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Abstract
Introduction: Living at high altitude increases oxidative stress. Likewise, growth and maturation 
during adolescence can increase levels of reactive oxygen species (ros). Changes in redox profiles have 
been evaluated in adults living at high altitudes; however, there are no studies on these changes in 
peripubertal populations living at moderate altitudes, we determine how living at moderate altitude 
affects the oxidative and inflammatory status of healthy preadolescents and adolescents. Materials and 
Methods: A cross-sectional study was conducted in healthy male Colombian preadolescents and adoles-
cents (9–18 years old, Tanner scale classification) who lived at low altitude (n = 26) or moderate altitude  
(n = 26). Plasma oxidative and inflammatory status was assessed via spectrophotometry. Oxidative 
markers included malondialdehyde, 4-hydroxy-trans-2-nonenal, and carbonyl groups. Antioxidant 
markers included total antioxidant status, glutathione, catalase, superoxide dismutase, uric acid, and 
thiols. Inflammatory markers included interleukins-1, -6, and -10 and tumor necrosis factor. Results: 
Only uric acid levels were higher in adolescents (5.34 and 5.66 mg/dl) compared to preadolescents (3.85 
and 4.07 mg/dl) in both moderate and low altitude groups, respectively. Participants who lived at mod-
erate altitude presented significantly higher levels of malondialdehyde (4.82 and 3.73 nM/mg protein) 
and lower level of glutathione and thiols (1.21 and 1.26 µmol/mg protein) than in those at low altitude. 
Their inflammatory profiles did not differ. Conclusion: Oxidant profiles increased in peripubertal popu-
lations residing at moderate altitude; this could be owing to antioxidant consumption by ros and active 
metabolism during puberty.

Keywords: Oxidative stress; hypoxia; altitude; children; adolescents; redox balance.

Resumen
Introducción: vivir en altura es un factor que se asocia con el estrés oxidativo. El crecimiento y la 
maduración pueden ser un estresor adicional. Es insuficiente la evidencia sobre alteraciones del perfil 
redox en peripúberes residentes a altitudes moderadas. El propósito fue establecer el efecto de vivir 
en una altitud moderada sobre el perfil redox e inflamatorio en preadolescentes y adolescentes sanos. 
Materiales y métodos: estudio transversal en varones preadolescentes y adolescentes sanos (9-18 años) 
que viven en altitud baja (n = 26) o altitud moderada (n = 26). El estado oxidativo plasmático se evaluó 
mediante espectrofotometría a través de marcadores de oxidación (malondialdehído e hidroxinonenal y 
grupos carbonilo) y antioxidantes (estado antioxidante total, glutatión, catalasa, superóxido dismutasa, 
ácido úrico y tioles). El perfil inflamatorio se midió con interleucinas 1, 6, 10 y factor de necrosis tumoral 
α. Resultados: solo el ácido úrico fue diferente entre adolescentes (5.34 y 5.66 mg/dl para moderada y 
baja altitud, respectivamente) y preadolescentes (3.85 y 4.07 mg/dl para moderada y baja altitud, res-
pectivamente). El grupo de preadolescentes y adolescentes de moderada altitud presentó niveles más 
altos de malondialdehído (4.82 y 3.73 nM/mg de proteína, respectivamente) y menor glutatión y tioles 
(1.21 y 1.26 µmol/mg de proteína), en comparación con sus contrapartes de baja altitud. Conclusión: las 
poblaciones peripúberes que residen en una altitud moderada presentan un perfil oxidante más alto, lo 
que puede estar relacionado con la depleción de antioxidantes, por una mayor producción de especies 
reactivas de oxígeno relacionada con la hipoxia y el metabolismo activo de la pubertad.

Palabras clave: estrés oxidativo; hipoxia; altitud; niño y adolescente; oxidación-reducción. 
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Resumo 
Introdução: viver em grandes altitudes é um fator de estresse associado ao estresse oxidativo. Durante 
a adolescência, os processos de crescimento e maturação podem aumentar as espécies reativas de oxi-
gênio. Alterações no perfil redox foram estudadas em adultos expostos a grandes altitudes, mas não em 
populações peripubertais vivendo em altitudes moderadas. Nosso objetivo é estabelecer o efeito de viver 
em uma altitude moderada sobre o estado oxidativo e inflamatório em pré-adolescentes e adolescentes 
saudáveis. Materiais and métodos: foi realizado um estudo transversal em pré-adolescentes e adolescen-
tes colombianos saudáveis   (9-18 anos, na escala de classificação de Tanner) que viviam em baixa altitude 
(n = 26) ou altitude moderada (n = 26). O estado oxidativo e inflamatório do plasma foi avaliado por 
espectrofotometria: 1) Marcadores de oxidação: grupos Malondialdeído + 4-hidroxi-trans-2-nonenal e 
carbonila; 2) antioxidantes: estado antioxidante total, glutationa, catalase, superóxido dismutase, ácido 
úrico e tióis; 3) Marcadores de inflamação: interleucinas 1, 6, 10 e fator de necrose tumoral α. Resultados: 
apenas o ácido úrico foi maior em adolescentes (5,34 e 5,66 mg/dl) em comparação com pré-adolescentes 
(3,85 e 4,07 mg/dl) dos grupos de altitude moderada e baixa, respectivamente. A altitude moderada apre-
sentou níveis significativamente maiores de Malondialdeído (4,82 e 3,73 nM/mg de proteína), e menores 
níveis de Glutationa e tióis (1,21 e 1,26 µmol/mg de proteína), em comparação com a baixa altitude. 
Nenhuma diferença foi detectada no perfil inflamatório. Conclusão: as populações peripubertais que 
residem em altitude moderada apresentam maior perfil oxidante, o que pode estar relacionado ao con-
sumo de antioxidantes devido à maior produção de ros relacionada à hipóxia e ao metabolismo ativo 
por volta da puberdade.

Palavras-chave: estresse oxidativo; hipóxia; altitude; crianças e adolescentes redução-oxidação.

Introduction

Redox balance determines health. Oxidative stress can disrupt this delicate balance 

between oxidants and antioxidants by increasing the production of reactive oxygen 

species (ros), reducing antioxidants, and hindering cellular function, which are associated 

with pathologies such as cancer and cardiometabolic and respiratory diseases (1). In addi-

tion to lifestyle-related factors, environmental influences such as exposure to high altitude 

hypoxia can affect redox balance. Acute hypoxia triggers electron transport chain com-

plexes to produce greater amounts of ros (2,3). Indeed, inflammatory profiles are linked to 

oxidative stress, indicating that life at altitude poses stress that could undermine health by 

disrupting the redox balance (4,5). Studies have shown that the physiological and chemical 

changes attributed to moderate altitude (ma) are less drastic compared to those attributed 

to high altitude, though millions of people live at ma (6). In Colombia, nearly 40 % of the 

population permanently resides at altitudes between 1500 and 3000 m; more than 10 % are 

children and adolescents under 18 years old (7).

Adults remain the primary subjects in studies that explore how hypobaric hypoxia, or 

living at high altitude, affects health (8–10). Aging can disrupt redox balance; older adults 

have greater oxidative stress compared to younger subjects (11). However, critical periods 

of growth and development during childhood and adolescence may also increase oxidative 
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stress, and specific diseases during infancy have been linked to oxidative damage (12,13). 

Studies have reported that adolescents have higher levels of oxidants and antioxidants tan 

children (11,14,15).

The role that oxidative stress plays in disease and the various responses across early 

stages of life warrant a better understanding of how altitude affects redox balance in younger 

populations, for whom preventive interventions are possible. Here, we (i) assessed how 

chronic exposure to ma, or 2000–3000 m above sea level (masl), affects the oxidative profiles 

of healthy male children and adolescents and (ii) compared the redox statuses of children 

and adolescents living at ma and low altitude (la) (16). We hypothesized that stress induced 

by maturation and chronic exposure to hypoxia disrupts the redox balance in children and 

adolescents living at ma.

Materials and methods

This cross-sectional, descriptive, observational study recruited 52 male children and ado-

lescents between 9 and 18 years of age from two regions in Colombia: 26 residents who 

lived at la in the city of Tuluá in the Pacific Region (900 masl) and 26 residents who lived 

at ma in Bogotá (2600–2900 masl). Each subject lived in the corresponding altitude for at 

least three years and was requested to not travel to a different altitude for three weeks 

prior to measurements; those who were exposed to a different altitude in that time were 

excluded. All participants were healthy, did not regularly exercise or play a sport (prac-

tice less than six hours per week, corresponding to physical education classes), and had 

no recent history of infections or treatment with antiinflammatory drugs, antibiotics, or 

nutritional supplements. All volunteers and their parents or legal guardians consented to 

this study, which was approved by the research ethics committee of the Science Faculty of 

the Universidad Nacional de Colombia (Record 18, September 21st, 2016). All participants 

underwent a medical evaluation and biological maturation assessment according to the 

Tanner scale to evaluate general health and secondary sexual characteristics, respectively 

(17). Preadolescents were assigned to stages i and ii and adolescents to stages iii, iv, and v. 

Maximal oxygen uptake (vo2 max) was recorded for each participant in his altitude of res-

idence according to a graded exercise test protocol; physical activity levels were assessed 

by an expert-validated questionnaire on the frequency, duration, and intensity of physi-

cal activities that include physical education classes, extracurricular and leisure physical 

activities, and specific training sessions. Body composition assessed by measuring weight, 

height, and body fat percentage as described by isak. Body fat percentage was calculated 

from skinfold measurements using the Slaughter formula (18). A nutritionist noted food 
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frequency and sent 24-hour reminders to detect food ingestion, which could interfere with 

measurements in blood samples.

Redox profiles were measured from blood samples collected at the exercise physiology 

laboratory at 7:00 a.m. after patients fasted for at least 10 hours and restricted physical 

activity for 72 hours. An experienced bacteriologist took a blood sample was taken from the 

antecubital vein by venipuncture in edta vacutainer tubes. The samples were immediately 

transferred to a refrigerator at 4 °C in the laboratory prior to measuring hematological 

parameters. The sample was centrifuged at 2400 g for 10 min at 4 °C to separate the plasma, 

which was stored in aliquots (1 ml) in Eppendorf tubes and subsequently frozen at −80 °C until 

use. At the same laboratory, the following markers were measured in the plasma samples:

Total antioxidant status (tas). tas was measured with a commercial kit according to the 

manufacturer´s instructions (nx2332; Randox Laboratories; Crumlin, United Kingdom) with 

a plate reader (Synergy ht Multimode; BioTek; Winooski, vt, usa).

Reduced glutathione (gsh). gsh levels in breast milk were measured using a fluorometric 

method based on the o-phthalaldehyde reaction (Hawkins et al. 2008) adapted to a microplate 

reader (pmid: 32218124). Fluorescence was measured at 360 ± 40 nm excitation and 460 ± 40 

nm emission with a microplate reader (Synergy ht Multimode; BioTek; Winooski, vt, usa). gsh 

was expressed as mg gsh/mL (19).

Uric acid. Uric acid was measured using an enzymatic method according to the manu-

facturer´s instructions (abx A11A01670; horiba; Montpellier, France).

Thiol content. Plasma thiol levels were quantified using Ellman’s reagent (5,5-dithio-

bis-2-nitrobenzoic acid, dtnb). Proteins and low-molecular-weight compounds contain thiol 

groups that react with dtnb and produce 3-nitrobenzoic acid (tnb), which can be quantified 

at 412 nm with a plate reader (19). Thiol levels were expressed as mM gsh/mL.

Catalase activity (cat). cat was measured by fluorimetry based on the oxidation of the 

Amplex Red probe produced by H2O2 in the presence of hrp (horseradish peroxidase enzyme). 

When cat breaks down H2O2 into H2O, it reduces the fluorescence signal, which was measured 

at an excitation wavelength of 530 ± 25 nm and an emission wavelength of 590 ± 35 nm with 

a plate reader (19).

Superoxide dismutase (sod). sod activity was measured according to the manufacturer’s 

instructions (sod Activity Assay kit kb-03-011; Bioquochem; Gijon, Spain) according to the 

manufacturer´s instructions. Briefly, 20 µL of bm were diluted in deionized H2O (1:1; v/v), 

followed by adding 200 µL of the working solution and 20 µL of enzyme solution. The reaction 

was incubated at 37 °C for 20 min. The absorbance was measured at 450 nm with a microplate 

reader (Synergy ht Multimode; BioTek; Winooski, vt, usa). The sod activity was expressed in 

percent of inhibition.

Lipid peroxidation. Lipid peroxidation was assessed by measuring the levels of malondi-

aldehyde (mda) and 4-hydroxy-trans-2-nonenal (hne) with a kit (Lipid Peroxidation Assay Kit 
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kb-03-002; Bioquochem; Gijon, Spain) according to the manufacturer´s instructions. Briefly, 

100 µL of bm were mixed with 325 µL of chromophore reagent and incubated at 40 °C for 

20 min. 200 µL of the reaction or standard curve samples were transferred to a microplate. 

The absorbance was measured at 586 nm with a microplate reader (Synergy ht Multimode; 

BioTek; Winooski, vt, usa). Lipid peroxidation was expressed as µM.

Protein oxidation. The levels of carbonylated proteins in bm were measured with a 

dinitrophenylhydrazine (dnph)-based method adapted to a microplate reader (Synergy ht 

Multimode; BioTek; Winooski, vt, usa). Absorbance was measured at 370 nm as previously 

described (14). Carbonyl groups were quantified using the extinction coefficient of 2,4-dini-

trophenylhydrazine (ε = 22,000 M/cm) and expressed as nmol/mL.

Plasma cytokines. Plasma levels of proinflammatory cytokines (il-1, il-6, and tnf-α) 

and antiinflammatory cytokine (il-10) were measured with a cytometric bead array kit (bd 

Biosciences) and a facsCanto ii flow cytometer (bd Biosciences).

Statistical analysis was performed with spss software (version 25.0; ibm; Armonk, ny; usa). 

The Shapiro-Wilk test was used to assess the normal distribution of the variables, some of 

which did not follow a normal distribution. A 2 × 2 factorial analysis of variance was used to 

determine statistical differences between groups. The nonparametric Spearman’s test was 

used to assess correlations between age and antioxidants and between redox variables and 

inflammatory markers. The p < 0.05 indicated statistical significance.

Results

A total of 52 volunteers were recruited: 35 were classified as preadolescents (17 residents 

in la and 18 residents in ma) and 17 as adolescents (9 residents in la and 8 residents in 

ma). No statistically significant differences were found in any of the anthropometric param-

eters between la and ma residents among preadolescents or adolescents. The age, height, 

and weight were significantly higher in the adolescent group than the preadolescent group 

in both settings, but no significant differences were found in bmi, body fat, and vo2 peak 

(Table 1).

Table 1. Anthropometric variables in preadolescents and adolescents according to altitude

 Preadolescents Adolescents

 la (n = 17) ma (n = 18) la (n = 9) ma (n = 8)

Age (years) 10.71 (2.06) 11.28 (1.94) 16.37 (2.49)* 16.56 (2.24)*

Weight (kg) 35.63 (12.75) 36.5 (10.8) 55 (9.5)* 53.9 (10.23)*

Body Fat (%) 15.7 (8.81) 18.64 (18.49) 14.41 (6.8) 12.76 (13.06)
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 Preadolescents Adolescents

 la (n = 17) ma (n = 18) la (n = 9) ma (n = 8)

Height (cm) 142.25 (48.2) 140.9 (35.3) 167.3 (15.65)* 169.45 (7.4)*

bmi 17.63 (9.33) 17.91 (7.48) 19.24 (2.39) 19.51 (2.2)

vo2 peak (ml/kg.min) 41.98 (26.24) 46 (22.77) 42.02 (5.78) 39.38 (10.53)

la: low altitude (900 masl). ma: moderate altitude (2600 masl). bmi: Body Mass Index. Data are expressed as 
median (interquartile range).

* p < 0.05 with respect to preadolescents from the same altitude (Mann-Whitney U Test).

Altitude affected levels of plasma antioxidants (Figure 1), especially cat (p = 0.011), gsh (p 

= 0.003), and plasma thiol (p = 0.048). Levels of gsh and plasma thiol of the ma group (pooled 

preadolescents and adolescents) were lower than those of the la group (Table 2) by 22.8 % 

and 16.4 %, respectively.

Figure 1. Plasma antioxidants in the population according to altitude
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Table 2. Comparisons of redox balance variables in adolescents and preadolescents at moderate and low altitude

 la ma

Main EffectPreadolescents
(n = 17)

Adolescents
(n = 9)

Preadolescents
(n = 18)

Adolescents
(n = 8)

cat 4.93 (1.01) 4.09 (1.48) 5.34 (0.66) 5.31 (1.19)* Altitude

gsh (µmol/mg 
protein) 

1.74 (0.33)+ 1.36 (0.42) 1.21 (0.34)* 1.26 (0.21) Altitude. 
Maturation and 
Interaction

Thiol (nM/mg 
protein)

0.012 (0.003) 0.011 (0.003) 0.009 (0.002)* 0.01 (0.002) Altitude

sod (mU/mg 
protein)

1.1 (0.7) 0.69 (0.3) 0.67 (0.28) 0.8 (0.41) ---

tas (mmol/L) 1.25 (0.11) 1.22 (0.48) 1.24 (0.07) 1.41 (0.06) ---

Uric Acid (mg/dL) 3.85 (0.7)+ 5.34 (0.61) 4.07 (0.77)+ 5.66 (0.56) Maturation

Carbonyl groups 
(µmol/mL)

1.78 (0.91) 1.55 (0.92) 3.22 (0.8)* 2.56 (1.11)* Altitude

mda+hne (nM/mg 
protein)

2.9 (1.57) 2.61 (1) 4.82 (2.25)* 3.73 (0.81) Altitude

la: low altitude (900 masl); ma: moderate altitude (2600 masl); tas: Total antioxidant status; gsh: reduced glutathione; cat: catalase; sod: 
superoxide dismutase; mda: malondialdehyde; hne: 4-hydroxy-trans-2-nonenal.

Note. Data are expressed as mean (standard deviation). Main effect for altitude indicates a difference (p < 0.05) between ma and la. Main 
effect for maturation indicates a difference (p < 0.05) between adolescents and preadolescents.

Pairwise comparisons: * indicates p < 0.05 for corresponding preadolescents or adolescent group from la.

+ indicates p < 0.05 for adolescents from the same altitude.

Maturation affected gsh (p = 0.01) and uric acid (p < 0.001) levels). gsh levels in pread-

olescents living at la were higher than those in adolescents; the opposite was observed in 

residents at ma, where preadolescents had lower levels of gsh (Table 2). Uric acid levels were 

higher in adolescents than in preadolescents at both ma and la.

Only gsh levels were significantly affected by an interaction between maturation and 

altitude (p = 0.037); the ma groups showed lower values. cat, plasma thiol, tas, and uric acid 

levels were not affected by the interaction between maturation and altitude of residence.

Correlations between age and oxidative status parameters revealed only a moderately 

positive association between tac and age (ρ = 0.371) and uric acid and age (ρ = 0.679). No 

significant correlations were found among the other variables analyzed (data not shown).

However, altitude significantly affected levels of oxidative damage biomarkers (p = 0.004) 

(Table 2). The ma group showed significantly higher mda+hne and carbonyl groups compared 

to the la group (Figure 2). No significant differences were found in oxidation biomarkers to 

either lipids or proteins between adolescents and preadolescents. There was no significant 

interaction between maturation and altitude.
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Figure 2. Oxidative stress biomarkers in preadolescents and adolescents at each altitude
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Neither altitude, maturation, nor their combination affected the plasma cytokine profile (Table 3). Neither cytokines and antioxidants 
nor cytokines and oxidative damage biomarkers strongly correlated with each other (data not shown).

Table 3. Comparison of cytokine profile variables in adolescents and preadolescents at moderate and low altitude

 

la ma

Preadolescents Adolescents Preadolescents Adolescents

tnf-α (pg/mL) 2.49 (0.98) 2.34 (1.03) 2.4 (0.88) 2.46 (0.83)

C-reactive protein (mg/L) 0.5 (0.4) 0.7 (0.4) 3 (4.6) 0.9 (1.3)

il-1 (pg/mL) 0.51 (0.24) 0.54 (0.33) 0.55 (0.33) 0.28 (0.16)

il-6 (pg/mL) 2.45 (2.26) 2.93 (2.69) 3.25 (2.3) 1.63 (1.08)

il-10 (pg/mL) 0.42 (0.31) 0.6 (0.55) 0.78 (0.73) 0.49 (0.32)

tnf-α: tumor necrosis factor alpha; il-1: interleukin-1; il-6: interleukin-6; il-10: interleukin-10. Data are shown as mean (standard 
deviation).
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Discussion

Several studies have investigated how high altitude (>3500 mas) hypoxia affects oxidative 

stress in adult populations (9,20–22). However, both ma (2000–3000 masl) and younger 

populations are often neglected. Here, we explored how living at ma affects the redox pro-

files of children and adolescents. We found that children and adolescents who live at ma 

present lower levels of plasma gsh and higher levels of oxidative stress biomarkers. This 

suggests that chronic exposure to ma during growth and development disrupts the redox 

balance, which may warrant lifestyle interventions such as diet and exercise to replenish 

antioxidants.

At high altitude, hypoxia triggers a cascade of signals that can generate ros, whose physio-

logical consequences remain unclear but may induce a hormetic response. On one hand, 

ros transduce signals and preserve cellular O2 homeostasis by enabling lifelong adaptations 

to higher altitude (8). However, if produced in excess, ros may amplify oxidative damage 

(15) that reduces muscle function and capillary perfusion, induces endothelial dysfunction, 

and contributes to the onset of altitude-related diseases (8). The antioxidant system aims to 

balance this redox state.

The impact of high altitude on the oxidative profiles of humans living permanently or 

intermittingly under such conditions has been evaluated (9,20) However, many people live 

at ma, whose impact on redox balance in children and adolescents remains largely unchar-

acterized (21-23). Puberty is a period of rapid growth, development, and maturation and 

increased anabolic and hormonal activity (24). ros-activated transduction signals mediate 

much of this activity (11). Therefore, this population may respond to altitude-induced stress 

differently from adults.

The antioxidant profiles of individuals acclimatized to high altitude differ across studies; 

some authors reported low levels of antioxidants following different acclimatization protocols, 

but others conclude that antioxidant systems adapt to and benefit from life at high altitude 

(3,10,22,25,26). The latter attributed their findings to molecular mechanisms, particularly 

the signaling cascades activated by the same ros produced by acute exposure at altitude (26). 

Duration of residence seems to have an influence: Janocha et al. found that high-altitude 

residents whose family history spans several millennia of long-term residence at high altitude 

develop higher defenses than those who descend from populations with only multiple or 

single generations of residence (9). In the present study, the ma group showed lower levels of 

some antioxidants, namely thiol groups and gsh. Thiol groups include amino acids (cysteine), 

some proteins (thioredoxin), and dipeptide gsh, which is the most abundant antioxidant in 

cells (27). Other studies measured lower levels of gsh at altitude, where hypoxia may disrupt 

the γ-glutamyl cycle (25). The lower levels of gsh measured in our study may be attributed to 

hypoxia producing large amounts of ros that consume gsh and other thiol groups (27).
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The oxidative statuses of native Andean adults living at 4000 masl and schoolchildren 

living at 2500 masl in the Guatemalan Highlands have adapted to their environments (28); 

the levels of antioxidants (retinol, tocopherols, β-carotene and coenzymes Q9 and Q10) were 

balanced with those of oxidative stress biomarkers (F2-isoprostanes and 8-hydroxy-de-

oxy-guanosine) (29). However, this study did not include lowlanders, and the population was 

younger (2–7-year-old children) than in our study, which hinders comparisons.

We also analyzed the enzymatic antioxidants sod and cat. How hypobaric hypoxia affects 

these enzymatic systems is debated, but several studies of the Andean region indicated their 

lower capacity. Native Bolivian adults exposed to high altitude showed lower levels of cat 

but higher sod, and adult residents in Huaraz, Peru (3098 masl) showed lower levels of sod 

compared to residents at sea level (30). Imai et al. also reported lower antioxidant capacity 

in an Andean population compared to residents at sea level and attributed this difference to 

lower levels in glutathione peroxidase (gpx) activity (28). Yet our study found no difference 

in levels of sod and higher levels of cat.

Previous studies have measured lower levels of antioxidants in children compared to 

adolescents, suggesting that the antioxidant response matures with age (31). Enzymatic 

systems may not be fully developed in children and adolescents (32). Children and adoles-

cents undergo significant metabolic and physiological changes due to growth and biological 

maturation that can increase ros production, which may be accompanied by oxidative stress 

if levels of endogenous antioxidants are insufficient (14,23,33). Indeed, antioxidant levels 

negatively correlate with markers of oxidative damage in adolescents and preadolescents 

(31). Our study found significantly higher levels of tas and uric acid in adolescents compared 

to preteens as well as a positive correlation between age and levels of these antioxidants 

regardless of altitude level. Thus, antioxidant capacity may increase with maturation.

The antioxidant levels in the ma population were seemingly insufficient because they 

were accompanied by higher levels of oxidative damage biomarkers. This is likely related to 

higher ros production that cannot be balanced by the antioxidant systems. Altitude greater 

than 2000 masl poses several stress factors: hypoxia, ionizing radiation (infrared and ultra-

violet), and cold climates. Each factor can independently increase ros production; their com-

bination together with biological maturation amplifies the oxidizing effect (30). Accordingly, 

we measured elevated biomarkers of oxidative damage to both lipids and proteins in the 

moderate-altitude population. Lipids are the first molecules that are susceptible to oxida-

tion; reduced O2 levels induce the mitochondrial respiratory chain to increase production 

of ros and therefore the activity of xanthine oxidase, which causes lipid peroxidation in cell 

membranes (34). Peroxidation of polyunsaturated fatty acids produces mda, whose levels are 

higher in adult residents at high altitude as well as in animal models of hypobaric hypoxia 

(21,30,35). 4-hne is another important signaling molecule that can form covalent adducts with 

dna, phospholipids, and nucleophilic amino acids, impairing their structure and biological 
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properties (36). Our study supports these findings because we measured higher levels of 

protein carbonyls in children and adolescents exposed to ma.

These results suggest that children and adolescents who live in hypoxic environments 

lack the adaptive mechanisms of their adult counterparts. The higher levels of carbonyls and 

lipid peroxidation biomarkers observed at ma in our study could be attributed to both hypoxia 

and the physiological modifications of peripuberal period. Philips and coworkers reported 

higher levels of oxidative stress in individuals younger than 20 years old compared to adult 

subjects (11). Some factors, however, can bolster antioxidant defense systems: Vitamins A, C, 

and E as well as carotenoids are important dietary nutrients that counteract oxidative stress 

caused by pro-oxidant like hypoxia to maintain or favor redox balance (37–39). Although none 

of the participants in this study appeared malnourished according to medical examination 

and anthropometric characteristics, their dietary patterns and levels of exogenous antioxi-

dants should be monitored. Whether antioxidant supplements are beneficial at high altitude 

also remains controversial (40). In this study, vo2 max, an indicator of cardiorespiratory 

fitness, did not differ across groups, which suggested that levels of physical activity did not 

contribute to differences in oxidative profiles. Future studies should include children who 

are more physically active in the same settings because the antioxidant systems in children 

and adolescents exhibit benefit from exercise (41). How exercise affects redox balance in 

children and adolescents who live at ma remains unknown.

Many studies have associated oxidative stress with inflammation. A systemic inflamma-

tory response produces greater amounts of cytokines in the blood in response to hypoxia, 

which activates tissue damage-repair mechanisms mediated by the coactivation of immune 

and endothelial cells (42). Indeed, acute exposures to altitude can induce chronic responses 

(43). Other factors such as training can influence this inflammatory response (3). However, 

cytokines and oxidative stress markers were not correlated in the young population we 

studied. This suggests that pro-oxidants in younger individuals who live at altitude do not 

trigger inflammatory responses, which may indicate a better adaptation. This supports a study 

on schoolchildren living at ma, whose levels of pro- and antiinflammatory cytokines were 

correlated and suggested an adaptation that protects against inflammation at altitude (29).

In this study, moderate altitudinal hypoxia disrupted the redox balance in male chil-

dren and adolescents. This could be due to lower antioxidant levels, higher ros production, 

and active metabolism during growth and development. We evaluated only male subjects 

because it was impossible to test hormonal parameters, which could interfere with the study. 

However, future work should include female subjects to determine if gender also plays a 

role. A larger sample size would also help elucidate the varied responses to oxidative stress 

among children and adolescents. Finally, our data introduce the opportunity to perform an 
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intervention study to determine if antioxidants or sport counteract altitude-induced oxidative 

stress in young populations.

Acknowledgments

We thank the following institutions and entities for their support in enrolling partici-

pants and allowing our access to facilities: Unidad Central del Valle, Tuluá, Colombia; 

Unit of Applied Sciences to Sports (ucad) of the District Institute of Recreation and Sports 

(idrd), Bogotá, Colombia; Laboratory of Doping Control, Bogotá, Colombia; School Instituto 

Pedagógico Arturo Ramirez Montufar of Universidad Nacional de Colombia, Bogotá, 

Colombia.

Author contributions

Diana Marcela Ramos-Caballero, Erica Mancera-Soto, José Magalhães, and Edgar Cristancho-

Mejía designed the study and recruited and measured volunteers. Pilar Rodríguez-

Rodríguez, Silvia M. Arribas, and Sandra Martins processed and analyzed samples. All 

authors analyzed data and wrote the manuscript. All authors read and approved the man-

uscript. All persons designated as authors qualify for authorship, and all who qualify for 

authorship are listed.

Funding

This research was supported by Red iberoamericana de Medicina y Fisiología de altura 

(cyted; 213-rt0478 to Edgar Cristancho, José Magalhaes, and Silvia M. Arribas) and inter-

nal sources from Universidad Nacional de Colombia (Edgar Cristancho), Universidade do 

Porto (José Magalhaes); Universidad Autónoma de Madrid (Silvia M. Arribas).

Conflict of interests

None declared.



Effect of Chronic Altitude Hypoxia on Redox Balance in Preadolescents and Adolescents

14
Rev. Cienc. Salud. Bogotá, Colombia, vol. 20(3): 1-16, septiembre-diciembre de 2022

References
1. Lichtenberg D, Pinchuk I. Oxidative stress, the term and the concept. Biochem Biophys 

Res Commun. 2015;461(3):441-4. https://doi.org/10.1016/j.bbrc.2015.04.062

2. Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of 
hypoxia. Redox Biol. 2017;12:208-15. https://doi.org/10.1016/j.redox.2017.02.012

3. McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. 
Free Radic Biol Med 2018;125:15-24. https://doi.org/10.1016/j.freeradbiomed.2018.03.042

4. Pillon Barcelos R, Freire Royes LF, Gonzalez-Gallego J, Bresciani G. Oxidative stress and 
inflammation: liver responses and adaptations to acute and regular exercise. Free Radic 
Res. 2017;51(2):222-36. doi: 10.1080/10715762.2017.1291942

5. Stöwhas AC, Latshang TD, Lo Cascio CML, Lautwein S, Stadelmann K, Tesler N, et al. 
Effects of acute exposure to moderate altitude on vascular function, metabolism and 
systemic inflammation. PLoS ONE. 2013;8(8):e70081. https://doi.org/10.1371/journal.
pone.0070081

6. Brothers MD, Doan BK, Zupan MF, Wile AL, Wilber RL, Byrnes WC. Hematological and 
physiological adaptations following 46 weeks of moderate altitude residence. High Alt 
Med Biol. 2010;11(3):199-208. https://doi.org/10.1089/ham.2009.1090

7. dane/Colombia. Censo nacional de población y vivienda (cnpv); 2018 [cited 2020 Dec 18]. 
Available from: http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata

8. Bailey DM. Oxygen, evolution and redox signalling in the human brain; quantum in the 
quotidian. J Physiol. 2019;597(1):15-28. https://doi.org/10.1113/JP276814

9. Janocha AJ, Comhair SAA, Basnyat B, Neupane M, Gebremedhin A, Khan A, et al. 
Antioxidant defense and oxidative damage vary widely among high-altitude residents. 
Am J Hum Biol. 2017;29(6). https://doi.org/10.1002/ajhb.23039

10. Magalhães J, Ascensão A, Marques F, Soares JM, Ferreira R, Neuparth MJ, et al. Effect of a 
high-altitude expedition to a Himalayan peak (Pumori, 7,161 m) on plasma and erythro-
cyte antioxidant profile. Eur J Appl Physiol. 2005;93(5-6):726-32. https://doi.org/10.1007/
s00421-004-1222-2

11. Phillips M, Cataneo RN, Greenberg J, Gunawardena R, Rahbari-Oskoui F. Increased oxi-
dative stress in younger as well as in older humans. Clin Chim Acta. 2003;328(1-2):83-6. 
https://doi.org/10.1016/S0009-8981(02)00380-7

12. Kogawa T, Nishimura M, Kurauchi S, Kashiwakura I. Characteristics of reactive ox-
ygen metabolites in serum of early teenagers in Japan. Environ Health Prev Med. 
2012;17(5):364-70. https://doi.org/10.1007/s12199-011-0261-7

13. Granot E, Kohen R. Oxidative stress in childhood--in health and disease states. Clin Nutr. 
2004;23(1):3-11. https://doi.org/10.1016/S0261-5614(03)00097-9

14. Pérez-Navero JL, Benítez-Sillero JD, Gil-Campos M, Guillén-del Castillo M, Tasset I, 
Túnez I. Changes in oxidative stress biomarkers induced by puberty. An Pediatr (Barc). 
2009;70(5):424-8. https://doi.org/10.1016/j.anpedi.2009.01.019

15. Tsukahara H. Biomarkers for oxidative stress: clinical application in pediatric medicine. 
Curr Med Chem. 2007;14(3):339-51. https://doi.org/10.2174/092986707779941177

https://doi.org/10.1016/j.bbrc.2015.04.062
https://doi.org/10.1016/j.redox.2017.02.012
https://doi.org/10.1016/j.freeradbiomed.2018.03.042
https://doi.org/10.1371/journal.pone.0070081
https://doi.org/10.1371/journal.pone.0070081
https://doi.org/10.1089/ham.2009.1090
http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata
https://doi.org/10.1113/JP276814
https://doi.org/10.1002/ajhb.23039
https://doi.org/10.1007/s00421-004-1222-2
https://doi.org/10.1007/s00421-004-1222-2
https://doi.org/10.1016/S0009-8981(02)00380-7
https://doi.org/10.1007/s12199-011-0261-7
https://doi.org/10.1016/S0261-5614(03)00097-9
https://doi.org/10.1016/j.anpedi.2009.01.019
https://doi.org/10.2174/092986707779941177


Effect of Chronic Altitude Hypoxia on Redox Balance in Preadolescents and Adolescents

15
Rev. Cienc. Salud. Bogotá, Colombia, vol. 20(3): 1-16, septiembre-diciembre de 2022

16. Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sick-
ness. Scand J Med Sci Sports. 2008;18;Suppl 1:1-10. https://doi.org/10.1111/j.1600-
0838.2008.00827.x

17. Tanner JM. The measurement of maturity. Trans Eur Orthod Soc. 1975:45-60.

18. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. 
Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 
1988;60(5):709-23.

19. Ramiro-Cortijo D, Calle M, Rodríguez-Rodríguez P, Pablo ÁLL, López-Giménez MR, 
Aguilera Y et al. Maternal antioxidant status in early pregnancy and development of 
fetal complications in twin pregnancies: a pilot study. Antioxidants (Basel). 2020;9(4). 
https://doi.org/10.3390/antiox9040269

20. Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology. 
2002;180(2):107-19. https://doi.org/10.1016/s0300-483x(02)00385-2

21. Pomar IGM, Erquicia EB, Colmena LT, Barrera SQ, Vargas PLS. Concentration of malond-
ialdehyde in subjects living at high altitudes: exploratory study. Rev Peru Med Exp Salud 
Publica. 2017;34(4):677-81. https://doi.org/10.17843/rpmesp.2017.344.2830

22. Sinha S, Ray US, Tomar OS, Singh SN. Different adaptation patterns of antioxidant system 
in natives and sojourners at high altitude. Respir Physiol Neurobiol. 2009;167(3):255-60. 
https://doi.org/10.1016/j.resp.2009.05.003

23. Soto-Méndez MJ, Romero-Abal ME, Aguilera CM, Rico MC, Solomons NW, Schümann K, et 
al. Associations among inflammatory biomarkers in the circulating, plasmatic, salivary 
and intraluminal anatomical compartments in apparently healthy preschool children 
from the Western Highlands of Guatemala. Plos One. 2015;10(6):e0129158. https://doi.
org/10.1371/journal.pone.0129158

24. Zalavras A, Fatouros IG, Deli CK, Draganidis D, Theodorou AA, Soulas D, et al. Age-related 
responses in circulating markers of redox status in healthy adolescents and adults during 
the course of a training macrocycle. Oxid Med Cell Longev. 2015;2015:283921. https://
doi.org/10.1155/2015/283921

25. Bakonyi T, Radak Z. High altitude and free radicals. J Sports Sci Med. 2004;3(2):64-9.

26. Magalhães J, Oliveira J, Ascensão A. Oxidative stress in high-altitude hypoxia. Is it truly 
a paradox? Muscle Plast Adv Biochem Physiol Res. 2009:121-50.

27. Oliveira PVS, Laurindo FRM. Implications of plasma thiol redox in disease. Clin Sci 
(Lond). 2018;132(12):1257-80. https://doi.org/10.1042/CS20180157

28. Imai H, Kashiwazaki H, Suzuki T, Kabuto M, Himeno S, Watanabe C, et al. Selenium levels 
and glutathione peroxidase activities in blood in an Andean high-altitude population. J 
Nutr Sci Vitaminol (Tokyo). 1995;41(3):349-61. https://doi.org/10.3177/jnsv.41.349

29. Soto-Méndez MJ, Aguilera CM, Mesa MD, Campaña-Martín L, Martín-Laguna V, Solomons 
NW, et al. Strong associations exist among oxidative stress and antioxidant biomarkers 
in the circulating, cellular and urinary anatomical compartments in Guatemalan chil-
dren from the Western Highlands. Plos One. 2016;11(1). https://doi.org/10.1371/journal.
pone.0146921

https://doi.org/10.1111/j.1600-0838.2008.00827.x
https://doi.org/10.1111/j.1600-0838.2008.00827.x
https://doi.org/10.3390/antiox9040269
https://doi.org/10.1016/s0300-483x(02)00385-2
https://doi.org/10.17843/rpmesp.2017.344.2830
https://doi.org/10.1016/j.resp.2009.05.003
https://doi.org/10.1371/journal.pone.0129158
https://doi.org/10.1371/journal.pone.0129158
https://doi.org/10.1155/2015/283921
https://doi.org/10.1155/2015/283921
https://doi.org/10.1042/CS20180157
https://doi.org/10.3177/jnsv.41.349
https://doi.org/10.1371/journal.pone.0146921
https://doi.org/10.1371/journal.pone.0146921


Effect of Chronic Altitude Hypoxia on Redox Balance in Preadolescents and Adolescents

16
Rev. Cienc. Salud. Bogotá, Colombia, vol. 20(3): 1-16, septiembre-diciembre de 2022

30. Ramón C, Dora J, Villavicencio Villanueva JN. Indicadores de estrés oxidativo en eritroc-
itos de una población de Huaraz; 2013.

31. Paltoglou G, Fatouros IG, Valsamakis G, Schoina M, Avloniti A, Chatzinikolaou A, et al. 
Antioxidation improves in puberty in normal weight and obese boys, in positive associ-
ation with exercise-stimulated growth hormone secretion. Pediatr Res. 2015;78(2):158-
64. https://doi.org/10.1038/pr.2015.85

32. Maciejczyk M, Zalewska A, Ładny JR. Salivary antioxidant barrier, redox status, and ox-
idative damage to proteins and lipids in healthy children, adults, and the elderly. Oxid 
Med Cell Longev. 2019;2019:4393460. https://doi.org/10.1155/2019/4393460

33. Cooper DM, Nemet D, Galassetti P. Exercise, stress, and inflammation in the growing 
child: from the bench to the playground. Curr Opin Pediatr. 2004;16(3):286-92. https://
doi.org/10.1097/01.mop.0000126601.29787.39

34. Prijanti AR, Iswanti FC, Ferdinal F, Jusman SWA, Soegianto RR, Wanandi SI, et al. Hypoxia 
increased malondialdehyde from membrane damages is highly correlated to HIF-1α but 
not to renin expression in rat kidney. IOP Conf Ser Earth Environ Sci. 2019;217:012062. 
https://doi.org/10.1088/1755-1315/217/1/012062

35. Catherine C, Ferdinal F. Effect of chronic systemic hypoxia on malondialdehyde (MDA) 
levels in blood and kidney tissue of Sprague Dawley rats; 2019.

36. Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: 
role of 4-hydroxynonenal (4-hne) and other bioactive lipids in mitochondria. Free Radic 
Biol Med. 2017;111:316-27. https://doi.org/10.1016/j.freeradbiomed.2017.04.363

37. Fang Y-Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 
2002;18(10):872-9. https://doi.org/10.1016/S0899-9007(02)00916-4

38. McLeay Y, Stannard S, Houltham S, Starck C. Dietary thiols in exercise: oxidative stress 
defence, exercise performance, and adaptation. J Int Soc Sports Nutr. 2017;14:12. https://
doi.org/10.1186/s12970-017-0168-9

39. Zanella PB, August PM, Alves FD, Matté C, de Souza CG. Association of Healthy Eating 
Index and oxidative stress in adolescent volleyball athletes and non-athletes. Nutrition. 
2019;60:230-4. https://doi.org/10.1016/j.nut.2018.10.017

40. Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. 
Nutrition and altitude: strategies to enhance adaptation, improve performance and 
maintain health: a narrative review. Sports Med. 2019;49(Suppl 2):169-84. https://doi.
org/10.1007/s40279-019-01159-w

41. Avloniti A, Chatzinikolaou A, Deli CK, Vlachopoulos D, Gracia-Marco L, Leontsini D, et al. 
Exercise-induced oxidative stress responses in the pediatric population. Antioxidants 
(Basel). 2017;6(1). https://doi.org/10.3390/antiox6010006

42. Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, et al. High altitude 
increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive 
protein. Cytokine. 2000;12(3):246-52. https://doi.org/10.1006/cyto.1999.0533

43. Al-Hashem FH, Assiri AS, Shatoor AS, Elrefaey HM, Alessa RM, Alkhateeb MA. Increased 
systemic low-grade inflammation in high altitude native rats mediated by adrenergic 
receptors. Saudi Med J. 2014;35(6):538-46.

https://doi.org/10.1038/pr.2015.85
https://doi.org/10.1155/2019/4393460
https://doi.org/10.1097/01.mop.0000126601.29787.39
https://doi.org/10.1097/01.mop.0000126601.29787.39
https://doi.org/10.1088/1755-1315/217/1/012062
https://doi.org/10.1016/j.freeradbiomed.2017.04.363
https://doi.org/10.1016/S0899-9007(02)00916-4
https://doi.org/10.1186/s12970-017-0168-9
https://doi.org/10.1186/s12970-017-0168-9
https://doi.org/10.1016/j.nut.2018.10.017
https://doi.org/10.1007/s40279-019-01159-w
https://doi.org/10.1007/s40279-019-01159-w
https://doi.org/10.3390/antiox6010006
https://doi.org/10.1006/cyto.1999.0533

