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ABSTRACT 
A proposal for determining post strata using simple information is developed.  A stochastic programming with probabilistic 
constraints models it.  Bounds for the approximation error and its expectation are developed.  Their behavior is evaluated using Monte 
Carlo experiments. 
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RESUMEN 
Se desarrolla una propuesta para determinar post estratos usando información sencilla.. Se modela mediante un programa estocástico 
con restricciones probabilísticas.  Se desarrollan coatas para el error de aproximación. El comportamiento de ellas es evaluado usando 
experimentos de Monte Carlo. 
 
 
1. INTRODUCTION 
 
It is usual that strata should be constructed in statistical applications but they are unknown in advance to the 
decision maker (DM).   Some particular techniques may be used for grouping the units in a population 
U={u1 ,...,uN }.  Take multivariate clustering for example. The units are identified by a vector, a certain 
distance is determined and U is partitioned into H mutually disjoint clusters U1

,... UK .  Usually the DM aims 
to cluster the units in terms of a distance to a certain centre.  The DM may determine or not the number of 
groups and the distance to be used.  The implementation of clustering using these criteria may be easily 
implemented because several specialized software programs are available in commercial packages. The 
procedures implemented are not necessarily those wanted by the DM, specially if he is  a statistician.  It is 
usual that the objective is  to determine the strata for developing a survey. 
 
A stratum is considered as a set of population units such that the variable of interest Y(h), evaluated in each 
unit ui in Uk , is close to the conditional expectation μk(h)=E[Y(h)⏐Uk].   Ideally, once the strata are 
determined, the means should be very different.  This fact sustains that the estimation based on stratified 
random sampling (SRS) is very accurate when compared with simple random sampling, see Cochran 
(1981).  The particularities of the classic problem of strata determination is discussed in Section 1. 
As pointed out the criteria implemented in commercial software do not satisfy that the determined clusters 
constitute a set of optimal strata.  Then SRS will not satisfy that the sampling error be sufficiently small.  
Allende-Bouza (1987) studied the problem of determining optimal strata using multivariate information. 
They assumed that some multivariate information was available and it was used as auxiliary information on 
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the interest (stratification) variables.  The auxiliary information must be obtained for each unit in the 
population.  Unfortunately that information does not necessarily exist.  A solution is to select a sample and 
to evaluate a set of variables considered as important for determining the strata in the sense of having a 
small intra-stratum variance, (E(Y(h)-μk(h)⏐Uk)2), for each variable Y(h) of interest.  A source of 
randomness is present in the new problem.  The usual approach is known as post stratification.  It assumes 
H=1 and that the strata are known and the sample is used only for classifying the units and 
estimating  within stratum parameters of interest, see Cochran (1981).  Section 2 is devoted to posing for 
this problem the corresponding multivariate optimum stratification counterpart following the approach of  
Allende-Bouza (1987).  This new optimization problem is a stochastic program.   

2. STRATA CONSTRUCTION 
 
The usual stratification problems consider that each stratum Uk of size Nk has a population mean μk(h) 
which is close to the values of the variable of interest in each of its units and that it is very different from 
the other strata means.  Then μk(h ) is very different from the population mean μ(h) .  Ideally the stratum 
deviations σk (h),  k=1,...,K, and the weighted mean of them should also be very different. Take for each  
i∈U . 
A vector  Yi=[Yi(1),…,Yi (H)]T  with H interest variables.  The mean of the h-th variable is: 
E[Y(h)]=∑i∈U Yi(h)/N =μ(h),  
 
and 
 
V[Y(h)]=∑i∈U (Yi(h)-μ(h))2 /N=σ2(h) 
 
Is its variance. 
 
Each variable Y(h) is associated with the stratum parameters:   
 
E[Y(h)⎜Uk ]=∑i∈Uk Yi(h) /Nk=μk(h),  
 
and 
 
V[Y(h)⎜Uk]=∑i∈Uk (Yi(h)-μ k(h))2 /Nk=σk

2(h). 
 
The population mean can be expressed by the linear function of the strata means, see Cochran (1981),   
 
μ(h)= ∑k=1

K Wkμk(h),  
 
where Wk =Nk/N=Prob(u i ∈Uk) , ∀ k=1,..,K. 
 
An approach for constructing the strata is to consider that the DM fixes a set of points in ℜH. They 
represent points that characterize possible centroids of the strata. This hypothesis is sustained by assuming 
that each centroid is close to the expectation, given the belonging of unit i to a set Ut , of the  
vector [Yi(1),…,Yi (H)]T.  Take θt =[θ1(1),…,θ t(H)]T ∈Θ={θ j, j=1,..,T,  T ≥K} as one of the centroids 
determined by the DM.  With these vectors we can define a cost function: 
 
Cit =∑H

h=1 (Yi (h)-θ t(h) )2=∑ H
h=1 Vit(h)                                                                                                      (2.1) 

 
For each unit.  Then we may determine a set of K clusters such that the clustered units are close to the 
corresponding centroid and the centroids are as far as possible. 
 
The use of (1.1) grant the strata should have a small variance for each variable.  This idea was used by 
Allende –Bouza (1987) for proposing the following program: 
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P1: min  ∑N
i=1 ∑ T

t=1 ∑H
h=1 Ph(Yi (h)-θ t(h) )2xit=∑N

i=1 ∑ T
t=1 c*itxit 

 
Subject to : 
 
∑ T

t=1 xit=1, ∀i∈U 
 
∑ N

i=1 xit≤N, ∀t=1,..,T. 
 
∑ T

t=1 λt≤KN , K≤T 
 
 xit∈{0,1}, ∀i,t 
 
λt∈{0,1}, ∀t1,..,T 
 

⎩
⎨
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=
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The first constraint establishes that each ui ∈U belongs only to one stratum. The second one that there will 
not be a stratum with more than N units. The third constraint fixes that no more than K strata can be 
determined.  The importance of the  h-th variable is weighted by  Ph.   The strata determined by solving  
P1 may be considered as  of ´minimum multivariate variance ´ because if  θt(h)=μt(h)   
 
∑ 

i∈Uk Vit(h)/Nk= σ2
k(h). 

 
This equality is not valid for all the variables and strata but we can expect that θt(h)≈μt(h).  Hence the 
solution of P1 yields an ´approximately minimum multivariate variance ´stratification.   
 
In applications we do not know the set of vectors  { Yi , i=1,..,N}.  We can be able to obtain some known 
auxiliary variables for using them as substitutes in the program.  The optimality of the obtained 
stratification depends on how representative are the auxiliary variables of the unknown ones.  Commonly, it 
is more practical to select a sample and to look for the construction of optimum strata using the information 
obtained form the sample.  .   

3.  POST-STRATIFICATION 
 
In the univariate case do the post-stratification technique deals with the classification of sample units in 
previously known strata.  That is the case of classifying the interviewed persons in strata determined by an 
interval of variable age.  Once a sample is selected from U it can be divided into subsamples  
s k= s∩U k, k=1,.., K.   This technique allows estimating stratum’s parameters.   
 
Our objective is to use the information provided by s to establish stratification in U.  It is basically the idea 
of clustering: to partition the observed group of unit.  The difference with the usual post-stratification is 
that the strata are not known.  The optimal stratification procedures in the literature uses H=1 variables but 
in our case H>1. As we are using sample information P1 is not longer adequate because we will have a 
Stochastic Program... 
 
The modelling of this problem will be based on the proposal approach of Albareda et. al. (2000).   They 
suggested to use a deterministic counterpart. 
 
The new program is: 
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P2: min  ∑N

i=1 ∑ T
t=1 ∑H

h=1 Ph(Yi (h)-θ t(h) )2xit=∑N
i=1 ∑ T

t=1 c*itxit 
 
Subject to : 
 
∑ T

t=1 xit=1, ∀i∈U 
 
Prob {∑ N

i=1 qit xit≤bt}≥1-α,  , ∀t=1,..,T. 
 
∑ T

t=1 λt≤PN , P≤T 
 
 xit∈{0,1}, ∀i,t 
 
λt∈{0,1}, ∀t1,..,T 
 

⎩
⎨
⎧

=

⎩
⎨
⎧ ∩∈

=

otherwise
centroideselectedaisif

otherwise
Usiif

q

t
t

t
it

0
1

0
1
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Note that qit is a Bernoulli random variable with expectation  E(qit)=Prob (ui∈s∩Ut). For a fixed K   
Prob (ui ∈s∩Ut) =Wt=Nt /N  
 
Which is the weight assigned to the t-th stratum  The solution of P2 determines which strata have high 
probabilities and a posterior calculus permits to determine the exact value of each stratum (Wt). 
 
The Generalized Assignment Problem can be written as: 
 
P3: min  ∑N

i=1 ∑ T
t=1 qitc*itxit 

 
Subject to : 
 
∑ T

t=1 xit≥1, ∀i∈U 
 
∑ N

i=1 qit xit≤bt,  , ∀t=1,..,T. 
 
 xit∈{0,1}, ∀i,t 
 

⎩
⎨
⎧ ∩∈

=
otherwise

Usiif
q t

it 0
1

 

In this model bt represents the number maximum of units in Ut and qit is the  needed resource needed by ´ t 
for performing the job t´.  As we are using this model for optimal strata construction the parameters and 
variables have another meaning and  
 

• bt is an upper bound of the number of units that can be assigned to Ut.  
• The first constraint becomes equality for establishing which each unit should be classified in only 

one stratum. 
 
Note that to assign unit ui to certain stratum do not depends of t.  Then we may,qit=qi•, ∀i=1,…,N.  As 
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∑ N

i=1 qi•≤∑ T
t=1bt

 
is valid in our case P3 has at least a feasible solution.  Haneveld et. al. (1999) developed a detailed 
discussion of this problem. 
 
A particular stratum with a set of a distinguished performance of the units may linked with a demand 
 
∑ N

i=1 qi• xit=q(t) 
 
Taking this new variable and the effective assignment of the units  
 
N(t)= ∑ N

i=1 xit , ∀t=1,..,T 
 
We have a frame for studying the post-stratification problem.  We are using the information provided by a 
random sample s for determining post-strata.  Due to the particularities of the randomness of our data we 
will use the modification of P3: 
 
P*3: min ∑ 

i∈s ∑ T
t=1 c*itxit 

 
Subject to : 
 
∑ T

t=1 xit=1, ∀i∈s 
 
Prob {q(t)=∑ 

i∈s qi• xit≤bt}≥1-α , ∀t=1,..,T. 
 
 xit∈{0,1}, ∀i∈s ,t=1,…,T 
 
P*3 is a stochastic problem with probabilistic constraints.  Note that q(t) is the sum of independent 
Bernoulli variables with expectation Wt .  Hence it is a Binomial variable with expected value:  
 
E[q(t)|s]=[∑ 

i∈sxit]Wt=n(t)Nt /N 
 
Using these results we obtain that:  
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The DM is able to fix Wt by determining the proportion of elements that he expect to be in Ut . 
Note that we can determine a quantile of order α using the fact that we are dealing with a Binomial 
distribution.  The usual choice is to calculate 
 
λ{bt , Wt ,α}=Max{h∈Z| Prob (bt )≤α} 
 
The t-th constraint is satisfied if:  
 
n(t)≤ λ{bt , Wt ,α} 
 
Hence the deterministic equivalent program of P*3 is: 
 
PD1:  
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A relaxation of the integer-ness of λ{bt , Wt ,α} allows to use a Transport Model for solving  PD1. 
 
3. APPROXIMATION ERROR 
 
As quoted previously an approximation to the optimal solution may obtain by using a transport program.  
As we are using a random sample the vector (x11

0,…, xnT
0) is random and  assigns every unit in  s a stratum.  

Then  
 
C(s)= ∑N 

i=1 ∑ T
t=1 c*itx0

it 
 
 Is the cost of assigning the sample units to the strata.  It is also a random variable and its properties are 
conditional to the sample s. If we have an optimum stratification the cost is  
 
C= ∑N 

i=1 ∑ T
t=1 c*itYit 

 
where  
 

⎩
⎨
⎧ ∈

=
otherwise

sUiii
Y t

it 0
1 I

 

 
Note that Y 

it fixes that   i belong to the stratum Ut. It is non random because it was determined once the 
stratification was fixed.  Generally the optimum stratification using sample information will be different to 
that obtained from complete enumeration.  Then the use of the sample generates the error 
 
ε(s)=|C(s)-C| 
 
which is the approximation error (AE) of this problem, see Kall-Mayer (2000) and Bouza (1992) for a 
discussion on the role of it in stochastic optimization.  We are interested in evaluating the behaviour of 
 
|∑N 

i=1 ∑ T
t=1 c*it [x0

it –Yit ] |                                                                                                                         (3.1) 
 
The usual approach is to look for an upper bound of the AE.  Note that  
 
|∑N 

i=1 ∑ T
t=1 c*it [x0

it –Yit ]|≤ ∑N 
i=1 ∑ T

t=1 c*it | [x0
it –Yit ]| 

Following the procedures discussed and developed by Bouza (1992) and Klamnablath et. al. (2003).  They 
studied the expectation of the AE.   The expectation of (3.1) is: 
 
E{|∑N 

i=1 ∑ T
t=1 c*it [x0

it –Yit ]|} 
 
Therefore  
 
E{|∑N 

i=1 ∑ T
t=1 c*it [x0

it –Yit ]|}≤ ∑N 
i=1 ∑ T

t=1 c*it E{| [x0
it –Yit ] |} 

 
We are interested in evaluating the efficiency of a sampled based algorithm in the construction of 
stratification.  It may be measured by comparing the post-stratification, obtained by solving PD1, and that 
derived by using perfect information, if it is available, and we use P1.  Hence, we are involved in the study 
of the matching of the classifications made by PD1 and the Optimal Stratification (OS) determined form 
the use of P1. This interest is characterized by the probabilities Prob {x0

it =Y it}.   
 
Take 
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It is a Bernoulli random variable with parameter: 
 
 Prob {x0

it =Y it }=∑N 
i=1 ∑ T

t=1 I(|x0
it –Yit |}/N=π 

 
Note that it is the probability of a perfect matching between sample based post-stratification and OS.  It is 
unbiasedly estimated by:  
 
Q=∑n 

i=1 ∑ T
t=1 I{| [x0

it –Yit ]|}/n 
 
because  
 
E{| [x0

it –Yit ]|}=1- Prob {x0
it =Y it }=π 

 
Therefore as 
 
E[ε(s)] ≤ (1-π)∑N 

i=1∑ T
t=1 c*it =ε 

 
An upper bound of the expected AE is then estimated by: 
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We can make some statistical analysis of this estimator.   As the random variable is Q the variance of (3.2) 
is   
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We can evaluate the behaviour of the sample based post-stratification calculating a confidence Interval (CI) 
once we fix the level α where p=1-α/2.  Let us assume that Prob {x0

it =Y it } is constant for any i and t.  If 
the sample size is sufficiently large the normal approximation is valid for the distribution of (3.2).   
 
Then the CI estimator is:  
 
I(1)=[(1-Q) ∑N 

i=1 ∑ T
t=1 c*it-zpV1 , [(1-Q) ∑N 

i=1 ∑ T
t=1 c*it+zpV1] 

 

In the case in which Prob {x0
it =Y it } is not constant for any i and t, the solution is to select m independent 

random samples and determine a post-stratification using PD1. I{|x0
it –Yit |} is a Bernoulli random variable 

but its expectation is given by: 
 
E{| [x0

it –Yit ]|}=1- Prob {x0
it =Y it }=πit ,  

 
An unbiased estimator of these probabilities is qit=1- pit where 
 
pit =∑ i∈s I{|x0

it –Yit |}s/m 
 
Whenever m>30 the convergence to the normal distribution is valid and the CI for a level α for πit is: 
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We have that:  
 
E{|∑N 

i=1 ∑ T
t=1 c*it [x0

it –Yit ] |}≤ ∑N 
i=1 ∑ T

t=1 c*it E{| [x0
it –Yit ] |}= ∑N 

i=1 ∑ T
t=1 c*it πit  

 
An unbiased estimator of this upper bound is  
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Then we may use it as CI. 
 
I(2)=[∑N 

i=1 ∑ T
t=1 c*itAit ,  ∑N 

i=1 ∑ T
t=1 c*itBBit] 

4. A NUMERICAL STUDY 
 
We are going to evaluate the use of PD1 in determining optimal strata.   Its implementation was made using 
a transport algorithm through LINDO.  Details on the package can be obtained in (1997).   
The data used in the analysis were provided by two investigations developed in Mexico.  OS was 
performed using the information on the interest variables obtained from the populations. 
PD1 was used and the post-stratification was determined in each selected sample.  
 
A stratum Ut, determined by using the complete population, was considered equal to the closest post 
stratum.  The closeness was measured by the distance between the corresponding centroids. Then x0

it = Yit 
=1 when i was in Ut and in the closest post strum to it. 
 
Each population unit was classified in a post-stratum using one of the following rules: 
 
Rule 1. The nearest neighbour  
 
Rule 2. Minimum distance to the centroid defined by the sample means of the units classified in each post-
stratum. 
 
ε(s) was computed and in each sample it was measured if it was included in the CI.   
 
The data bases used in the Monte Carlo experiments were: 
 

• 12 000 children with ages between 8 and 14 years of the State of Guerrero México.  The pre-
eminence of allergic diseases was studied.  Different variables related with their sensibility were 
measured.  We fixed   K=10 and 20 centroids. Each centroid characterized a basic allergic 
typology.   

• 800 voters of  Distrito Electoral of Acapulco.  Different characteristics related with their selection 
of the candidates in the elections of a diputado federal were studied though a questionnaire. The 
militants of each party, from the 6 involved in the election, were characterized using the means of 
the variables of interest.   

 
The sizes of the selected samples were equal to the 5%, 10% or 20% of the population.  The procedure 
was evaluated in sets of 30, 50 or 100 samples. 
 
A value of α=0, 05 was used in each Monte Carlo experiment and  
 

 147



H (J) =Number of samples in which ε∈I(J)/Number of samples  , J=1,2  
 
Note in Table 1 that the use of I (2) seems to be more efficient than I (1).  This fact may be explained 
taking into account that an incorrect classification depends intrinsically of the stratum and of the individual 
characteristics.  However this is more costly as the post-stratification process has to be repeated m times 
and the cost is increased. It is remarkable that even if the sampling fraction is as low as 10% the results can 
be considered acceptable inclusive for I (1).  The characteristics of the data have a decisive influence in the 
behaviour of the methods.  We should expect that the behaviour of the voters depends of the individual 
political militancy. Therefore is unacceptable that the πit´s are constant.   That is the reason of preferring me 
I(2) to I (1). Another suggestion is that the classification based on the second classification rule is the best 
option 
 

Table 1.Values of H (J) in post-strata construction   
 Nearest 

Newburgh 
Minimum 
Distance 

Nearest 
Newburgh 

Minimum 
Distance 

 Allergic Study Voter of  District X  
 H(1) H(2) H(1) H(2) H(1) H(2) 
f=0,05 
m=30 

 
0,46 

 
0,59 

 
0,51 

 
0,70 

 
0,55 

 
0,68 

m=50 0,58 0,67 0,62 0,83 0,61 0,69 
m=100 0,68 0,81 0,84 0,89 0,72 0,79 
f=0,10 
m=30 

 
0,97 

 
0,97 

 
0,91 

 
0,87 

 
0,83 

 
0,87 

m=50 0,90 0,99 0,99 0,90 0,92 0,93 
m=100 0,92 0,95 0,91 0,93 0,87 0,96 
f=0,20 
m=30 

 
0,92 

 
0,93 

 
0,97 

 
0,94 

 
0,87 

 
0,90 

m=50 0,96 0,95 0,92 0,91 0,91 0,95 
m=100 0,94 0,93 0,94 0,97 0,92 0,96 
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