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ABSTRACT 
This paper deals with the solution of the estimation of the mean using product type estimators when missing observations are 
present in a survey sampling.  The Non Response striatum approach is considered and two estimators are developed.  
Imputation methods are also developed and two predictors are proposed.  They are compared using Monte Carlo experiments.  
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RESUMEN 
En este trabajo  se trata de la solución de la estimación de la media usando un estimador del tipo razón cuando hay 
observaciones perdidas en las encuestas por  muestreo.  El enfoque del estrato de las no respuestas es considerado y dos 
estimadores son desarrollados.  Métodos de imputación son desarrollados también y se proponen dos predictores.  Estos son 
comparados usando experimentos de  Monte Carlo. 
 
 

1 INTRODUCTION 
 
The usual theory of survey sampling is developed assuming that the finite population U={u1 ,…,uN } is 
composed by individuals that can be perfectly identified . A sample s of size n≤N is selected.  The 
variable of interest Y is measured in each selected unit.  Real life surveys should deal the existence of 
missing observations. There are three solutions to cope with this fact: ignore the non respondents, to sub 
sample the non respondents or to impute the missing  values.  While to ignore the non responses is a 
dangerous decision to sub sample is a conservative and costly solution.  Imputation is often used to 
compensate for item non-response.  See for discussions on the theme Little and Rubin (1987) 
Rueda and González. (2004),  Särndal and Lundström  (2005). 
 
The existence of missing observations invalidates some of the initial assumptions and affects the 
properties of the statistical models because we can not  compute the sample mean 
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which estimates the population mean μY because the responses are of obtained from a subset of units of 
the sample (sub sample)  
 
s1={i∈s⏐i gives a response at the first visit} 
 
This fact suggests that the population U is divided into two strata: U1 , where are grouped the units that 
give a response at the first visit, and U2 which contains the rest of the individuals.  This is the so called 
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‘response strata’ model and was first proposed by Hansen-Hurvitz (1946), see Singh (2003).  Their 
proposal was to select a subsample s2’ of size n’2 among the n2 non-respondents grouped in the sample  
 
s2=s\s1 .    
 
Then we obtain information on the non-respondent's strata U2 through a sub sample  
 
s2’⊂s2 .   
 
Product estimators have been thoroughly studied, see Singh,  Singh and Mangat. (1996).  Different recent 
papers study the use of product type estimators under full response.  Agrawal  and Sthapit (1997) derived 
conditions for its asymptotic normality on the finite populations sampling.  Singh and Ruiz (2007) 
proposed a class of ratio-product estimators in two-phase sampling. 
 
In this paper we propose different estimators of the unknown mean, using  product type models for 
coping with nr in survey sampling. We develop  estimators of the population mean under the analyzed 
alternative models. Their errors are obtained and the behavior of them  is compared. Section 3 is 
concerned with the development of these results.  In section 4 the use of imputation  for  compensating 
for item non response is studied. 
 
2. ESTIMATION OF THE MEAN UNDER THE NR-STRATUM APPROACH AND SRSWR 
 
Non responses  may be motivated by a refusal of  some units  to give the true value of Y or by other 
causes. They  are present in the  survey sampling.  Hansen-Hurvitz in 1946 proposed to select a sub-
sample among the non-respondents, see Cochran (1977).  This feature depends heavily on the proposed 
sub-sampling rule.  Alternative  sampling rules to Hansen-Hurvitz´s rule have been proposed see for 
example Srinath (1971) and Bouza (1981).   
 
Theoretically it is a particular double sampling design described as follows: 
 
Step 1: Select a sample s from U using srswr 
Step 2: Evaluate Y among the respondents and determine {yi : i∈s1⊂U1, ⏐s1⏐ =n1}. 
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Step 3: Determine n2’=n2/K, K>1; ⏐s2⏐=n2  with s2=s\s1. 
 
Step 4. Select a sub-sample s’2 of size n2’ from s2 using srswr. 
 
Step 5. Evaluate Y among the units in s2’ {yi : i∈s2’ ⊂s2, s2⊂U2}. 
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2

'

1
1

2

'
n

y
y

n

i
i∑

==                                                                                                                (2.2) 

 
Step 6. Compute the estimate of μ 
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Note that (2.1) is the mean of a srswr-sample selected from U1, then its expected value is the mean of Y in 
the respondent stratum: μ1. We have that the conditional expectation of (2.2) is:  
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22 ]'[ ysyE =                                                                                             (2.4) 
 
as (2.4) is the mean of a srswr-sample selected from U2   
  

22 ]'[ μ=syEE                                                                                          (2.5)  
 
and taking into account that for i=1,2 E(ni)=nNi/N=nWi  the unbiasedness of (2.3) is easily derived. 
 
The variance of (2.3) is deduced by using the following trick; 
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the first term is the mean of s, then its variance is σ2/n.  For the second term we have that 
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Conditioning to  a fixed n2 we have that the expectation of the third term is 2

22 )( μ−y  .   Then we have 
that: 
 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−

22

2
22

2

2

2
2

2

2
2

2
2

222
1

'
'

nn
Kw

nn
wsyywV σ

σσ
                                                     (2.7) 

 
and  
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Hence the expected error of (2.3) is given by the well known expression 
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Our proposal is to use the Additional information provided by a known variable X for constructing a 
product type estimator of thee means involved. 
 
3. PRODUCT TYPE ESTIMATORS UNDER NON RESPONSES 
 
3.1. The basics 
 
The product estimator is defined by 
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Its expectation is given by 
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Hence its  has as bias 
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A version of it is 

X

jj
n

i
p n

yx
y

μ
∑ == 1

*            (3.2) 

and it has the same bias and variance as (3.1). 
 
These estimators can be used for deriving the estimation of the mean of the nr stratum. 
 
Agrawal and Sthapit (1997) derived the exact formulas for the bias and variance of the product estimator 
under simple random sampling . Its asymptotic normality was rigorously established under weak and 
interpretable regularity conditions on the finite populations 
 
3.2. A separate product estimator of μY for non responses  
 
Let us consider  
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The first member of at the right hand side of (3.3) is the mean of Y in s.  Hence the bias of  (3.3) depends 
on the expectation of the last term.  The conditional expectation of it, for a fixed n’2,,is equal to the 
product estimator based on the sub sample s2.  Therefore 
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Then the bias is equal to  
 

X

XY
psps n

yBB
μ
σ

== )(
 

 
The results obtained previously fix that under the regularity condition 
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we have that 
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The variance of (3.3 ) is obtained by calculating 
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Let us compute the first term 
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The first term is the variance of the sample mean in srswr 
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and the second and third ones are equal to zero.   
 
For the second term we have the expression 
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Calculating the conditional variance we obtain  
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For computing the third term we relay on the properties of the sampling moments enounced by David and 
Sukhatme (1974).  This term can be written as 
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As 
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Substituting the terms derived previously we have that 
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The analyzed variance term is derived by computing the unconditional expectation   
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The third term of the sampling error is  
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because the expectation of the cross term is equal to zero. As a consequence 
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These results enhance to give as a characterization of the proposed estimator Lemma 3.1 
 
Lemma 3.1 The estimator (3.3 )of μY is asymptotically unbiased  and its variance is 
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If the regularity condition R1 holds. 
 
Proof.  
  
The first result is derived by fixing that 
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The expression of the variance is obtained by summing (3.4), (3.5) and (3.6) and doing some algebraic 
work.  
 
3.3. A combined product estimator of μY for non responses 
 
We propose as an alternative the estimator 
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It uses the combination of the sub samples.  As stated in section 3.1 we will consider he structure 
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The first term is the expression of the product estimator i n the original sample. The conditional 
expectation of the second term is zero. Hence we have that (3.7) is asymptotically unbiased because 
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and the last term (the bias) tends to zero for large sample size values 
 
The unconditional variance of  (3.7) is given by 
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It is easily derived that 
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because at the second conditional level we are calculating the variance of a constant.  
 
 Let us calculate the last component of the sampling error.  Using (3.6)  we have  
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The expectation conditional to a fixed n2 is  
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Calculating E(n2

i), I=1,2, E(n1n2), and adding this result to V(1), after grouping we obtain 
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Then we have the following Lemma 
 
Lemma 3. 2 The estimator (3.7)of μY is asymptotically unbiased  and its variance is given by (3.8) 
 
4. IMPUTATION USING PRODUCT TYPE ESTIMATORS  
 
There are two types of non-response:, unit non-response and item non-response. Weighting adjustment is 
often used to compensate for unit non-response. Imputation is usually used to compensate for item non-
response. Imputation is widely used in sample surveys to assign values for item non-responses. If the 
imputed values are treated as if they were observed, then the estimates of the variances of the 
estimates will generally be underestimations.  Methods for imputing missing data under various cases of 
item non-response. See Rao and Shao (1992), Rao and Sitter [1992) and Singh and Deo [2003).  
 
We propose an imputation procedure based on a product type predictor of the non respondents.  The 
prediction of the mean of the non-respondents is :  
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for computing the mean of the missing observations.  Using the ideas developed in section 3 an estimator 
is  
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Its bias is  
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Hence if the population is balanced in the sense 
 
R3: μ2X≅μX  
 
The bias of (4.1)  is equal to the bias obtained when a srswr is the sampling design and the information 
provided by s1

  is used. 
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The conditional variance of the estimator is 
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because the cross term is equal to zero.  The expectation of the first term is  
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Let us compute the second term of (4.4). 
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Note that 
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As the sub samples are independent the first term in the numerator is the product of the expectation and is 
equal to  
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The expectation of the other terms sum -μ1Yμ2X.  Then the second term of  (4.4) is given b 
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Hence the expectation of the second term in the conditional variance (4.4) is 
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Doing some algebraic arrangements  have that its expected value is 
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The expected variance second term of (4.3) of the srswr mean of the non respondent sub sample is equal 
to  
 
V**=E(n2σ2

2/n2)=W2σ2
2/n 

 
The development of covariance term leads to accept that it is equal to zero.  Then we can state now the 
following Lemma. 
 
Lemma 4.1. The estimator (4.2) is equivalent to 1y  if the first order population balancedness R3 holds 
and its variance is approximately equal to 
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when n ∞  and the second order regularity condition 
 
R4: E(n2

t/n1
q)≅ E(n2

t/ E(/n1
q), t= 1,..4, h=1,..,4 

 
is satisfied  
 
Proof  
 
The first result is obtained by using the condition posed in R3 and simplifying the derived bias.   
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 Add (4.3) and (4.7).  Assuming that R4 holds we have that for  n sufficiently large for accepting that the 
terms of order O(n-2) in the variance al negligible we have the stated result                     
 
In many occasions the interest of the results is not only to estimate the mean but to predict the response of 
the individual non responses.  The estimator proposed is not longer a solution.  Sitter and Rao (1997) 
proposed the use of  a ratio imputation method for the missing values of the variable Y in the non 
response item ‘i’ : 

iiI x
x
y

y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

1  

 
Liu et al. (2006)  proposed  to use 
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We will use the auxiliary information provided by X  using the product estimation principle.  
The result is the imputed value 
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for the missing observation i.  Its expectation is 
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Hence if the condition R4 is accepted the mean of the imputed values has as an approximated 
expected value 
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For  improving the simplicity  in the reasoning let us consider  the estimator of μY 

 

n

ynyn
y p

IS

**
2211 +

=                                                                                                                                                                                                    (4.8)  

 using the expression 
 

n

yyn
yy p

IS

)( 2
**

22 −
+=  

 
Its conditional mean is given by 
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Calculating the expected value of this last expression we have that 
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The two last terms are equal to the bias of (4.8).  Note that that it is considerably larger than the bias of 
the combined product estimator.  If  R4 is accepted we have an approximation to the expectation of (4.8) 
given by 
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It is also larger than the bias of (4.2). 
 
The calculation of error of the imputed mean using the separated principle is very cumbersome.  We will 
give the main  results in the sequel.   
 
First we consider the variance of (4.9).  Accepting  the R4 is valid it is  
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Secondly we will consider the conditional variance of (4.8).  Using its alternative expression we have 
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The first term is equal to zero and  
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We computed the terns and arrange the similar terms.  Afterwards the unconditional expectation was 
calculated.  Assuming that the regularity conditions R4 and 
 
R5: W2

t≅0, for t≥3 
 
Hold we have that  
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Lemma 4.2 Fixes the behavior of the separate imputation product estimator. 
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Lemma 4.2. The estimator (4.8) is biased.  We should prefer  1y  in terms of the bias  and variance. 
 
Proof: 
 
Comparing the biases the first affirmation is evident.  On the other hand, as the approximate  variance of 
(4.8)  is  
 
V(ISP)=V(1IPS)+V(2IPS) 
 
We have the second thesis by comparing it to V(IC). 
 
5. VARIANCE ESTIMATION 
 
To study the properties of imputation based estimator, are often considered through the consideration of a 
super population model, the sampling mechanism generating the sample , the variable response 
mechanism and the imputation mechanism. The properties of the variance estimators rely, among others, 
on  the  assumption. 
 
C.1: the complete-sample point estimator θ*n satisfies  
 
E(θ*n )= θ+O(n-1): 
 
It is not accomplished by the (4.2) and (4.8).  Hence to develop an estimator of the variances of the 
proposed estimators must cope with this disadvantage.  The posed statistical problem is to obtain an 
interval I(θ) of minimum volume for a fixed probability π . Usually the methods are supported by a 
particular Central Limit Theorem that must establish that when m→∞r   
 
Prob (θ)∈{I*(θ)=(θ(Fm)-z1-α/2 σm(θ*m ), (θ(Fm)+z1-α/2 σm (θ(Fm ))}≥π 
 
θ(Fm) is the estimator (predictor) of the parameter, z1-α/2 is the percentile of the Standard Normal and 
σm(θ(Fm )) is the standard deviation estimator of σ(θ(F)).    The robustness of θ(Fm) and σm(θ(Fm )) play a 
key role in the validity that π be close to the coverage probability. 
 
The Bootstrap, introduced by Efron (1979), is a powerful tool for nonparametric estimation of sampling 
distributions and standard errors. It may be described as follows. Let Z = (Z1;Z2; : : : ;Zm) be a random 
sample from an unknown distribution F, and let Tm = Tm(Z; F) be a statistic of interest. Let Fm be the 
empirical distribution function of the random sample. An independent  random sample from Fm,  Zb , is 
called a Bootstrap sample. We can use the Bootstrap method for estimating the distribution of Tm through 
the conditional distribution of Tb(m) = Tm (Z; Fm ), given Z1 ;Z2; : : : ;Zm.  The method works by drawing B 
Bootstrap samples selected by using simple random samples of size m, selected with replacement from 
the original sample.   
 
The Bootstrap distribution is denoted by F*B(m) and T*m=T(FB(m)*)=T(Z*1 ,..,Z*m)   
estimates T(Fm).  Due to the definitions, the conditional independence is supported and   
Prob(Zi* =Zt |Fm )=1/m , ∀t=1,...,m, i=1,…, m.  Each sample s(b)∈S(BS), S(BS) the space of the 
Boostrap samples, is drawn with a probability 1/mm, hence   
 
E(T*(F*B(m) )|Fm)= m-m ∑s(b)∈S(BS) T(Z*1,…,Z*m)b= m-m∑s(b)∈S(BS) TB(m).  

 

Its conditional error is E(T*(F*m )-Tm |Fm)2= m-m ∑s(b)∈S(BS) (TB(m)-Tm)2.  It converges to  σT
2 if  n ∞.  In 

practice we select B random samples independently from  S(BS) and Tnb,  is calculated for s(b), b=1,…,B .  
The Boostrap estimator of the variance is  

V*B(m)=(mB)-1∑b=1
B (TB(m)-Tm)2

))=σ2
B(m) 

 
It is expected , if the functional is smooth, that the limit of σ2

B(m) is the true variance of the estimator 
(predictor).  A Central Limit Theorem supports that  
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Prob (θ)∈{I*(θ)=(θ(Fm)-z1-α/2 σB(m)(θ*m ), (θ(Fm)+z1-α/2 σB(m) (θ(Fm ))}≥π 
 
Note that the accuracy of θ*m may be measured using its distribution function by estimating the 
confidence limits based on  
 
L(Z1 ,…, Zm )=Lm =Sup {t| Fθ (z)≥ t} 
 
U(Z1 ,…, Zm )=Um =Inf {t| Fθ (z)≤ t} 
 
The interval (Ln, Un) has random bounds and the  coverage probability of θ, π is such that  
 
Probθ{T(F)=θ∈(Lm ,Um )}≥π, for any θ.   
 
Usually π=1-α is fixed and close to 1.  
 
An alternative confidence interval, see Parr (1983) and Babu and Singh (1983) for example,  is obtained 
by defining the parameter as the functional θ(F), F∈ϒ, and to denote the confidence interval from the 
relationship 
 
ProbF{θ(F)∈(Lm ,Um )=I(θ) | F∈ϒ }≥π 
 
The Bootstrap distribution allows to calculate directly the quantiles 

F*m (t)= B-1 b=1
B I((TB(m)-Tm)m-1/2≤t),    t∈ℜ 

 
They converge, under weak regularity conditions, see Jurečkovà-Sen (1996), σ2

B(m) σT
2 and the quantiles 

of F*m to those of the true distribution function of the data G, whenever, for  m ∞ 
 
PF{(T(Fm)-T(F)m-1/2≤t}⎯→G(t) 
 
The first intervals will be called normalized Bootstrap (parametric) and the second ones Bootstrap 
quantiles (non parametric) confidence intervals. 
 
We evaluate the behavior of the estimators proposed by computing the percent of samples in which the 
mean is included in the confidence intervals  
 

( ))()()()( ˆ,ˆ)( qYpqYpqYpqYqYI υυυυ εμεμμ +−=  
 
where q identifies the criteria used for constructed confidence interval as follows 
 
q=1 if the normal approximation is accepted 
 
q=2 if the Parametric Boostrap  is used 
 
q=3 if the Non-parametric Bootstrap is used 
 
υ=separate product estimator, combined product estimator, separate imputation predictor, combined 
imputation predictor. 
 
εYpυ(q) is the semi-amplitude of the interval calculated using the corresponding method q for the estimator 
υ with α=0,05.  
 
Experiment 1 
 
Strata Wi Mean of the 

auxiliary variable 
Variance of the 
auxiliary variable 

 

1 0,682 66,39 58,9  
2 0,372 131,83 16,2  

Table 1. Parameters of the strata 



 221

 
We compared the different proposals developed in this paper using a data base provided from an 
experiment where the results for obtaining a recombinant protein production using fermentation in 786 
samples.  They are considered as a population and we identified the total protein in the liquid as the 
auxiliary variable X.  The measured content of a protein is considered as Y.  The non responses were 
considered for the samples which were re-evaluated due to technical problems. The results of interest for 
the estimation are given in Table 1. 
 
1 000 samples of size 80 were selected independently and the behavior of the estimations are in Table 2.  
The results establishes that to sub sample is better than to impute being the use of the Non Parametric 
Bootstrap the best alternative.  The separate estimator is more reliable.  The use of imputation using the 
separate criteria has a considerable better behavior. 
 

 q=1  
Normal 
Approximation 

q=2 , B=20 
Parametric 
Boostrap  

q=3, B=20  
Non-parametric 
Bootstrap 

psy  0,80 0,85 0,91 

pCy  0,60 0,70 0,75 

Isy  0,41 0,59 0,74 

ICy  0,75 0,79 0,74 

Table 2. Percent of inclusion of the mean in 1 000 samples generated from a population of measurements 
of total and recombinant protein in fermentation experiments. . 

 
Experiment 2 
 
N(4,9  0,586) q=1  

 
Normal 
Approximation 

q=2 , B=100 
 
Parametric 
Boostrap  

q=3, B=100  
 
Non-parametric 
Bootstrap 

psy  0,83 0,89 0,93 

pCy  0,71 0,81 0,87 

Isy  0,44 0,52 0,58 

ICy  0,49 0,57 0,68 

logN(4,9  0,586) q=1  
 
Normal 
Approximation 

q=2 , B=20 
 
Parametric 
Boostrap  

q=3, B=20  
 
Non-parametric 
Bootstrap 

psy  0,87 0,88 0,94 

pCy  0,81 0,85 0,89 

Isy  0,72 0,77 0,80 

ICy  0,66 0,70 0,79 

Exp(4,9) q=1  
 
Normal 
Approximation 

q=2 , B=20 
 
Parametric 
Boostrap  

q=3, B=20  
 
Non-parametric 
Bootstrap 

psy  0,74 0,79 0,92 

pCy  0,67 0,71 0,89 

Isy  0,53 0,65 0,71 

ICy  0,45 0,56 0,67 

Table 3 Percent of inclusion of the mean in 1 000 samples generated from continuous variables 
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The other set of  experiments consisted in the generation of 1 000 variables distributed according with the 
distributions  normal,  lognormal and  exponential .  Rueda et al.. (2005) developed a similar experience 
for evaluating the behavior of some estimators of the mean when some observations were  missing.  We 
use the same parameters for generating variables distributed Normal and a lognormal variables with mean 
4,9 and standard deviation   0,586. For the   exponential the parameter was λ= 4.9. Once a variable was 
generated a Bernoulli experiment with parameter W2 =0,372 was performed .  If the generated variable 
took the value one it was considered as a nr.  The Monte Carlo procedure was used for evaluating the 
behavior of the estimators.   
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