

New records of *Anthracoidea pseudofoetidae* (Anthracoideaceae) from Russia, and *Microbotryum* (Microbotryaceae) from Greece and Morocco

Teodor T. DENCHEV¹, Cvetomir M. DENCHEV^{2*}, Dominik BEGEROW³ & Martin KEMLER⁴

^{1,2}Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria ^{1,2,4}IUCN SSC Rusts and Smuts Specialist Group

^{3,4}Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany

•Correspondence: cmdenchev@yahoo.co.uk ¹https://orcid.org/0000-0002-7242-3307, ²https://orcid.org/0000-0001-6301-1629 ¹https://orcid.org/0000-0002-8286-1597, ⁴https://orcid.org/0000-0002-0738-4233

Abstract. A rare smut fungus, *Anthracoidea pseudofoetidae*, is reported for the first time from Russia, based on a specimen from the Altai Republic, and *Carex enervis* is reported as a new host. Two new records for Greece, *Microbotryum duriaeanum* and *M. moenchiae-manticae*, and one for Morocco, *Microbotryum moehringiae*, are also presented. *Microbotryum moehringiae* is recorded for the first time from Africa. *Cerastium brachypetalum* subsp. *roeseri* is a new host record for *Microbotryum duriaeanum*. New molecular data are provided for these smut fungi. Updated phylogenetic trees for *Anthracoidea* and *Microbotryum* are also presented.

Keywords. Phylogenetic analyses, smut fungi.

Resumen. Anthracoidea pseudofoetidae, un raro hongo tizón, se cita por primera vez para Rusia, a partir de un espécimen de la República de Altai, and *Carex enervis* se reporta como un nuevo hospedador. Se presentan dos nuevos registros para Grecia, *Microbotryum duriaeanum* y *M. moenchiae-manticae*, y uno para Marruecos, *Microbotryum moehringiae*. *Microbotryum moehringiae* se registra por primera vez en África. *Cerastium brachypetalum* subsp. *roeseri* es un nuevo hospedador de *Microbotryum duriaeanum*. Se aportan nuevos datos moleculares sobre estos hongos. También se presentan árboles filogenéticos actualizados de *Anthracoidea* y *Microbotryum*.

Palabras clave. Análisis filogenéticos, hongos tizón.

How to cite this article: Denchev T.T., Denchev C.M., Begerow D., Kemler M. 2023. New records of *Anthracoidea pseudofoetidae* (Anthracoideaceae) from Russia, and *Microbotryum* (Microbotryaceae) from Greece and Morocco. *Anales del Jardín Botánico de Madrid* 80: e140. https://doi.org/10.3989/ ajbm.584

Title in Spanish: Nuevos registros de Anthracoidea pseudofoetidae (Anthracoideaceae) de Rusia y Microbotryum (Microbotryaceae) de Grecia y Marruecos.

Associate editor: Margarita Dueñas. Received: 26 January 2023; accepted: 3 September 2023; published online: 10 November 2023.

INTRODUCTION

Smut fungi are plant parasites. They are characterized by a specific life cycle that alternates between a dikaryotic, plant-parasitic stage and a haploid, saprobic yeast phase, and by the presence of thick-walled teliospores. Smut fungi represent a phylogenetically heterogeneous group that has evolved three times independently in the Ustilaginomycotina, Microbotryales (Pucciniomycotina), and Entorrhizomycota (Begerow & al. 2014; He & al. 2022). They are mostly found on herbaceous plants, very rarely on woody hosts. More than 1900 species of smut fungi are currently known. The highest species diversity is reported from the northern hemisphere, with most species found in Europe and Asia (He & al. 2022). The species of *Anthracoidea* Bref. (Anthracoideaceae, Ustilaginomycotina) have as hosts plants the genera *Carex* L., *Carpha* R.Br., *Fuirena* Rottb., *Schoenus* L., and *Trichophorum* Pers. (Cyperaceae). *Anthracoidea* form sori in female flowers around aborted nuts as ovoid, ellipsoidal or broadly ellipsoidal hard bodies (Denchev & al. 2021). The species of *Microbotryum* Lév. (Microbotryaceae, Pucciniomycotina) are parasites on hosts in ten dicot families. They form sori in various organs of the infected plants (flowers, anthers, ovules, filaments of stamina, branches of inflorescences, capitula, stems or leaves), filing them with single, subhyaline to dark reddish brown or dark purple, variously ornamented spores (Vánky 2011; Denchev & al. 2020; Kemler & al. 2020).

The aim of this study was to increase the knowledge about the geographical distribution and host specialization of *Anthracoidea pseudofoetidae* L. Guo and three seed-destroying species of *Microbotryum* (*M. duriaeanum* (Tul. & C. Tul.) Vánky, *M. moehringiae* (Togashi & Y.Maki) Vánky, and *M. moenchiae-manticae*) (Lindtner) Vánky, as well as to provide new molecular data for these smut fungi.

MATERIAL AND METHODS

The new records are based on collections that were discovered during a visit of two of the authors (T.T.D. & C.M.D.) to the herbarium at the Botanic Garden and Botanical Museum Berlin (B) in March 2022. Dried specimens from B were examined with a light microscope (LM) and scanning electron microscope (SEM). For LM observations and measurements, spores were mounted in lactoglycerol solution (w : la : gl = 1 : 1 : 2) on glass slides, gently heated to boiling point for rehydration, and then cooled. The measurements of spores are given in the form: min-max (extreme values) (mean ± 1 standard deviation). For SEM, spores were attached to specimen holders by double-sided adhesive tape and coated with gold in an ion sputter. SEM images were taken with a Hitachi FE SEM 8010. Information on shapes of spores is arranged in descending order of frequency. The descriptions of spore length range and spore ornamentation of Anthracoidea pseudofoetidae are in accordance with Denchev & al. (2020: 11) and Denchev & al. (2013), respectively. The descriptions given below are based entirely on the specimens examined.

Genomic DNA of the herbarium specimens was isolated using the myBudget Plant DNA KitTM (Bio-Budget Technologies GmbH, Germany) using the SLS protocol according to the manufacturer's instructions. PCR of the ITS and/or the large subunit (LSU) region of the rDNA was performed using the primer pairs ITS1F/ITS4 and LR0R/LR6, respectively. Amplicons were purified using a modified ExoSAP (1:5 diluted in ddH₂O; New England Biolabs, USA) protocol and subsequently sequenced using the respective forward and reverse primers with the Big-DyeTM Terminator Cycle Sequencing Kit V3.1 (Applied Biosystems) on an ABI3130xl Genetic Analyser at the Faculty of Biochemistry of the Ruhr-Universität Bochum, Germany. Forward and reverse reads were quality checked and assembled in Geneious 10.2.6 (Biomatters Ltd, New Zealand).

Multiple alignments were inferred using the online version of MAFFT 7 (Katoh & Standley 2013) with either the E-INS-i (*Microbotryum* ITS and *Anthracoidea* LSU) or L-INS-i option (*Microbotryum* LSU). Leading and trailing gaps, as well as ambiguous sites were removed using GBlocks (Castresana 2000) implemented in SeaView (Gouy & al. 2010), whereby smaller final blocks, gap positions, and less strict flanking positions were allowed. For *Microbotryum* the ITS and LSU regions were concatenated before phylogenetic analysis. RAxML-NG (Kozlov & al. 2019) implemented in raxmlGUI 2.0 (Edler & al. 2021) was used for phylogenetic inference and bootstrapping (1000 replicates). Before phylogenetic analyses, Model-Test-NG (Darriba & al. 2020) was used to select the most appropriate nucleotide substitution model (*Anthracoidea*: GTR+I+G; *Microbotryum*: GTR+I+G). Bootstrap values \geq 50 are shown above branches.

RESULTS AND DISCUSSION

Taxonomic treatment

Anthracoidea pseudofoetidae L. Guo, Fungal Diversity 21: 84, 2006. Type: China, Xizang, Gégyai Xian, Alingshan, alt. 5200 m, in ovaries of *Carex pseudofoetida* Kük., 15 August 1976, Qinghai-Xizang expedition 13486 (HMAS 130321, holotype; isotype HUV 20091). Fig. 1.

Infection local. Sori in some female flowers, around aborted nuts as broadly ellipsoidal, subglobose or ovoid hard bodies, 1.0–1.7 mm long, initially covered by a thick, blackish brown peridium that later flakes away exposing a blackish brown, powdery on the surface spore mass. Spores very small-sized, irregularly rounded, subglobose, broadly ellipsoidal, ovoid or ellipsoidal, $(8.5–)9–11.5(-12.5) \times (8-)8.5-10.5(-11.5) (10.2 \pm 0.7 \times 9.3 \pm 0.6) \mu m$ (n = 100), medium reddish brown; wall unevenly thickened, 0.9–1.5 µm thick, with a few paler, rounded areas with thinner wall (0.5–0.9 µm thick); internal swellings, light refractive areas, and protuberances absent; spore surface minutely verruculose, spore profile not affected. In SEM, spore wall depressed on 3–6 places, ornaments up to 0.15

Fig. 1. Anthracoidea pseudofoetidae on Carex enervis (B 10 0240205): **a**, habit; **b**, spores in LM; **c**, **d**, spores in SEM. Scale bars: a = 1 mm, $b = 10 \mu \text{m}$, c, $d = 5 \mu \text{m}$.

Fig. 2. Maximum Likelihood phylogeny inferred using RAxML-NG based on LSU sequence data representing the species of Anthracoideaceae. The phylogeny was rooted using *Anthracoidea carphae* and *A. sclerotiformis* according to Hendrichs & al. (2005). Values above branches indicate bootstrap values inferred by 1000 replicates; only values \geq 50% are shown.

µm high, usually solitary and sparsely spaced, occasionally partly confluent, forming short rows or small groups.

Specimen examined.—Russia, Altai Republic, Kosh-Agachskiy District, 20 km ENE Kosh-Agach, valley of the Kokorya River, 50°05'30"N, 88°53'57"E, alt. 2080 m, on *Carex enervis* C.A.Mey., 9 Aug 2008, leg. L. Martins 2476, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0240205; GenBank LSU OQ067238).

Hosts and Distribution.—On Cyperaceae: on Carex enervis, C. maritima Gunnerus, and C. pseudofoetida. Known from Asia (China and Russia) and North America (Greenland).

Comments.—*Anthracoidea pseudofoetidae* was recovered as a sister species to a group of *A. aspera*, *A. arenaria*, and *A. cf. karii*, however with low bootstrap support (Fig. 2, Table 1).

Anthracoidea pseudofoetidae is recorded for the first time from Russia, on a new host plant species, *Carex ener*vis. This smut fungus is an Arctic-alpine species with a restricted distribution (Denchev & al. 2020). It has been

Denchev & al.

Table 1. Anthracoidea specimens, plant hosts, vouchers, and NCBI Genbank accession numbers of the large subunit (LSU) of nuclear ribosomal
DNA sequences used in the phylogenetic analysis. The single newly generated sequence is shown in bold.

Species	Host	Voucher	Accession	Species	Host	Voucher	Accession
Anthracoidea	Carex arenaria	PUL F916	AY 563606	A. karii	C. echinata	HMH 3676	AY563577
A. aspera	C. chordorrhiza	HMH 2774	AY 563607	A. karii	C. echinata	HMH 3414	AY563578
A. baldensis	C. baldensis	HMH 2861	AY 563599	A. karii	C. lachenalii	HMH 2644	AY563579
A. higelowii	C. higelowii	HMH 2733	AY 563566	A. karii	C. paniculata	HMH 3890	AY563574
A. higelowii	C. higelowii	HMH 927	AY 563567	A. cf. karii	C. davalliana	HMH 3898	AY563608
A. higelowii	C. higelowii	HMH 2736	AY 563568	A. lasiocarpae	C. lasiocarpa	HMH 972	AY563583
A. buxbaumii	C. buxbaumii	HMH 2744	AY 563582	A. limosa	C. limosa	HMH 2428	AY563572
A. capillaris	C. capillaris	HMH 2769	AY 563596	A. limosa	C. limosa	HMH 2790	AY563573
A. caricis	C. pilulifera	HMH 3364	AY 563589	A. misandrae	C. atrofusca	HMH 2653	AY563584
A. caricis-albae	C. alba	HMH 2869	AY 563594	A. pamiroalaica	C. koshewnikowii	KRA F-2012-146	KT006854
A. caricis-albae	C. alba	HMH 2873	AY563595	A. paniceae	C. panicea	HMH 2818	AY563580
A. caricis- meadii	C. meadii	ISC 428408	JN863083	A. pratensis	C. flacca	HMH 3599	AY 563563
A. carphae	Carpha alpina	M-40218	AY 563614	A. pratensis	C. flacca	HMH 1164	AY563564
A curvulae	Carex curvula	HMH 3912	AY 563611	A. pratensis	C. flacca	HMH 3870	AY563565
A. curvulae	C. curvula	HMH 2380	AY563612	A. pseudofoetidae	C. enervis	B 10 0240205	OQ067238
A. elynae	C. myosuroides	HMH 3958	AY563609	A. rupestris	C. rupestris	HMH 3948	AY563598
A. elynae	C. myosuroides	M 6794	AY563610	A. cf. rupestris	C. glacialis	HMH 3692	AY563588
A. globularis	C. globularis	HMH 2422	AY563593	A. sclerotiformis	C. punicea	M 4946	AY563613
A. hallerianae	C. halleriana	SOMF 30199	MT628660	A. sempervirentis	C. firma	HMH 3612	AY 563585
A. hallerianae	C. halleriana	SOMF 30201	MT628657	A. sempervirentis	C. ferruginea	HMH 3616	AY563587
A. heterospora	C. elata	HMH 2438	AY563600	А.	C. sempervirens	HMH 3950	AY563586
A. heterospora	C. elata	HMH 921	AY563601	sempervirentis		ID (IL 2700	13/5(2/04
A. hostianae	C. hostiana	HeRB 4706	AY563581	A. subinclusa	C. nirta	HMH 3700	AY 563604
A. inclusa	C. rostrata	HMH 2883	AY563605	A. subinclusa	C. riparia	PUL F915	AY 563603
A. irregularis	C. ornithopoda	HMH 3480	AY563590	A. subinclusa	C. vesicaria	HMH 2809	AY563602
A. irregularis	C. ornithopoda	HMH 3520	AY563591	A. turfosa	C. dioica	HMH 2797	AY563571
A. irregularis	C. digitata	HMH 933	AY 563592	A. turfosa	C. heleonastes	HMH 2662	AY563569
A. karii	C. brunnescens	HMH 2777	AY 563575	A. turfosa	C. parallela	HMH 2523	AY563570
A. karii	C. echinata	HMH 3892	AY563576	A. vankyi	C. muricata	HMH 1305	AY 563597

previously known only on *Carex pseudofoetida* from the type locality in China (Xizang) (Guo 2006), and on *C. maritima* from two localities in the High Arctic of Greenland (Denchev & al. 2020). The species of *Anthracoidea* on *Carex* are host-specific smut fungi restricted to sedges belonging to the same or closely related sections (Denchev & al. 2021). All three hosts of *A. pseudofoetidae* were traditionally placed in *Carex* sect. *Foetidae* (L.H. Bailey) Kük. (Egorova 1999; Reznicek 2002). Currently, these se-

dges are considered belonging to the Disticha clade that includes 27 species (Roalson & al. 2021). Most species in this clade are distributed in North America and temperate Eurasia. *Carex pseudofoetida* and *C. enervis* are Central Asiatic species while *C. maritima* has a bipolar distribution (Egorova 1999; Reznicek 2002). *Anthracoidea pseudofoetidae* can be easily distinguished from other *Anthracoidea* species by a suite of distinctive features that includes: (i) sori covered by a thick, dark brown peridium; (ii) very small-sized spores; and (iii) a characteristic spore wall, depressed on 3–6 places where the wall is paler and thinner (Denchev & al. 2020).

Microbotryum duriaeanum (Tul. & C. Tul.) Vánky, Mycotaxon 67: 43, 1998; *Ustilago duriaeana* Tul. & C. Tul., Ann. Sci. Nat., Bot., Sér. 3, 7: 105, 1847. Type: ALGERIA, Tlemcen, on *Cerastium glomeratum* Thuill., 30 May 1842, M.C. Durieu de Maisonneuve (PC s.n., holotype). Fig. 3a–c.

Infection systemic. Sori destroying the seeds, filling the capsules initially with a semi-agglutinated, later powdery, dark sepia (based on Rayner 1970) or dark purplish date (based on the Color identification chart of Anonymous 1969) spore mass. Spores subglobose, globose or broadly ellipsoidal, sometimes ovoid, $(12-)13-16(-17) \times$ (11.5-)12.5-14.5(-15.5) $(14.4 \pm 0.9 \times 13.3 \pm 0.8) \mu m$ (n = 100), light to medium reddish brown; wall reticulate, 1.9-2.5 μ m thick (including reticulum), meshes (5-)6-8(-9) per spore diameter, polyhedral or irregular, 0.6-2.7(-3.5) μ m wide, muri (0.8-)1.0-1.4(-1.7) μ m high. In SEM, the meshes smooth, often with a hemispherical protuberance at the bottom. The description is based on the infected specimen of *Cerastium brachypetalum* subsp. *roeseri* (Boiss. & Heldr.) Nyman.

Specimens examined.—GREECE. Western Macedonia Region: Grevena, W of Kallithea, 39°51′01″N, 21°19′14″E, alt. 1050 m, on *Cerastium brachypetalum* subsp. *roeseri*, 16 May 2012, leg. R. Willing & E. Willing 219.396, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 1224088; Gen-Bank ITS OQ096632, LSU OQ067234). Western Macedonia Region: Grevena, Milea, 40°11′00″N, 21°28′22″E, alt. 670 m, on *Cerastium semidecandrum* L., 24 May 2012, leg. R. Willing & E. Willing 221.910, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0499209; GenBank ITS OQ096633, LSU OQ067235).

Hosts and Distribution.—On *Cerastium* spp. (Caryophyllaceae). Known from Europe, North Africa, Asia, and North America.

Comments.—Both specimens of *Microbotryum duriaeanum* from this study fell into a clade with all other *M. duriaeanum* specimens sequenced up to date. The specimen on *Cerastium brachypetalum* subsp. *roeseri* emerged sister to all other *M. duriaeanum* specimens, whereas the specimen on *C. semidecandrum* formed a polytomy with the other specimens (Fig. 4, Table 2).

Microbotryum duriaeanum is reported here as a new record for Greece, on two host plants, among which *Cerastium brachypetalum* subsp. *roeseri* is recorded for the first time.

Microbotryum moehringiae (Togashi & Y.Maki) Vánky, Mycotaxon 67: 46, 1998; *Ustilago moehringiae* Togashi & Y.Maki, Ann. Phytopathol. Soc. Japan 10: 139, 1940. Type: Japan, Fukuoka Pref., Yoshikawa-mura, on *Moehringia trinervia* var. *platysperma* (Maxim.) Makino, 7 May 1938, Y. Maki (TNS s.n., holotype). Fig. 3d–f.

Infection systemic. Sori destroying the seeds, filling the capsules initially with a semi-agglutinated, later powdery, dark bay (based on Rayner 1970) or bay (based on the Color identification chart of Anonymous 1969) spore mass. Spores subglobose, globose or broadly ellipsoidal, sometimes ovoid, $(10.5-)11.5-13.5(-14.5) \times (10-)11-$ 12.5(-13.5) ($12.8 \pm 0.6 \times 11.8 \pm 0.6$) µm (n = 100), light to medium reddish brown; wall reticulate, 1.4-2.2 µm thick (including reticulum), meshes (4-)5-6(-7) per spore diameter, polyhedral or irregular, (0.7-)1.0-2.7(-3.3) µm wide, muri 0.6-1.1(-1.3) µm high. In SEM, meshes smooth, often with a hemispherical protuberance at the bottom.

Specimen examined.—MOROCCO. Fès-Meknès Region: Foret de Jaba, ca 15 km from El Hajeb, road to Ifrane, 33°36'N, 5°17'W, alt. 1400 m, on *Moehringia trinervia* (L.) Clairv., 9 Jun. 1992, leg. B. Valdés & al., 5th Iter Mediterraneum of OPTIMA, Morocco, Jun. 1992, 04-0237, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0298453; GenBank ITS OQ096635, LSU OQ067237).

Hosts and Distribution.—On *Moehringia* spp. (Caryophyllaceae). Known from Europe, North Africa, and Asia.

Comments.—The specimen of *M. moehringiae* from this study formed a well-supported clade with the only other specimen of *M. moehringia* (on *Moehringia trinervia*) sequenced so far, indicating that *M. moehringiae* is indeed a distinct species (Fig. 4, Table 2).

Microbotryum moehringiae is recorded for the first time from Africa. It has been previously reported for Asia (Japan, on *Moehringia trinervia* var. *platysperma*; Denchev & al. 2006) and Europe (Spain, on *M. pentandra* J.Gay; Almaraz 1999, as '*Ustilago duriaeana*', and France, on *M. trinervia*; Kemler & al. 2020).

Microbotryum moenchiae-manticae (Lindtner) Vánky, Mycotaxon 67: 46, 1998; *Ustilago moenchiae-manticae* Lindtner, Bull. Mus. Hist. Nat. Serbe, Ser. B 3–4: 33, 1950. Type: Serbia, Rudnik near Milanovac, on *Moenchia mantica* Bartl., 15 Jun. 1946, V. Lindtner (HUV 4123, lectotype; Ustilag. Jugosl., no. 3, isolectotypes). Fig. 3g–i.

Infection systemic. Sori destroying the seeds, filling the capsules initially with a semi-agglutinated, later powdery, sepia (based on Rayner 1970) or date brown (based on the Color identification chart of Anonymous 1969) spore mass. Spores subglobose, globose, broadly ellipsoidal or ovoid, $(11-)12-15.5(-16.5) \times (10-)11-14(-15) (13.8 \pm 1.1 \times 12.6 \pm 1.1) \mu m (n = 100)$, medium reddish brown; wall reticulate, $1.4-2.2 \mu m$ thick (including reticulum), meshes (5-)6-9 per spore diameter, polyhedral or irregular, $0.7-2.5(-3.0) \mu m$ wide, muri $0.7-1.2(-1.5) \mu m$ high. In SEM, meshes

Fig. 3. *Microbotryum duriaeanum* on *Cerastium brachypetalum* subsp. *roeseri* (B 10 1224088): **a**, capsule filled with spores; **b**, **c**, spores in LM (in median and surface view, respectively). *Microbotryum moehringiae* on *Moehringia trinervia* (B 10 0298453): **d**, capsule filled with spores; **e**, spores in LM; **f**, spores in SEM. *Microbotryum moehrinae* on *Moehringia mantica* (B 10 0255208): **g**, capsule filled with spores; **h**, spores in LM; **i**, spores in SEM. Scale bars: a, d, g = 1 mm, b, c, e, h = 10 μ m, f, i = 5 μ m.

Fig. 4. Maximum Likelihood phylogeny inferred using RAxML-NG based on combined LSU and ITS sequence data representing the species of Microbotryaceae. The tree is rooted with *Microbotryozyma collariae* and *Bauerago abstrusa*. Values above branches indicate bootstrap support inferred by 1000 replicates; only values \geq 50% are shown.

smooth or rugulose, often with a hemispherical protuberance at the bottom.

Specimens examined.—GREECE. Thessaly: Karditsa, near Kryoneri, 39°19'39"N, 21°42'00"E, alt. 785 m, on *Moenchia mantica*, 29 May 2005, leg. R. Willing & E. Willing 140.865, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 0255208; GenBank ITS OQ096634, LSU OQ067236). Western Greece Region: Aetolia-Acarnania, Ep. Nafpaktias, 1 km SE of Ano Hora, 38°35'N, 21°55'30"E, alt. 1020 m, on *M. mantica*, 15 Jun. 1991, leg. R. Willing 15.741, fungus comm. & det. T.T. Denchev & C.M. Denchev (B 10 1224076).

Hosts and Distribution.—On *Moenchia* spp. (Caryophyllaceae). Known from Europe and North Africa.

Comments.—The sequence of the specimen B 10 0255208 formed a well-supported clade with two sequences from this species (Fig. 4, Table 2).

Microbotryum moenchiae-manticae is recorded for the first time from Greece. It has been previously reported from Europe – Bulgaria, Spain, and UK, on *Moenchia erecta* G.Gaertn., B.Mey. & Scherb. subsp. *erecta* (Denchev 1997; Denchev & al. 2010; Denchev & Denchev 2017), and Romania and Serbia, on *M*.

Denchev & al.

Table 2. Smut fungi specimens, plant hosts, vouchers, and NCBI accession numbers of the sequences used in the phylogenetic analysis of *Micro-botryum.* Newly generated sequences are shown in bold. LSU: large subunit of the nuclear ribosomal DNA.

Species	Host	Voucher	ITS	LSU
Bauerago abstrusa	Juncus sp.	HUV18526	DQ238719	EF621955
Microbotryozyma collariae	n/a	ATCC:MYA-4666	JN849458	JN849460
Microbotryum adenopetalae	Silene adenopetala	KRAM F 55201	DQ366848	DQ366876
M. afromontanum	Cerastium afromontanum	BRIP: HUV 20888	MN657185	MN657208
M. alpinum	Pinguicula alpina	TUB 015871	EF621944	EF621995
M. anomalum	Fallopia convolvulus	GLM 59392	EF621921	EF621960
M. arcticum	Silene uralensis subsp. arctica	SOMF 29999	MK474659	MK474658
M. bardanense	S. moorcroftiana	KRAM F 54962	DQ366856	DQ366877
M. betonicae	Stachys alopecuros	GZU 86-98, Scheuer 4983	EF621927	EF621967
M. bistortarum	Bistorta vivipara	M-0066101	DQ238709	EF621969
M. bosniacum	Koenigia alpina	M-0066097	DQ238740	EF621977
M. cardui	Carduus acanthoides	SOMF 30191	MN657187	MN657210
M. cardui	C. crispus	SOMF 30190	MN657188	MN657211
M. cephalariae	Cephalaria humilis	BRIP: HUV 10980	MN657203	MN657212
M. chloranthae-verrucosum	Silene chlorantha	B 70 0007571	AY877404	DQ366878
M. cichorii	Cichorium intybus	LE 231009	MN657189	MN657213
M. cordae	Persicaria hydropiper	B 70 0006023	DQ238726	EF621978
M. coronariae	Silene flos-cuculi	KR 23797	KC684887	KC684886
M. dianthorum	Dianthus monspessulanus	TUB 011802	AY588080	DQ366871
M. ducellieri	Arenaria leptoclados	MA-Fungi 37800	MN657190	MN657214
M. duriaeanum	Cerastium brachypetalum	BRIP: HUV 3638	MN657192	MN657216
M. duriaeanum	C. brachypetalum	TUB 019596	MN657191	MN657215
M. duriaeanum	C. brachypetalum	MA 461701	MN657194	-
M. duriaeanum	C. brachypetalum subsp. roeseri	B 10 1224088	OQ096632	OQ067234
M. duriaeanum	C. gracile	SOMF 30188	MN657193	MN657217
M. duriaeanum	C. semidecandrum	B 10 0499209	OQ096633	OQ067235
M. emodense	Persicaria chinensis	FO17516/DB1037	DQ238743	AY512858
M. flosculorum	Knautia arvensis	BRIP: HUV 20230	MN657195	MN657218
M. heliospermatis	Heliosperma pusillum	TUB 019570	HQ832086	HQ832087
M. holostei	Holosteum umbellatum	B 70 0006032	DQ238722	EF621981
M. intermedium	Scabiosa lucida	M-0066090	DQ238723	EF621982
M. jehudanum	Silene colorata	BRIP: HUV 18306	MN657196	MN657219
M. lagerheimii	Atocion rupestre	TUB 011817	AY588100	DQ366874
M. liroi	Pinguicula villosa	KRAM 296281	KY421500	KY421502
M. lychnidis-dioicae	Silene latifolia	TUB 011795	AY588096	DQ366886
M. majus	S. otites	B 70 0006042	AY877419	DQ366858
M. marginale	Bistorta officinalis	TUB 015881	EF621940	EF621989
M. minuartiae	Minuartia recurva	TUB 012519	DQ366853	DQ366862
M. moehringiae	Moehringia trinervia	BRIP: HUV 19024	MN657197	MN657220
M. moehringiae	M. trinervia	B 10 0298453	OQ096635	OQ067237
M. moenchiae-manticae	Moenchia erecta	K(M) 106303	MN657198	MN657221
M. moenchiae-manticae	M. mantica	BRIP: HUV 4126	MN657199	MN657222
M. moenchiae-manticae	M. mantica	B 10 0255208	OQ096634	OQ067236

Table 2. Cont'd.

Species	Host	Voucher	ITS	LSU
M. onopordi	Onopordum bracteatum	M-0066075	DQ238735	EF621990
M. parlatorei	Rumex maritimus	B 70 0007574	DQ238736	EF621991
M. pinguiculae	Pinguicula vulgaris	STU 10004567401	KY421498	KY421501
M. polycnemoides	Polygonum polycnemoides	SOMF 30200	MN989380	MN989381
M. pustulatum	Bistorta officinalis	TUB 015872	EF621947	EF621998
M. reticulatum	Persicaria lapathifolia	M-0066067	DQ238730	EF621999
M. salviae	Salvia pratensis	TUB 015858	EF621922	EF621962
M. saponariae	Saponaria officinalis	TUB 011809	AY588089	DQ366887
M. scabiosae	Knautia arvensis	TUB 011789	AY588083	DQ366861
M. scabiosae	K. longifolia	TUB 015875	EF621950	EF622003
M. scolymi	n/a	n/a	AY800113	-
M. scorzonerae	Scorzonera humilis	M-0066054	DQ238731	EF622006
M. scorzonerae	S. humilis	TUB 015878	EF621953	EF622007
M. shastense	Polygonum shastense	M-0066053	DQ238739	EF622008
M. shykoffianum	Dianthus sylvestris	TUB 011800	AY588082	DQ366857
M. silenes-acaulis	Silene acaulis	TUB 019585	JN223408	JN223413
M. silenes-dioicae	S. dioica	TUB 012114	AY877416	DQ366868
M. silenes-inflatae	S. vulgaris	TUB 011793	AY588105	DQ366884
M. silenes-saxifragae	S. saxifraga	KR 23889	JN000073	JN000079
M. silybum	Silybum marianum	SOMF 30193	MN657200	MN657224
M. stellariae	Stellaria graminea	TUB 011807	AY588109	DQ366872
M. stygium	Rumex acetosa	M-0066047	DQ238737	EF622009
M. succisae	Succisa pratensis	M-0066045	MN657204	MN657225
M. succisae	S. pratensis	B 700007625	MN657201	MN657226
M. superbum	Dianthus superbus	TUB 011799	AY588081	DQ366867
M. tenuisporum	Persicaria glabra	M-0066041	DQ238727	EF622011
M. tragopogonis-pratensis	Tragopogon pratensis	TUB 015879	EF621954	EF622014
M. tragopogonis-pratensis	T. pratensis	TUB 012509	DQ238733	EF622012
M. tuberculiforme	Polygonum runcinatum	M-0066035	DQ238744	EF622015
M. violaceoirregulare	Silene vulgaris	TUB 011816	AY588104	DQ366875
M. violaceoverrucosum	S. viscosa	TUB 011815	AY588103	DQ366882
M. violaceum	S. nutans	TUB 011818	AY588099	DQ366880
Sphacelotheca cf. koordersiana	n/a	JAG 55 AFTOL-ID 1917	DQ832221	DQ832219

mantica subsp. *mantica* (Lindtner 1950; Vánky 1985), and Africa–Algeria and Morocco, on *M. erecta* subsp. *octandra* (Ziz ex Mert. & W.D.J.Koch) Gürke ex Cout. (Denchev & Denchev 2017).

ACKNOWLEDGEMENTS

This study was supported by the Bulgarian National Science Fund (Grant no. KP-06-N51/10/16.11.2021). The visit of T.T.D. & C.M.D. to the herbarium at the BGBM Berlin received support from the SYNTHESYS Plus Project http://www.synthesys.info, which is financed by the H2020 Research Infrastructures Programme (Grant no. DE-TAF-8193).

REFERENCES

Almaraz T. 1999. Quelques Ustilaginales de l'Andalousie (Espagne). Cryptogamie, Mycologie 20: 5–10.

Anonymous. 1969. Flora of British Fungi. Colour Identification Chart. Her Majesty's Stationery Office, Edinburgh.

Begerow D., Schäfer A.M., Kellner R., Yurkov A., Kemler M., Oberwinkler F. & Bauer R. 2014. Ustilaginomycotina. *In* McLaughlin D.J. & Spatafora J.W. (eds.), *The Mycota*, vol 7, Part A, *Systematics and evolution*, 2nd edn.: 295–329. Springer, Berlin, Heidelberg.

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology and Evolution* 17: 540–552.

Darriba D., Posada D., Kozlov A.M., Stamatakis A., Morel B. & Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. *Molecular Biology and Evolution* 37: 291–294.

Denchev C.M. 1997. Taxonomical studies on ovariicolous ustomycetes on Caryophyllaceae. I. *Ustilago jehudana* and *U. moenchiae-manticae. Mycoscience* 38: 323–328.

Denchev C.M., Denchev T.T., Spooner B.M. & Helfer S. 2010. New records of smut fungi. 3. *Mycotaxon* 114: 225–230.

Denchev C.M., Kakishima M., Shin H.D. & Lee S.K. 2006. Notes on some Japanese smut fungi. III. *Ustilago moehringiae*. *Mycotaxon* 98: 181–184.

Denchev T.T. & Denchev C.M. 2017. A noteworthy range extension for *Haradaea moenchiae-manticae*, a rarely reported smut fungus. *Mycobiota* 7: 7–12.

Denchev T.T., Denchev C.M., Koopman J., Begerow D. & Kemler M. 2021. Host specialization and molecular evidence support a distinct species of smut fungus, *Anthracoidea hallerianae* (*Anthracoideaceae*), on *Carex hallerianae* (Cyperaceae). *Willdenowia* 51: 57–67.

Denchev T.T., Denchev C.M., Michikawa M. & Kakishima M. 2013. The genus *Anthracoidea* (Anthracoideaceae) in Japan and some adjacent regions. *Mycobiota* 2: 1–125.

Denchev T.T., Knudsen H. & Denchev C.M. 2020. The smut fungi of Greenland. *MycoKeys* 64: 1–164.

Edler D., Klein J., Antonelli A. & Silvestro D. 2021. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. *Methods in Ecology and Evolution* 12: 373–377.

Egorova T.V. 1999. *The Sedges* (Carex *L.*) *of Russia and Adjacent States* (*within the Limits of the Former USSR*). Saint Petersburg State Chemical-Pharmaceutical Academy, Saint Petersburg & Missouri Botanical Garden Press, St. Louis.

Gouy M., Guindon S. & Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Molecular Biology and Evolution* 27: 221–224.

Guo L. 2006. Six new species of *Anthracoidea* (Ustilaginales) from China. *Fungal Diversity* 21: 81–92.

He M.-Q., Zhao R.-L., Liu D.-M., Denchev T.T., Begerow D., Yurkov A., Kemler M., Millanes A.M., Wedin M., McTaggart A.R., Shivas R.G.,

Buyck B., Chen J., Vizzini A., Papp V., Zmitrovich I.V., Davoodian N. & Hyde K.D. 2022. Species diversity of Basidiomycota. *Fungal Diversity* 114: 281–325.

Hendrichs M., Begerow D., Bauer R. & Oberwinkler F. 2005. The genus *Anthracoidea* (Basidiomycota, Ustilaginales): a molecular phylogenetic approach using LSU rDNA sequences. *Mycological Research* 109: 31–40.

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30: 772–780.

Kemler M., Denchev T.T., Denchev C.M., Begerow D., Piątek M. & Lutz M. 2020. Host preference and sorus location correlate with parasite phylogeny in the smut fungal genus *Microbotryum* (Basidiomycota, Microbotryales). *Mycological Progress* 19: 481–493.

Kozlov A.M., Darriba D., Flouri T., Morel B. & Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 35: 4453–4455.

Lindtner V. 1950. Gare Jugoslavije (Ustilaginales Jugoslaviae). *Bulletin du Muséum d'Histoire Naturelle du Pays Serbe, Série B* 3–4: 1–110. (In Serbian)

Rayner RW. 1970. *A Mycological Colour Chart*. CMI, Surrey & British Mycological Society, Kew.

Reznicek A.A. 2002. *Carex* Linnaeus sect. *Foetidae* (Tuckerman ex L.H. Bailey) Kükenthal. *In* Flora of North America Editorial Committee (eds.), *Flora of North America north of Mexico* 23: 309–311. Oxford University Press, New York and Oxford.

Roalson E.H., Jiménez-Mejías P., Hipp A.L., Benítez-Benítez C., Bruederle L.P., Chung K.-S., Escudero M., Ford B.A., Ford K., Gebauer S., Gehrke B., Hahn M., Hayat M.Q., Hoffmann M.H., Jin X.-F., Kim S., Larridon I., Léveillé-Bourret É., Lu Y.-F., Luceño M., Maguilla E., Márquez-Corro J.I., Martín-Bravo S., Masaki T., Míguez M., Naczi R.F.C., Reznicek A.A., Spalink D., Starr J.R., Uzma, Villaverde T., Waterway M.J., Wilson K.L. & Zhang S.-R. 2021. A framework infrageneric classification of *Carex* (Cyperaceae) and its organizing principles. *Journal of Systematics* and Evolution 59: 726–762.

Vánky K. 1985. Carpathian Ustilaginales. *Symbolae Botanicae Upsalienses* 24(2): 1–309.

Vánky K. 1998 The genus *Microbotryum* (smut fungi). *Mycotaxon* 67: 33–60.

Vánky K. 2011['2012']. Smut Fungi of the World. APS Press, St. Paul, Minnesota, USA.