β) y se basa en el tercer artículo de la lista. En ese trabajo se
pueden encontrar estimacinoes con peso para los operadores g(α,β)

k y las correspon-
dientes para g

(α,β)
k , las gk-funciones asociadas al semigrupo de Poisson {P (α,β)

t }t≥0.
De estos resultados obtuvimos otros sobre la acotación de multiplicadores de tipo
Laplace y potencias imaginarias de J (α,β). La prueba del teorema principal para las
g

(α,β)
k -funciones requiere de la teoría clásica de Calderón-Zygmund en espacios de tipo
homogéneo para operadores con valores vectoriales y un resultado de transplantación
presentado en [5].

Durante mi etapa como estudiante de doctorado tuve la oportunidad de elaborar
(junto con diferentes autores) otros artículos de investigación:
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