
Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira. ISSN 0122-1701 y ISSN-e: 2344-7214 41

Abstract— The Agile Manifesto (AM) provides principles guiding

agile software development as an alternative to traditional

software development processes. While attempts have been made

to adapt processes to the agile context, representation of AM

principles remains underdeveloped and subjective. The Semat

(Software Engineering Method and Theory) Essence kernel offers

a common ground for representing software development

endeavors. In this paper, we represent some AM principles using

the language provided by the Semat Essence kernel to establish a

common ground. Additionally, we define constraints in OCL

(Object Constraint Language) to enhance the Semat Essence

kernel, enabling the introduction of time management in our

representation. Such a representation will allow us for adapting

and assessing different processes in an agile context.

Index Terms—Agile Manifesto, Agile Processes,

Representation, Semat, Software Development Process

 Resumen— El Manifiesto Ágil tiene un conjunto de principios que

guían el desarrollo ágil de software, el cual se presenta como una

alternativa a los procesos de desarrollo tradicionales. En la

revisión de la literatura hay varios intentos para tratar de adaptar

diferentes procesos en contextos ágiles, pero esta adaptación se

dificulta debido a que no existe una representación del Manifiesto

Ágil en un terreno común y, además, la interpretación de esos

principios puede tener subjetividad. El núcleo de Semat (Software

Engineering Method and Theory) tiene un terreno común para

representar cualquier esfuerzo de ingeniería de software. En este

artículo se representan algunos principios del Manifiesto Ágil en

un terreno común usando el lenguaje que provee el núcleo de la

Esencia de Semat. Además, se introduce el manejo del tiempo en la

representación de dicho núcleo mediante el lenguaje OCL (Object

Constraint Language). La representación de los principios del

Manifiesto Ágil en un terreno común permitirá adaptar y evaluar

diferentes procesos en contextos ágiles.

 Palabras claves—Manifiesto Ágil, Proceso de desarrollo de

Software, Procesos Ágiles, Representación, Semat.

This manuscript was submitted on May 18, 2020, accepted on November

16, 2023 and published on March , 2023.. C. M. Zapata-Jaramillo is Full

Professor of the Computer and Decision Sciences, Faculty of Mines,

Universidad Nacional de Colombia, Sede Medellín (e-mail:

cmzapata@unal.edu.co).

I. INTRODUCTION

GILE methods have been adopted in software development

companies as an alternative to the traditional software

development process and they are intended to improve the

software development processes [1]. Agile Manifesto helps to

guide the agile methods in their purpose by means of four

values and twelve principles directed to customer satisfaction,

fast responses to change, and quick software delivery.

Some attempts for adapting processes to the agile context can

be found in the state of the art. Some authors attempt to

replicate, use, and adapt the Agile Manifesto principles and

values in several processes like development of embedded

systems [2], software product lines (SPL) [3], and translation of

traditional methods into agile methods [4]. However, the

adaptation among different processes is difficult, since

comparison among agile and traditional processes is still

underdeveloped. In fact, the Agile Manifesto lacks a common

ground representation and consequently the agile manifesto

principles can be subjectively interpreted.

Semat (Software Engineering Method and Theory) is an

initiative founded by Ivar Jacobson, Bertrand Meyer, and

Richard Soley for creating a common ground for software

engineering [5]. Semat promotes a kernel with elements—e.g.,

work products, activity spaces, and practices—for representing

any software development endeavor.

In this paper we develop a representation of some principles

of the Agile Manifesto by using some elements of the Semat

Essence kernel—e.g., alphas, states, work products, patterns

and activity spaces. Also, we introduce a new syntax based on

OCL (Object Constraint Language) statements in order to

incorporate temporal constraints in the representation. Such

representation allows us for adapting processes like embedded

system development and software products lines to the agile

context. We can also assess agility of several processes and

methods.

This paper is organized as follows: in Section II we present

D. E. Yepes-Palacio is Professor of the Systems Engineering Department,

Universidad de Antioquia (e-mail: desteban.yepes@udea.edu.co).

This work has been supported by the Research Group in Computing

Languages of the Universidad Nacional de Colombia

Representation of some principles of the Agile

Manifesto in the Semat Essence Kernel

C. M. Zapata-Jaramillo ; D. E. Yepes-Palacio

DOI: 10.22517/23447214.24241

Article of scientific and technological research

Representación de algunos principios del Manifiesto Ágil en el núcleo de la

Esencia de Semat

A

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://orcid.org/0000-0002-0628-4097
https://orcid.org/0000-0003-0635-1541

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira

42

the theoretical framework of this research; in Section III we

discuss the state of the art related to the agile manifesto

representations; in Section IV we propose the representation of

some principles of the agile manifesto; conclusions and future

work are discussed in Section V.

II. THEORETICAL FRAMEWORK

A. Agile Manifesto

Agile Manifesto covers better ways of developing software

[6]. 17 people have met in 2001—called by Kent Beck—for

talking about better ways to develop software applications and

they reach an agreement called "agile methods" to describe a

set of lighter methods compared to traditional methods [6].

Agile Manifesto creators establish four values focused on

individuals and interactions, working software, customer

collaboration, and answers to change. They also define twelve

principles related to agile methods, including frequent delivery

of valuable software, management of changing requirements,

simplicity, self-organizing teams, motivation, and sustainable

development [6].

B. Semat (Software Engineering Method and Theory).

Semat is an initiative created by Ivar Jacobson, Bertrand

Meyer, and Richard Soley in 2009, after recognizing that

software engineering practices suffer certain specific maturity

problems [5]. Semat has two fundamental goals related to

software engineering [5]:

• Finding a kernel of widely-agreed elements.

• Defining a solid theoretical basis.

The first goal is achieved by establishing a common ground

for all software engineering endeavors. In the Semat Essence

kernel three main components are defined: “things we always

work with,” represented by means of alpha elements; “things

we always do,” represented by means of activity space

elements; and “skills we always need to have,” represented by

means of competency elements. We present the key elements

of the Semat Essence Kernel in Table I.

Alphas represent the key concepts involved in software

engineering; they provide a common ground for assessing the

progress and health of any software engineering endeavor [5].

Activity spaces represent the things teams and stakeholders

always do in a software engineering endeavor—e.g., use the

system, understand the requirements, deploy the system, and

track progress.

Competencies are skills we always need to have in any

software engineering endeavor.

The Semat Essence kernel has a set of main elements for

representing the practices:

• Alphas

• Alpha states

• Activity spaces

• Competencies

• Work Product

• Activity

• Pattern

OCL (Object Constraint Language) is used in the Semat

Essence kernel as a language specification for establishing

invariants/constraints inside the meta-model and elements. An

example of such constraints in the alpha states is the following:

self.states -> forAll(s1, s2 | s1 <> s2 implies s1.name <>

s2.name) [7]

According to this OCL expression, alpha states have always

a different name from each other. In addition, OCL has an

extension to support temporal constraints by means of patterns

and events [8].

TABLE I

SOME ELEMENTS OF THE SEMAT ESSENCE KERNEL

Element Representation

Ph

ase

Description

Alpha

Representations of the essential

things to work with.

Activity Space

Representations of the essential

things to do. An activity space is

visualized by the dashed-outline

symbol, either containing the name

of the activity space or with the

name of the Activity Space placed

below the symbol.

Activity

An activity defines one or more

kinds of work items and gives

guidance on how to perform them.

Competency

Representations of the key

capabilities required to carry out the

work of software engineering. A

competency is visualized by a 5-

point star symbol with the name of

the Competency placed below the

symbol.

Patterns

Generic mechanism for naming

complex concepts that are made up

of several Essence elements.

Alpha State

A specification of the state of

progress of an alpha.

Work Product

Artifact of value and relevance for a

software engineering endeavor.

Work product

manifest

A work product manifest is

visualized by a solid line connecting

an alpha and a work product.

Activity

Association

(“part-of”

kind)

An activity association of the “part-

of” kind is visualized by a solid line

connecting an activity space and an

activity.

Pattern

Association

A pattern association is visualized

by one or more solid lines

originating from a circle that

connects each associated element

within the pattern

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira.

43

Source: The authors based on Jacobson et al. [5]

III. STATE-OF-THE-ART REVIEW

Even though some graphical representations of the agile

manifesto are underdeveloped, several authors try to map the

agile manifesto into some processes like software product lines,

system development (hardware development), and traditional

software development, among others.

Da Silva et al. [3] try to understand how to associate software

product lines and the Agile Manifesto principles. They make a

case study, a round with expert judgment, and a mapping for

discovering one approach is inadequate to relate the software

product lines to the Agile Manifesto principles. Also, they

discover analytical and empirical evidence could be subjective.

In their research, they collect evidence from SPL and map it

into different agile manifesto principles. For instance,

according to Da Silva et al. [3], in software product lines the

“time-box is very long (months), there is no meeting to reflect

about self-adaptations,” and, as a result, they said the first, third,

and twelfth principles are related; the rationale for supporting

this assertion is Agile Manifesto “fosters that is not necessary

to define everything up front before the team can start building

software,” and this is a justification for the iterative approach.

The second agile manifesto principle is related to SPL evidence

“meetings were used to communicate and update changes in the

requirements,” and the rationale for such relation is “if the team

wants to be more Agile, it is necessary to treat the requirements

as a prioritized stack which is allowed to vary over time;” that

is mapped to changes in requirements. The 10th agile manifesto

principle is mapped to "...a lot of documentation effort for a

small return on investment (value)...” with the rationale that

“focuses on high value features and strives to increase the value

to the stakeholders;” similarly, the rationale is "...prioritization

should be by requirements, features, and/or use cases instead of

modules...;" as a result of the previous statement, they related

to 10th principle because it is "aimed at the use of

prioritization." Consequently, we need a common ground for

comparing SPL evidences and relating them to the Agile

Manifesto principles in a more objective way.

Kaisti et al. [2] propose the definition of an agile system

development process. They say the agile manifesto is focused

on software development instead of hardware development and

mechanical engineering activities. In the case study, they

emphasize and challenge each one of the agile manifesto

principles for defining an agile system development process. In

particular, Kaisti et al. [2] emphasize the first principle is

focused on “customer satisfaction, continuous delivery, value,

and early deliveries;” in this case, the challenge according to

Kaisti et al. [2] is “definition of deliverable, long development

cycles.” The second principle of the agile manifesto is

associated with adaptability, competitiveness, and customer

benefit; according to Kaisti et al. [2] the challenge in agile

system development is “high cost of change late in

development.” The third agile manifesto principle is associated

with frequent deliveries; Kaisti et al. [2] say the challenge is

“definition of deliverable, the cost of delivering the whole

system, long development cycles.” The 10th agile manifesto

principle is related to simplicity and optimizing work, and the

challenge in agile manifesto principles is face long cycles. Also

in this case the lack of a common ground can help to avoid

subjective interpretation of the emphasis and challenges.

A model for mapping the traditional software development

process approach into agile software development process is

based on several traditional software development processes—

i.e., spiral and waterfall—and the agile approach [4]. Such a

model is shown in (1) and (2) as follows:

CE= Implicit Factors + Explicit Factors. (1)

MF = (T, J, I, F, D, M, TG, MO, E, B, CE) (2)

Where

MF: mapping function.

T: Large equipment to small teams.

J: Major tasks to small stories.

I: Long iterations to small sprints.

F: long feedback cycles to instant feedback.

D: late deliveries to small and quick deliveries.

M: Long meetings to daily and short meetings.

TG: Testing conducted late to early evaluation with testing.

MO: Two monitors to a terminal for pair programming.

E: Estimation with lines of code to estimation with story

points.

B: Project manager to head off approach.

CE: Effective coordination.

According to Popli et al. [4], the model resembled by (1) and

(2) is based on expert judgment and therefore some degree of

subjectivity can arise. If we express the agile manifesto

principles on a common ground, we can make a mapping

between traditional and agile methods, and we can find

parameters for making a function/model for mapping traditional

methods into agile methods.

IV. REPRESENTATION OF SOME PRINCIPLES OF AGILE

MANIFESTO IN THE SEMAT ESSENCE KERNEL

In this Section we propose the representation of some

principles of the Agile Manifesto in a common ground. This

representation can help to reduce subjectivity in the Agile

Manifesto by using a software engineering standard.

Furthermore, we can help to assess several processes and

methods related to the principles of the Agile Manifesto. Here,

we develop the representation of principles 1, 2, 3, and 10

because they represent change responses, working software,

and simplicity, essential features in Agile Software

Development according to the values of the Agile Manifesto.

The first principle is described in the Agile Manifesto as

follows: “Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.” In this

principle, the main idea is the early and continuous delivery of

valuable software. Here, we involve the software system alpha

in the usable state, since according to the Semat Essence kernel,

such a state is accomplished when “the system is usable and

demonstrates all of the quality characteristics required of an

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira

44

operational system” [7]. However, the software system alpha

can be in a superior state to usable, so we need to define a

constraint in order to assure that (see fig. 1, the constraint linked

to the software system alpha). We also involve the opportunity

alpha in the value established state, since according to the

Semat Essence kernel, such a state is accomplished when “the

value to the customers and other stakeholders of a successful

solution that addresses the need is established” [7]. Again, we

can admit the opportunity alpha in any other superior states, as

we establish with the OCL constraint linked to such an alpha.

We propose an OCL notation—outside the Semat Essence

kernel standard—in the software system and the opportunity

alphas in order to show minimum state to accomplish the first

principle in agile manifesto. The work product represents

valuable software supporting the realization of the states linked

to software system and opportunity states, but we need to create

a constraint related to the adjectives early and continuous in

OCL for the work product (see fig. 1, the constraint linked to

the work product). The OCL notation in work product suggests

the early (for t>0) and continuous (0<self.period < N, where N

is a variable in days) delivery, with a frequency defined as

(self.frequency=f). The work product is created/updated during

any activity belonging to the deploy the system activity space.

Fig. 1. Representation of the first Agile Manifesto principle

The second principle is described in the Agile Manifesto as

follows: “welcome changing requirements, even late in

development; agile processes harness change for the customer's

competitive advantage.” Adapting to change is a common

feature to agile methods. Adapting requirements is established

in this principle, even late in the software development process.

For this reason, the requirements alpha is identified in the

principle linked to a work product resulting from an activity

belonging to the understand requirements activity space.

Changing requirements is represented by using an OCL

expression linked to the work product (see fig. 2). Such an

expression has keywords such as temp, eventually, and globally

[8]. Similar to the previous representation, temp keyword is

related to a temporal OCL expression, eventually keyword

indicates anytime is called for updating the work product, and

globally keyword indicates the usage for all time in agile

methods. Consequently, competitive advantage of the customer

can be achieved with this principle. The full representation of

second principle of the Agile Manifesto is shown in fig. 2.

The third principle is described in the Agile Manifesto as

follows: “deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the shorter

timescale.” The main idea in third principle is the frequent

delivery of working software. At this point, the software system

alpha is identified as the center of the principle with at least the

usable state (See fig. 3). The principle statement includes

software concerning the software system alpha since the

software (the source code) is a deliverable—i.e., a work

product—representing a part of the software system alpha.

According to the Semat Essence kernel specification, the alpha

states can be reached by the progress of work products. Working

in the principle can be referred to at least the usable state. The

work product should be created/modified by using an activity

belonging to the deploy the system activity space. This activity

is commonly performed by a role belonging to the endeavor

area of concern—e.g., the Scrum master if we are working in

Scrum. We fully represent the third principle of the Agile

Manifesto in fig. 3.

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira.

45

Fig. 2. Representation of the second Agile Manifesto principle

Fig. 3. Representation of the third Agile Manifesto principle

Delivery of working software has a timescale represented by

using temporal constraints in the OCL notation. The temp,

always, and globally keywords are temporal constraints [8];

temp keyword is the header of a temporal OCL expression,

always keyword indicates the full applicability of the timescale,

and globally keyword indicates implementation throughout the

time within the agile framework. The OCL expression linked to

the work product in fig. 3 shows the work product has an

invariant to be always applied invariant in a period from couple

of weeks to a couple of months (eight weeks) during an agile

framework.

The 10th principle is described in the Agile Manifesto as

follows: “simplicity—the art of maximizing the amount of

work not done—is essential.” According to this principle,

simplicity is an essential feature of agile methods. The method

components such as method specification, work products, and

processes should be simple; for this reason, we involve all

alphas in this representation, besides, as Kent beck says "there's

a strong taste of minimalism in all the agile methods (…)

include only what everybody needs rather than what anybody

needs…", i.e., all components in agile methods should match

minimalism. Similarly, alphas in agile methods should have

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira

46

few and simple work products, along the three areas of concern.

As a result, we express the 10th principle in the Semat Essence

kernel in fig. 4.

Fig. 4. Representation of the 10th Agile Manifesto principle

The represented principles can be used for comparing with

other Semat-Essense-kernel-based representations in order to

determine the applicability of the principles belonging to the

Agile Manifesto into agile methods. For example, Jacobson et

al. [9] represent the so-called Scrum lite practice in the Essence

language, as we show in fig. 5. By comparing the fig. 1 to the

fig. 4 with fig. 5, we can identify some similarities:

requirements and software system alphas are linked to work

products in the Scrum lite practice (see fig. 5) in a similar way

to the four principles represented. Also, we can identify Scrum

master as one of the roles linked to the process in a similar way

to both the second and third principles. However, the way work

products are used is unclear in fig. 5, since Jacobson et al. [9]

avoid the usage of OCL expressions; some other elements like

cardinality of the work products and additional information

about time of frequency of usage are also out from the

representation. In absence of such information, we can only

recognize the terminology about Scrum (e.g., Scrum team, daily

Scrum, sprint backlog, etc.) in order to characterize a practice

about Scrum.

Also, accomplishment of the principles of the Agile

Manifesto is limited in absence of either OCL constraints or

additional information for evaluating such constraints. For

example, González-Pérez et al. [10] represent some practices

related to Rational Unified Process (RUP) [11] by using the

Semat Essence kernel, as we show in fig. 6 and fig. 7. If we

compare fig. 6 and fig. 7 with fig. 1 and fig. 4, we can see the

software system and opportunity alphas linked to work products

in a way similar to the first and tenth principles of the Agile

Manifesto. However, we lack enough information in order to

validate the constraints. In this case, RUP is a plan-based

method instead of an agile method, so we can expect

accomplishment of the Agile Manifesto principles in agile

methods. As a summary, we need additional information for

verifying the restrictions we have in the representations of the

Agile Manifesto principles.

Fig.5. Representation of the Scrum lite practice [9]

Fig.6. Representation of the RUP practice related to the opportunity alpha [10]

Fig.7. Representation of the RUP practice related to the software system alpha

[10]

Notwithstanding the aforementioned problems regarding the

accomplishment of the constraints we discover for the

principles of the Agile Manifesto, we can use the common

ground we defined for making objective comparisons about the

topics we have in the state-of-the-art review as follows.

Da Silva et al. [3] advocates the first and third principles are

co-related. A single look to fig. 1 and fig. 3 let us discover that

the representations have in common the software system alpha,

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira.

47

the usable state, the work product and the activity belonging to

the deploy the system activity space. In this way we can

objectively declare they correlate with each other. We can also

use the Semat Essence kernel for representing the rationale, if

we want to make more explicit the relationship between the

principles and SPL, but we need the OCL expressions for

dealing with expressions like “agile,” “up front,” “before,”

“over time,” and “high value”.

We can also use our representation for analyzing the work of

Kaisti et al. [2]. As a matter of fact, we can now recognize the

elements they are emphasizing about the first principle (see fig.

1), since customer satisfaction and value are linked to the client

area of concern (the green elements) and the other elements

(continuous and early deliveries) are linked to the solution area

of concern (the yellow elements). Also, we represented the

adjectives early and continuous by using the OCL constraint

attached to the work product. Regarding the second principle,

we can establish the emphasis identified by Kaisti et al. [2]

seem to be very subjective, since adaptability, competitiveness,

and customer benefit are abstract themes difficult to relate to

the second principle. The emphasis defined by Kaisti et al. [2]

related to the third principle is objectively mapped into fig. 3,

by recognizing the work product and the activity belonging to

the deploy the system activity space, in addition to the OCL

expression for defining the frequent delivery of software

systems. The emphasis related to the 10th principle is also very

abstract to be mapped into our representation.

On the other hand, the model defined by Popli et al. [4] for

mapping the transition from traditional to agile development

can be objectively analyzed in terms of the elements of the

Semat Essence kernel, as we show in Table II. The main

difference in this case is the possibility to generate OCL

constraints for defining the main qualifiers of the Popli et al. [4]

mapping model: large, small, major, long, instant, late, quick,

long, daily, short, early, and effective. If we can effectively

represent the mapping model from traditional to agile software

development by including the OCL constraints related to the

qualifiers of the factors involved, we can decide the agility trend

of a practice. Otherwise, we can only decide on a subjective

manner. For example, if we review the presence of “agile”

elements in the Scrum lite practice of the fig. 5 [9], we can see

only one element of the right side of the mapping model of Popli

et al. [4], i.e., the sprint sub-alpha, and some other ones

similar—e.g., Scrum team <role> pattern vs. team alpha and

daily scrum activity vs. meeting work product. However, we

lack objective evidence for assuring whether the Scrum lite

practice belongs to an agile development or not. We need more

information to objectively define whether a practice belong to

an agile development method or not, and such information is

related to the way things are linked to the principles of the Agile

Manifesto. The common ground we are using to represent the

principles of the Agile Manifesto—including the OCL

constraints—is the initial resource for evaluating agility, but we

need to establish the well formedness of such principles in the

realm of a software engineering theory, the one provided by the

Semat Essence kernel.

TABLE II

SOME ELEMENTS OF THE SEMAT ESSENCE KERNEL

Mapping factors [4] Semat Essence kernel

elements

Large equipment to small

teams

Team alpha

Major tasks to small stories Task and User story work

product

Long iteration to small

sprints

Iteration work product and

Sprint sub-alpha

Long feedback cycles to

instant feedback

Feedback work product

Late deliveries to small and

quick deliveries

Delivery work product

Long meetings to daily and

short meetings

Meeting work product

Testing conducted late to

early evaluation with testing

Conducting tests activity

Two monitors to a terminal

for pair programming

Frequent pair programming

practice

Estimation with lines of code

to estimation with story

points

Lines of code and User story

work product

Project manager to head off

approach

Project manager <role>

pattern

Effective coordination Leadership competency

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the usage of the Semat Essence

kernel for representing some principles of the Agile Manifesto

in a common ground. We also proposed a way to represent some

qualifiers—e.g., timing and sizing—used for the elements of

the principles by using OCL constraints outside the Semat

Essence standard. We validated our proposed representation by

assessing an allegedly agile practice with our representation.

Finally, we tested the state-of-the-art studies about the

principles of the Agile Manifesto by translating them into our

representation. We discover the principles of the Agile

Manifesto are still immature in their statements and we need a

more formal and well-formed way to represent them in order to

be used as a proof of concept about the agility of a statement.

This study will help to avoid subjectivity, provide a common

ground inside team work, and enable the use of the principles

of the Agile Manifesto for different purposes, such as assessing

processes, assessing frameworks, and assessing practices,

whether they are agile or not.

We define some lines of future work as follows:

• Representing all of the principles of the Agile Manifesto

by using our proposal and then assessing some agile

methods—e.g., Scrum, Extreme Programming, and

Feature Drive Development—and some traditional

methods—e.g., Rational Unified Process, the UNC-

Method, and Custom Development Method—regarding

Scientia et Technica Año XXIX, Vol. 29, No. 01, enero-marzo de 2024. Universidad Tecnológica de Pereira

48

the Agile Manifesto. We want to establish their compliance

to the principles of the Agile Manifesto.

• Defining other OCL constraints for representing other

qualifiers than timing and sizing—e.g., effective and high-

value.

• Representing the whole mapping model of Popli et al. [4]

by using our proposal as a way to get closer to a formal and

well-formed equation for transforming traditional software

development methods into agile ones.

REFERENCES

[1] A. Singh, K. Singh, and N. Sharma, “Agile knowledge management: a

survey of Indian perceptions,” Innov. Syst. Softw. Eng., vol. 10, no. 4, pp.

297–315, 2014. DOI: https://doi.org/10.1007/s11334-014-0237-z

[2] M. Kaisti, T. Mujunen, T. Mäkilä, V. Rantala, and T. Lehtonen, “Agile

principles in the embedded system development,” Agile Processes in

Software Engineering and Extreme Programming, vol. 179, G. Cantone

and M. Marchesi, Eds. Rome: Springer, 2014, pp. 16–31. DOI:

https://doi.org/10.1007/978-3-319-06862-6_2

[3] I. F. Da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida,

and S. R. de Lemos Meira, “Using a Multi-Method Approach to

Understand Agile Software Product Lines,” Inf. Softw. Technol., vol. 57,

no. 1, pp. 527–542, 2014. DOI:

https://doi.org/10.1016/j.infsof.2014.06.004

[4] R. Popli, R. Anita, and N. Chauhan, “A mapping model for trans-forming

traditional software development methods to agile-methodology,” Int. J.

Softw. Eng. Appl., vol. 4, no. 4, pp. 53–64, 2013. DOI:

https://doi.org/10.5121/ijsea.2013.4405

[5] I. Jacobson, P. Ng, P. E. Mcmahon, and C. (Traductor) Zapata, “La

Esencia de la Ingeniería de Software: El Núcleo de Semat,” Rev.

Latinoam. Ing. Softw, vol. 1, no. 3, pp. 71–78, 2013. DOI:

https://doi.org/10.18294/relais.2013.71-78

[6] M. Fowler and J. Highsmith, “The agile manifesto,” Softw. Dev., vol. 9,

no. 8, pp. 28–35, 2001.

[7] Object Management Group, “Essence–Kernel and Language for Software

Engineering Methods, version 1.2,” 2018.

[8] B. Kanso and S. Tala, “Temporal constraint support for OCL.” In

International Conference on Software Language Engineering, pp. 83–103,

2012. DOI: https://doi.org/10.1007/978-3-642-36089-3_6

[9] I. Jacobson, H. Lawson, P.-W. Ng, P. McMahon, and M. Goedicke. The

essentials of modern software engineering: free the practices from the

method prisons!,” Milton Keynes, UK: ACM Books, 2019. DOI:

https://doi.org/10.1145/3277669.3277673

[10] M. González-Pérez, C. M. Zapata-Jaramillo, L. González-Palacio.

“Toward a standardized representation of RUP best practices of project

management in the Semat kernel,” in Software engineering: methods,

modeling, and teaching, vol. 3, chapter 7, Zapata, C. M. & Castro, L.

(Ed.). Medellín, Colombia: Universidad Nacional de Colombia, 2014.

[11] Rational. “Rational Unified Process: Best Practices for Software

Development Teams” Rational Software White Paper TP026B, 1998.

 Carlos Mario Zapata-Jaramillo received the M.S. and

Ph.D. degrees in systems and software engineering from

the Universidad Nacional de Colombia and he is currently

serving as full Professor in the Computing and Decision

Science Department at the Medellin Headquarters of the

same institution. He is also president of the Executive

Committee of the Latin American Chapter of Semat and

also is one of the official translators of the book “The
Essence of Software Engineering—Applying the SEMAT

Kernel".

ORCID: https://orcid.org/0000-0002-0628-4097

 Daniel Esteban Yepes-Palacio received a degree in Systems Engineering

from the University of Antioquia and a M.S. degree in Systems and Software

Engineering from the Universidad Nacional de Colombia. Since 2013, he has

worked in the field of software engineering at several

companies in the telecommunications and finance

industries. Additionally, since 2019, he has served as a

professor of Systems Engineering at the University of

Antioquia, teaching courses in Software Engineering,

where his areas of specialty and research include Software

Quality and Software Testing.

ORCID: https://orcid.org/0000-0003-0635-1541

https://doi.org/10.1007/s11334-014-0237-z
https://doi.org/10.1007/978-3-319-06862-6_2
https://doi.org/10.1016/j.infsof.2014.06.004
https://doi.org/10.5121/ijsea.2013.4405
https://doi.org/10.18294/relais.2013.71-78
https://doi.org/10.1007/978-3-642-36089-3_6
https://doi.org/10.1145/3277669.3277673

