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ABSTRACT. This study researches the influence of the three tillage systems (conventional, economical and 
mulch tillage) when combined with different soil plastic mulching and fertilizer applications on key selected soil 
physical properties (SPP) at 0-20 cm soil depth in a wheat agricultural site, during summer (from 1st June to 31st 
July 2015). SPP include soil porosity (Φ), volumetric soil water content 60 days after irrigation to field capacity 
(θ60),  and mean weight diameter of aggregates (MWD). The term mulch tillage refers here to a soil conservation 
practice where the soil surface is disturbed by tillage whereby crop residues are mixed with the soil and a certain 
amount of residues remain on the soil surface, while mulching refers to the placement of inorganic material over 
the top of a soil surface to protect it. Soil treatments included tillage system: conventional tillage using a 
combination of a mouldboard plough and a disc harrow (MP+DH), economical tillage using a rotary cultivator 
(RC), and mulch tillage using a chisel plough (MT+CP); soil plastic mulching: transparent mulching (TM), black 
mulching (BM) of 200 cm wide with 0.05 cm thick, and without mulching (WM); and fertilisers: composed organic 
fertiliser (CoF), no-composed organic fertiliser (NoF), and chemical fertiliser (ChF). The split–split-plot design 
under the randomized complete block design (RCBD) was established in 27 treatments with 3 replicated, to map 
Φ, θ60, and MWD based on 81 soil samples from all treatments. Results showed that the different soil treatments 
have diverse impacts on SPP. MP+DH resulted in the higher θ60 (0.22 cm3 cm-3), MWD (0.85 mm), and Φ 
(56.87%). Our findings showed that MT+CP obtained a higher MWD of 0.98 mm and lower Φ of 49% compared 
to other tillage systems. Soil mulching had significantly modified SPP, with BM resulting in the highest Φ 
(55.65%), θ60 (0.35 cm3 cm-3), and MWD (1.06 mm). Results indicated no significant differences between fertiliser 
types on SPP. The CoF had a significant effect on MWD and related soil characteristics studied. These findings 
can help us to understand the individual and combined effects of the tillage system, mulching, and fertilization 
application on some soil characteristics in wheat agriculture. A further study with more focus on the influence of 
tillage depths and mulching types (plastic vs organic mulch for different crops) under a variety of soils and climatic 
conditions, as well as on soil thermal properties needs further investigation. 

 

Efecto de la combinación de sistemas de cultivo, cubiertas plásticas y fertilizantes sobre las 
propiedades físicas del suelo de un trigal del sur de Iraq 
 

RESUMEN. Este estudio investiga la influencia de tres sistemas de labranza (convencional, económico y con 
mantillo) cuando se combinan con diferentes aplicaciones de fertilizantes y cobertura plástica del suelo en 
propiedades físicas del suelo (SPP), a 0-20 cm de profundidad, en un área agrícola de trigo, durante el verano (del 
1 de junio al 31 de julio de 2015). Los SPP incluyen la porosidad del suelo (Φ), el contenido volumétrico de agua 
del suelo 60 días después del riego a capacidad de campo (θ60) y el diámetro medio ponderado de los agregados 
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(MWD). El término cultivo con mantillo se refiere aquí a una práctica de conservación en la que la superficie del 
suelo es alterada por la labranza, de modo que los residuos del cultivo se mezclan con el suelo y una cierta cantidad 
de estos residuos permanece en la superficie del suelo. El mulching se refiere a la colocación de material inorgánico 
sobre la superficie del suelo para protegerlo. Los tratamientos del suelo incluyeron el sistema de labranza 
convencional que utiliza una combinación de arado de vertedera y grada de discos (MP+DH), labranza económica 
que usa un cultivador rotativo (RC) y labranza de cobertura que utiliza un arado de cincel (MT+CP); mulching 
plástico del suelo: mulching transparente (TM), mulching negro (BM) de 200 cm de ancho con 0,05 cm de espesor, 
y sin mulching (WM); y fertilizantes: fertilizante orgánico compuesto (CoF), fertilizante orgánico no compuesto 
(NoF) y fertilizante químico (ChF). El diseño de parcelas subdivididas bajo el diseño de bloques completos al azar 
(RCBD) se estableció en 27 tratamientos con 3 repeticiones, para cartografiar Φ, θ60 y MWD en base a 81 muestras 
de suelo con todos los tratamientos. Los resultados mostraron que los diferentes tratamientos del suelo tienen 
diversos impactos en SPP. MP+DH alcanzó el mayor θ60 (0,22 cm3 cm-3), MWD (0,85 mm) y Φ (56,87%). Por 
otro lado, MT+CP obtuvo un MWD mayor de 0,98 mm y un Φ menor de 49% en comparación con otros sistemas 
de labranza. El mantillo del suelo modificó significativamente el SPP, con BM alcanzando el mayor Φ (55,65%), 
θ60 (0,35 cm3 cm-3) y MWD (1,06 mm). Los resultados no indicaron diferencias significativas entre los tipos de 
fertilizantes en SPP. El CoF tuvo un efecto significativo en MWD y se relacionó con las características del suelo 
estudiadas. Estos hallazgos pueden ayudarnos a comprender los efectos individuales y combinados del sistema de 
labranza, el mulching y la aplicación de fertilizantes en algunas características del suelo en el cultivo del trigo. Un 
estudio más centrado en la influencia de las profundidades de labranza y los tipos de mulchings (mulching de 
plástico versus mulching orgánico para diferentes cultivos) en una variedad de suelos y condiciones climáticas, así 
como en las propiedades térmicas del suelo, necesitaría una investigación más profunda. 
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1. Introduction 

The implementations of appropriate tillage systems, mulching, and fertilizers play a key role in 
improving soil properties as well as increasing crop productivity (Li et al., 2022; Naveen et al., 2021; 
Rodrigo-Comino et al., 2020). Tillage is the mechanical manipulation of soil for managing crop 
production. It also has a substantial impact on soil properties such as porosity, water content 
conservation, and stability of aggregates (Al-Shammary and Al-Sadoon, 2014; Liebhard et al., 2022; 
Ndzelu et al., 2021; Silva et al., 2021). It is based on the utilization of mechanical applications to 
overturn soil layers with its crop and weed residues, leading to an increase in soil organic content due 
to the mixture. There is a wide range of tillage systems: conventional tillage (Mirzaei et al., 2023; Torppa 
and Taylor, 2022), reduced tillage (Deng et al., 2022), shallow tillage (Arvidsson et al., 2014), optimum 
tillage (Gorucu et al., 2006), minimum tillage (Githongo et al., 2021), economical tillage (Chen et al., 
2020), conservational tillage (Zheng et al., 2022), mulch tillage (Jiang et al., 2022), no/zero tillage 
(Mirzaei et al., 2022; Zhao et al., 2022), or tillage-plant systems (Li et al., 2019). 

Soil mulching is one of the most soil management applications used as the addition of any 
organic or inorganic material over the top of the soil surface to protect it (Al-Shammary et al., 2020). 
Some of the benefits include reduced soil erosion (Parlak et al., 2022; Wang et al., 2021), less 
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compaction (Adekalu et al., 2006), water conservation (Yang et al., 2023), increased control of soil 
temperature (Yin et al., 2023), and a reduction in weed growth (Agarwal et al., 2022). Soil mulching is 
also a practical way of increasing soil temperature to levels that are lethal to microorganisms that cause 
disease in agricultural production (Bu et al., 2013; Rodrigo-Comino, 2018; Steinmetz et al., 2016; Zhao 
et al., 2023). It is developed and used in different geographical areas with different purposes, for 
example, in the Middle East and Israel, to reduce soil heating. Still nowadays a great amount of soil 
mulching investigations is still being undertaken worldwide (Kahlon et al., 2013; Nzeyimana et al., 
2017). However, the effect of mulching combined with mechanical and chemical treatments on soil 
properties has received less attention. Even less in arid and semi-arid areas where water scarcity and 
land degradation processes are a consequence of human impacts (Rodrigo-Comino et al., 2022) and the 
imminent climate change such as Iraq (Qader et al., 2023). 

Soil porosity (Φ), volumetric soil water content conservation 60 days after irrigation to field 
capacity (θ60), and mean weight diameter of aggregates (MWD) are some significant soil physical 
properties (SPP) affecting crop growth and development (Mondal and Chakraborty, 2022). They 
influence plant growth directly but are also affected by mulching, tillage, and fertilizer application (Zhao 
et al., 2012). A considerable amount of literature has been published on determining the performance of 
soil mulching under different conditions. The use of plastic mulches in agricultural fields can influence 
soil's physical, chemical, and biological properties (Braunack et al., 2015; Jiang et al., 2017; Maul et 
al., 2014; Rodrigo-Comino et al., 2018; Scarascia-Mugnozza et al., 2012). Furthermore, the plastic 
cover can reduce the consumption of water use in irrigation, and lead to conserving water (Anikwe et 
al., 2007; Bhardwaj and Sarolia, 2013; Jiang et al., 2017), decrease soil compaction (Mahadeen, 2014), 
and improve the heating conditions in the soil (Li et al., 2016). The recent scientific literature is full of 
examples of countries where the use of these types of mulches are used. For example, Nzeyimana et al. 
(2017) investigated the effect of mulching type on SPP conditions in Rwanda, concluding that soil 
mulching has a significant influence on bulk density (ρb). Furthermore, the results revealed that 
improving SPP depends on the study location and the type of mulching used. Kahlon et al. (2013) and 
Figueiredo et al. (2017) also showed that the soil tillage system had a strong influence on SPP in Central 
Ohio. In addition, Crittenden and de Goede (2016) showed that a tillage system, directly and indirectly, 
influenced soil water content regimes. Zhang et al. (2017) investigated the effect of organic and 
chemical fertilizers on SPP, showing that organic fertilizer strongly led to a decrease in ρb. Xin (2016) 
argued that organic and mineral fertilizers can influence SPP in North China, showing a significant 
decrease in ρb. Although several studies have reported on individual influences of tillage practices, 
mulching and fertiliser application on SPP, the integrated effect has rarely been studied, particularly 
under dry soil conditions. Therefore, the main objective of this work is to study the influence of the 
individual and combined effects of a different combination of tillage, mulching, and fertilizers on SPP. 

 

2. Materials and methods 

2.1. Experimental site, soil sampling and measurements 

This study was carried out during the summer season of 2015 at Al Qataniyah village 
experiment, Aziziyah city, Wasit, Iraq (32.9° N, 44.9° E at 36 m a.s.l.). The soil site was categorized 
under the Typic Torrifluvent group texture (Soil Survey Staff, 2014), it is located within arid and semi-
arid areas, where the annual average temperature is 45 °C. The rainfall is mostly during the Dec to Feb 
with rainfall 145 mm, with site slope from (northeast to southwest and eastern outlines to the centre). 
Soil physical and chemical properties were measured using laboratory standard methods. This was done 
by collecting soil samples, 7 cm height and 5 cm diameter soil cylinders, at three depths (0-10, 10-20, 
and 20-30 cm) at randomly selected spots. Disturbed soil samples at each depth were mixed to obtain a 
representative sample of the corresponding depth. Samples were placed in plastic bags and transfer to 
the laboratory for drying under ambient conditions and grinding, then samples were passed through a 2 
mm sieve. The physical and chemical analyses of the general soil characteristics are shown in Table 1. 
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Soil bulk density (ρb ) was measured by the ring method (with a volume of 125 cm3) for undisturbed 
cores (Zheng et al., 2021).Particle density (Dp) was measured by the pycnometer method (Ruehlmann 
and Körschens, 2020). Porosity was calculated from measured values of ρb and Dp. Particle size 
distribution was measured according to (Soil Survey Staff, 2014). Soil pH and electric conductivity (EC) 
were measured using an electrical conductivity meter, while soil organic matter (SOM) was determined 
by the loss on ignition method according to (Jackson, 2005), CO3

2-, HCO3
1-, CI1- SO4, Ca2+, Mg2+, Na+, 

K+ were detected by saturated paste extract, according to (Rhoades, 1983). 

The MWD was measured by several steps. Soil samples were taken from each soil treatment 
and transported to the laboratory to maintain soil structure from distortion or damage and then manually 
disaggregated at a certain water content suitable to maintain the natural order of the assemblies. Briefly, 
soil samples were sieved using two sieves: first with a mesh size of 9 mm, and then with a mesh size of 
4 mm. Then, the soil aggregates between 4-9 mm were left to dry under laboratory conditions, 50 g from 
aggregates for each soil treatment was taken and placed on over a group of sieves with mesh sizes 4.75, 
2.36, 1.00, 0.50, and 0.25 mm from top to bottom. Then, samples were moistened from the bottom by 
capillary using distilled water for 6 min and sieved again for 6 min. The contents of each sieve were 
separated and dried at 105 °C for 24 h. The MWD was computed as 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ �̅�𝑥 𝜔𝜔𝑖𝑖

𝑁𝑁
𝑖𝑖=1  (Besalatpour et 

al., 2013), where: 𝑥𝑥 ̅ is the average diameters of each mesh size (mm), 𝜔𝜔𝑖𝑖 is the rate of dry-weight 
aggregate to total dry-weight of soil expressed as a percentage. 

Before tillage practices, the soil at the experimental site has a clay loam surface texture (Soil 
Survey Staff, 2014) with an average of 35% clay, 41 silt, and 24 sand. Dp at 0–30 cm depth has an average 
of 2.63 Mg m-3. Soil EC decreased with increased soil depths. SOM was high with values of 6.0 g kg-1 at 
0-10 cm soil depth and 4.0 g kg-1 at 20-30 cm depth. Main chemicals measured at the three depths include 
CO3

-2,  HCO3
-1  ,Cl-1, SO4

-2, Ca+2, Mg+2, Na+, and K+, are reported in Table 1. 

 

Table 1. Main characteristics of the studied soil. 

Soil 
depth 
(cm) 

EC 
dsm-1 pH SOM 

g kg-1 

C mole c/L in saturated paste extract 
ρb  

Mg m-3 
𝑀𝑀𝑝𝑝 

Mg m-3 
MWD  
mm 

Particle size distribution 
% Texture CO3

2 Hco3
1 CI1- So4 Ca2+ Mg2+ Na+ K+ 

Clay Silt Sand 
0-10 2.06 7.0 6.0 0 7 13 1.4 14.4 4 3.8 0.717 1.21 2.61 0.60 39 40 21 Clay 

loam 10-20 1.70 7.3 4.8 0 9 8 1.1 7.2 8 2.9 0.651 1.24 2.64 0.56 33 44 23 
20-30 1.34 7.3 4.0 0 10 3 1.0 8.3 2 2.6 0.648 1.29 2.65 0.48 34 40 26 

 

2.2. Experimental design 

The field site includes the following experimental design: 

- Tillage systems: 1) Conventional tillage: a combination of mouldboard plough followed by a 
disk harrow (MP+DH), plough to 25 cm depth; 2) Economical tillage: rotary cultivator (RC); 
and 3) Mulch tillage: chisel plough (CP) to a depth of 30 cm and leaving the remains of the 
straw crop to cover the soil surface after ploughing.  

- Mulching: transparent mulch (TM), black mulch (BM), and without mulch (WM).  

- Fertilisers: composted organic fertiliser (CoF), no-composted organic fertiliser (NoF) at an 
amount of 0.40 kg m-2 of cattle dune, and chemical fertiliser (ChF) of diammonium phosphate 
(DAP) at an amount 0.06 kg m-2. The CoF was prepared by aerobic decomposition before being 
used by leaving it for a period of 10 weeks until an appropriate degree of decomposition was 
reached and, then, mixed with the soil surface manually. 

 

These three individual treatments combined resulted in 27 treatments (3 tillage systems * 3 
mulching * 3 fertilizers). Each combined treatment was implemented in 4 m2 plots, leaving 1 m between 
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each of the experimental units, 1 m between ploughing treatments, and 1 m between replicates to prevent 
interferences among experimental units. Each of the 27 combined treatments was replicated three times, 
making a total of 81 experimental plots over the entire area of 585 m2, as shown in Figure 1. 

The study used a tractor (New Holland T8.320), mouldboard plough (MP) with four boards, 
rotary plough (RC; mini-1200), chisel plough (CP), and disk harrow (DH). The specifications for the 
tractor and equipment used are shown in Appendices 1-2. The DH was used to mix fertilisers with the 
soil. In addition, irrigation to field capacity was made by surface irrigation. After the implementation of 
the three different tillage systems and the incorporation of the three different fertiliser types, the 
experimental plots were covered with plastic sheets (mulching) 200 cm wide and 0.05 cm thick for the 
transparent mulching (TM) and the black mulching (BM). Polyethylene film was used for soil mulching 
perfectly attached to the soil surface, which is essential to reduce water losses. Finally, the polyethylene 
sheets from all plots were removed after 60 days and the soil samples were collected to measure Φ, θ60, 
and MWD for each soil treatment. 

 

 
Figure 1. Schematic diagram of the experimental field. 

 

2.3. Statistical analysis 

The split–split-plot design under the randomized complete block design (RCBD) was used to 
design and analyze the experimental data. Φ, θ60, and MWD were calculated for each soil treatment at 
0-20 cm soil depth, and the influence of tillage, mulching, and fertilizer on Φ, θ60, and MWD was tested 
by the two-way ANOVA analysis using SAS 9.4v (SAS, 2013). The results were statistically tested by 
the least significant difference (LSD) method at the 0.05 probability level.  

 

3. Results and discussion 

3.1. Soil Porosity 

The effect of tillage, mulching, and fertilizer on Φ are presented in Figure 2. A significant variation 
between tillage on Φ was found, where the CP gave the lowest Φ at 49.00%, while the MP+DH gave the 
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highest Φ at 56.87% (Fig. 2a). The reason for this result is the rise of ρb in CP treatment compared with 
RC and MP+DH treatments, as shown in Figure 2a. Mulching shows significant differences in Φ between 
BM treatment (55.65%) and WM (52.98%). However, the differences between BM and TM treatment and 
between TM and WM, were non-significant (Fig. 2b). These results are due to decreasing soil ρb with BM 
compared with TM and WM. The findings show no significant differences between fertiliser applications 
on Φ (Fig. 2c). The interaction between tillage and mulching showed significant differences in Φ, with the 
highest value for MP+DH and BM (58.34%) and the lowest Φ for CP+WM (51.29%) (Fig. 2d). Also, Φ 
values were higher for MP+DH than for CP, RC as a result of decreasing SD values in plots ploughed by 
MP+DH compared with RC ploughing. The general trend in Φ values with the three types of tillage from 
highest to lowest was BM > TM > WM for the majority of soil treatments. 

A significant positive correlation was indicated between tillage and fertilizers in Φ values (Fig. 
2d), with the highest Φ value showing for MP+DH and CF (58.60%) and the lowest Φ value at CP and 
CF (49.40%). The interaction between mulching and fertilizer found significant differences in Φ, with 
the highest value for BM and CF (56.77%), and the lowest value for WM (52.14%) (Fig. 2e). 

 

 
Figure 2. Individual and combined effects of tillage, mulching, and fertilization practices on soil porosity (Φ). 

LSD: least significant difference (method at the 0.05 probability level, RC: Rotary cultivator, MP+DH: 
Ploughing mouldboard plough followed by a disk harrow, CP: Chisel plough, TM: Transparent mulch, BM: 
black mulch, WM: without mulch, CoF: composed organic fertilizer, NoF: no-composed organic fertilizer, 

ChF: chemical fertilizer, *: Interaction effect of the treatments. 

 

3.2. Soil water conservation 

Results in Figure 3 represent the effect of tillage, mulching, and fertilizers on soil water 
conservation measured as the volumetric soil water content 60 days after irrigation to field capacity 
(θ60). Results show a significant difference between the tillage system on θ60 values. The RC gave the 
highest average θ60 with 0.30 cm3 cm-3, whereas the CP gave the lowest average θ60 with 0.15 cm3 cm-

3 (Fig. 3a). This is expected due to the increase of ρb with CP treatments. Soil mulching also provides 
significant differences in θ60, with the highest value of θ60 using BM, 0.35 cm3 cm-3, and the lowest 
value using WM, 0.17 cm3 cm-3. The general trend in θ60 from highest to lowest, is BM > TM > WM, 
caused by the fact that BM has a stronger effect on reducing evaporation (Anikwe et al., 2007; Bhardwaj 
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and Sarolia, 2013; Jiang et al., 2017; Mahadeen, 2014). On the other hand, no significant differences 
between fertilizers on θ60 values were found. The interaction between tillage and mulching in θ60 
(significance at the p level of 0.05) had the highest value for RC+TM (0.33 cm3 cm-3), whereas the 
lowest θ60 (0.13 cm3 cm-3) was obtained for CP * WM (Figure 3d). Also, θ60 values were higher in BM 
plots for the three tillage systems compared with TM and WM. Plots ploughed by RC using BM had 
significantly higher θ60 values than plots using TM and WM, with values 37% and 43% higher 
respectively, while θ60 values in the RC and BM plots were significantly higher than in TM and WM 
plots with values 30% and 180%, respectively. Furthermore, the interaction between the tillage system 
and fertilizer type showed non-significant differences between most treatments except for RC and CoF, 
NCF, and ChF with MP+DH and CoF. The highest θ60 value was obtained for RC and CoF (0.32 cm3 
cm-3), and the lowest value for MP+DH and CoF (0.18 cm3 cm-3). The interaction between soil mulching 
and fertilizer type showed significant differences between most treatments, presenting the highest θ60 
value (0.388 cm3 cm-3) for BM and ChF, while the lowest value (0.09 cm3 cm-3) appeared for WM and 
CoF (Figure 3f). The general trend in θ60 values considering interactions between mulching and fertilizer 
type, from highest to lowest, was BM and all fertiliser types > TM and all fertiliser types > WM and all 
fertiliser types. The reason for this is the influence of soil mulching on soil water consumption by 
controlling evaporation from the soil surface, which leads to water conservation (Jiang et al., 2017; 
Mamkagh, 2009; Testa et al., 2015; Wang et al., 2009). 

 

 
Figure 3. Individual and combined effects of tillage, mulching, and fertilizer practices on soil water 
conservation (θ60). LSD: least significant difference method at the 0.05 probability level, RC: Rotary 

cultivator, MP+DH: Ploughing mouldboard plough followed by a disk harrow, CP: Chisel plough, TM: 
Transparent mulch, BM: black mulch, WM: without mulch, CoF: composed organic fertilizer, NoF: no-

composed organic fertilizer, ChF: chemical fertilizer, *: Interaction effect of the treatments. 

 

3.3. Mean weight diameter of aggregates 

The effect of tillage, mulching, and fertilizers, as well as their interactions on the mean weight 
diameter of aggregates (MWD) is shown in Figure 4. Significant differences were found between the 
tillage system on MWD. The CP showed the highest MWD value of 0.98 mm, whereas the RC showed 
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the lowest MWD of 0.73 mm (Fig. 4a). This is because ploughing with CP leads to the destruction of 
soil structure as a result of turning the subsoil to the top by CP, as well as with MP+DH. The mulching 
type also had a significant effect on MWD, showing higher MWD for BM and TM (1.06 and 0.84 mm, 
respectively) compared to WM with MWD of 0.66 mm. MWD increased using mulching (Fig. 4b), 
which could be explained by the increased soil water content with mulching leading to higher stability 
of the soil aggregates (Ma et al., 2014). As expected, fertilizer type significantly affects MWD. The 
highest MWD occurred for CoF with 1.02 mm, and lowest for ChF with 0.75 mm (Fig. 4c). Soil 
structural stability increase with rising the decomposition of organic content (Ye et al., 2017). 

 

 

Figure 4. Individual and combined effects of tillage, mulching, and fertilizer practices on mean weight 
diameter of aggregates (MWD). LSD: least significant difference method at the 0.05 probability level, RC: 
Rotary cultivator, MP+DH: Ploughing mouldboard plough followed by a disk harrow, CP: Chisel plough, 

TM: Transparent mulch, BM: black mulch, WM: without mulch, CoF: composed organic fertilizer, NoF: no-
composed organic fertilizer, ChF: chemical fertilizer, *: Interaction effect of the treatments. 

 

The combination of the tillage system and mulching showed significant differences in MWD 
(Fig. 4d), with the highest MWD value for CP+BM (1.22 mm) and the lowest MWD for RC+WM (0.59 
mm). Moreover, the results showed that the interaction between MP+DH and BM had a higher MWD 
value (1.05 mm) compared to MP+DH, and WM showed a lower value (0.68 mm). A likely explanation 
is that the lower destruction of soil aggregated by CP compared to turning ploughs, and mulching 
reduces evaporation allowing the soil to maintain high water content. 

Figure 4e shows a significant effect of the combined tillage system and fertilizer type on MWD. 
The highest value was 1.12 mm for CP+CoF, while the lowest value was 0.65 mm, for RC+NoF and 
RC+ChF. The stability of soil aggregates is increased by CP, which breaks up and loosens the soil 
without turning it. As expected, MWD increased as soil organic content increased. Another important 
finding was that mulching + fertilizer application had a significant influence on MWD, obtaining the 
highest value (1.25 mm) at BM * CoF, whereas the lowest (0.60 mm) at WM * ChF. Thus, the MWD 
is indirectly influenced by tillage, mulching, and fertilizer treatments. 
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4. Challenges of the current study  

The soil physical properties (SPP) were studied with the impact of the individual and combined 
effects of soil management practices within arid and semi-arid areas in southern Iraq. The conventional, 
economical, and mulch tillage system; transparent, black plastic mulch; organic and chemical fertilizers 
were effect on the SPP in clay loam texture for the wheat-agricultural sites. These results might be 
applicable to clay loam and clay texture properties. On the other hand, despite these recent limitations, 
Further investigation about long-term studies based on the influence of tillage and mulching under a 
variety of soils and climatic conditions of Iraq, as well as on soil thermal properties are strongly 
recommended. Furthermore, the Long-term no-tillage system effect on soil thermal-physical attributes 
in wheat /barley cultivation needs to be further studied. 

 

5. Conclusions  

The present study was designed to study the individual and combined effects of tillage, 
mulching, and fertilizer on Φ, θ60, and MWD in agricultural land. The main results indicate that tillage 
systems were significantly positively correlated with Φ, and MWD (p<0.05). MP+DH showed higher 
Φ, whereas CH showed higher MWD (0.98 mm) compared to MP+DH, RC (0.85 and 0.73 mm, 
respectively). The highest values of Φ, θ60, and MWD were obtained when BM was used. This was 
attributed to the influence of BM on reducing water losses, thus, allowing the soil to retain more water. 
On the other hand, no significant differences between fertilizer types on Φ and θ60 were found. However, 
fertilizer type was significantly correlated to MWD, with the highest MWD for CoF and the lowest for 
ChF due to the increasing decomposition of organic content in the CoF. The interaction between 
MP+DH and BM showed the highest Φ, while CP+BM showed the highest MWD. 
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Appendices. Specifications for the tractor and equipment used 
 

Appendix 1. Characteristics of the tractor used. 

Specification New Holland T8.320 
Years of production 2007 
Engine model / type 6.75T 
Engine displacement (cm3) 7474 
Number of cylinders 6 T 
Engine rated power (hp) 125 
Type of drive transmission Mech 
Front wheel size 23.1R26 
Rear wheel size 13/65-18 
Weight 11200 kg 

 

Appendix 2. Specification for the agriculture equipment used. 

Specification 
Mouldboard 

plough with four 
mould-board 

Rotary plough, 
mini 1200 with 
7 discs loaded 

blade 

Chisel 
plough with 7 

Blade 

Disk harrow/ 
Double unit /8 
Disc of each 

unit 
Working width (cm) 105 128 170 155 
Maximum soil tillage depths (cm) 33 20 40 20 
Length (cm) 220 - - - 
Weight (Kg) 300 232 390 - 
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