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ABSTRACT 
 
This study evaluated the use of convolutional neural networks (CNN) in agricultural disease recognition, 
specifically for Botrytis fabae symptoms. An experimental bean culture was used to capture images of 
healthy and affected leaflets, which were then used to perform binary classification and severity 
classification tests using several CNN models. The results showed that CNN models achieved high 
accuracy in binary classification, but performance decreased in severity classification due to the 
complexity of the task. InceptionResNet and ResNet101 were the models that performed best in this task. 
The study also utilized the Grad-CAM algorithm to identify the most significant B. fabae symptoms 
recognized by the CNNs. Overall, these findings can be used to develop a smart farming tool for crop 
production support and plant pathology research. 
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RESUMEN 
 

Este estudio evaluó el uso de redes neuronales convolucionales (CNN) en el reconocimiento de 
enfermedades agrícolas, concretamente para los síntomas de Botrytis fabae. Se utilizó un cultivo 
experimental de haba para capturar imágenes de foliolos sanos y afectados, que luego se emplearon para 
realizar pruebas de clasificación binaria y clasificación de gravedad utilizando varios modelos CNN. Los 
resultados mostraron que los modelos CNN alcanzaron una alta precisión en la clasificación binaria, pero 
el rendimiento disminuyó en la clasificación de gravedad debido a la complejidad de la tarea. 
InceptionResNet y ResNet101 fueron los modelos que obtuvieron mejores resultados en esta tarea. El 
estudio también utilizó el algoritmo Grad-CAM para identificar los síntomas más significativos de B. fabae 
reconocidos por las CNN. En general, estos resultados pueden utilizarse para desarrollar una 
herramienta de agricultura inteligente para el apoyo a la producción de cultivos y la investigación en 
patología vegetal. 
  
Palabras clave: Aprendizaje profundo; Botrys fabae Sard; escala de severidad; inteligencia artificial. 

 

INTRODUCTION 
 

The "Chocolate spot" disease caused by the fungus Botrytis fabae Sard. is a significant 

constraint in the worldwide production of broad bean (Vicia faba L.), leading to yield 

losses of up to 100% due to the formation of reddish-brown leaf spots that gradually 

turn into necrotic lesions and reduce photosynthetic activity (ICARDA, 2005; Olle & 

Sooväli, 2020). However, identifying the early symptoms and assessing disease severity 

is challenging for farmers, requiring time-consuming and specialized visual exercises 

that can be subject to cognitive bias (Ateş et al., 2017; Arnal, 2019; Hammad et al., 

2019).In this context, it is difficult to implement efficient prevention and control 

strategies that allow to maintain low levels of disease infestation, plan the application 

of fungicides, reduce costs, and minimize negative effects on the environment (Ateş et 

al., 2017; ICARDA, 2005). 
 

To face this challenge, artificial intelligence techniques together with different neural 

network architectures are reasonable approaches that can be used to automatically 

identify diseases in plants (Hammad et al., 2019; Paymode & Malode, 2022; Yang et al., 

2018).Specifically, the convolutional neural network (CNN) type has been shown to 

flexibly adapt to the complex data configuration from plant health experiments, 

obtaining promising results with valuable application potential (Arnal, 2019; Hammad 

et al., 2019; Liu & Wang, 2021). 
 

Convolutional neural networks, however,  must be particularly trained to the traits of 

each plant species and the symptoms generated by the specific pathogen of interest. 

This implies exhaustive data pre-processing that must be carried out first to later 

identify the models with the best performance for the assigned task. 

 

Therefore, this study was conducted aiming to build and train CNNs to evaluate and 

predict the symptoms caused by B. fabae on V. faba crops, providing decision-making 

tools for both crop production and plant pathology. 
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MATERIAL AND METHODS 
 

Plant material. An experimental crop field was established in Catambuco, at the 

municipality of Pasto (Colombia), at coordinates 01°10'20" N Latitude and 77°16'53" 

W Longitude. Elevation is 2,473 meters above sea level, average temperature is 13°C, 

rainfall is 803mm/year and average relative humidity 82%. 
 

The regional bean varieties "Blanca común," "Roja," and "Alpargata" were grown on an area 

of 900m2 in observation plots with 15 furrows of 10m long separated at 1.2 m and one seed 

per hole was planted at 0.5m. These materials were included in the study due to their 

variability in leaf morphology and allow a heterogeneous response after affectation of B. 

fabae. 
 

Capture of photographs. Healthy and disease-affected leaflets were photographed 

using a 13-megapixel digital camera on a white acrylic background. The photos were 

taken at a vertical angle at an approximate focal length of 20cm. In all photos, the leaves 

occupied more than 30% of the photograph area. 
 

Trial design. The construction of the working sets corresponded to a multiclass 

assignment with four degrees of severity of chocolate spot disease grades 0, 1, 2 and 3 

(Figure 1), using the scale of the International Center for Agricultural Research of Dry 

Areas (ICARDA, 2005). With the help of an expert in phytopathology, the photographic 

records were classified and labeled, obtaining a total of 1200 records. 
 

    

Grade 0 Grade 1 Grade 2 Grade 3 

Figure 1. Scale of severity affection by B. fabae on leaflets of V. faba. 
 

The first trial was made up of a group of photos of healthy leaflets (grade 0) and a 

random sample of leaves with any grade of manifestation of the disease (grades 1, 2 or 

3) represented in Figure 1, both with 300 images. 
 

The second trial corresponded to a multiclass assignment with 300 grade 0 records 

(healthy leaves), 300 grade 1 records (1 - 15% severity), 300 grade 2 records (15 - 30% 

severity) and 300 grade 3 records (> 45% severity), represented in Figure 1. 
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Programming environment. The Python programming language was used in the 

Google Colaboratory environment, which allowed the preprocessing and learning to be 

developed on a virtual computer with 12.72 GB of RAM and GPU. The libraries used 

were cv2, TensorFlow, Matplotlib, Numpy, and Keras. 
 

Preprocessing of digital images. The size of the original images was standardized to a 

dimension of 224 x 224 pixels and three-color channels (RGB). For each of the trials, the 

records were randomly assigned as train (70%), validation (15%), and testing sets (15%). 
 

In addition, to avoid overfitting, the number of records was artificially increased by 

performing random rotations (20°, horizontal-vertical reflection), random displacement 

and a 20% change in the approach range on the photographs (Paymode & Malode, 2022). 
 

Evaluation of CNNs. For both trials, there were six CNN models available in the Keras 

open-source library: a) InceptionV3 with 23.85 million parameters and a depth of 159 

layers (Szegedy et al., 2016b); b) InceptionResNet with 55.87 million parameters and a 

depth of 572 layers (Szegedy et al., 2016a); c) MobileNet with 4.25 million parameters and 

a depth of 88 layers (Howard et al., 2017); d) ResNet101 with 44.70 million parameters 

and a depth of 101 layers (He et al., 2016); e) VGG16 with 138.35 million parameters and 

a depth of 23 layers (Simonyan & Zisserman, 2015); f) Xception with 22.91 million 

parameters and a depth of 126 layers (Chollet, 2017). 
 

In each case, the transfer learning technique was applied, adapting the networks 

previously trained with the ImageNet dataset and finally, fine tuning was applied by 

unfreezing the last block of decisional layers (Arnal, 2019; Liu & Wang, 2021; Paymode & 

Malode, 2022). 
 

A dense layer of 256 parameters and a dropout of 0.6 was added to each model. The 

process was completed with an output layer with Softmax activation. The learning rate 

(α) for both trials started at 2x10-4 with a stochastic gradient descent (SGD) optimizer, 

a cross-entropy loss function, a batch size (β) of 32, and a fixed value of 30 epochs. 
 

Evaluation metrics. The performance of the CNNs was based on the number of true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). From 

these, the following metrics were calculated: 
 

Accuracy: Indicated the fraction of predictions correctly classified. This metric related 

to the estimation bias, Equation 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

F1-Value: Harmonic mean of the accuracy metric and the model sensitivity, Equation 2. 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 
Where: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2) 

Confusion matrix. The precision and accuracy of CNNs and the correct and incorrect 

predictions made by the CNNs in the classification were estimated. The results are stored 

in a table that summarizes the count values broken down by each class; in the columns, the 

actual values are presented, and in the rows, the predicted values. 

 

Heat map. For those CNNs with the highest performance, the classification inference 

was evaluated using the Gradient-weighted Class Activation Mapping algorithm Grad-

CAM (Selvaraju et al., 2020) by generating a location map that highlights the regions 

within the image used for predicting, in this study, the presence and severity of 

chocolate spot symptoms. 

 

The Grad-CAM input corresponded to an image of the test set and the convolutional layer 

of the CNN from which the activation was calculated; areas of greatest importance for 

classification were identified with a heat map (Selvaraju et al., 2020). 

 

RESULTS AND DISCUSION 
 

First trial. The results indicate that the problem of binary classification of disease 

absence or presence in broad bean leaflets was solved. Therefore, this research 

established an automated recognition of the symptoms caused by B. fabae using the six 

CNN models. 
 

In this sense, it was determined that the success of image assignment is due to the 

particularities associated with the deep layers of processing, clustering and 

classification that characterize each CNN, which allowed identifying the presence of the 

pathogen according to the learned weights and which was reflected in the performance 

metrics, summarized in Table 1. 

 

Table 1. Performance of CNNs to identify the absence or presence of disease, first trial. 

 

CNN 
Validation 
loss 

Accuracy  
Training 
loss 

Training 
accuracy 

F1 
Value 

Time 
(min) 

InceptionV3 6.4e-3 97.2% 0.081 100% 0.97 10.75 
InceptionResNet 6.7e-3 100% 0.017 100% 1.00 10.82 
MobilNet 0.020 98.0% 0.206 93.3% 0.97 7.42 
ResNet101 0.010 100% 0.034 98.8% 1.00 10.67 
VGG16 0.116 90.2% 0.109 91.7% 0.92 11.87 
Xception 0.415 87.6% 0.023 99.5% 0.95 14.77 
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ResNet101, InceptionResNet, MobilNet and InceptionV3 were selected based on the 

accuracy and F1 values in validation. These CNNs showed a high proportion of correct 

classifications, sometimes with values up to or close to 100% and 1, respectively. Among 

these, ResNEt101 stood out for incorporating skip connections, where the incoming 

signal in a layer is added to the outcome of one or various layers, generating residual 

learning that prevents loss of information throughout the recognition of the disease 

(Chollet, 2018; Géron, 2019; Türkoğlu & Hanbay, 2019). 

 

Chollet (2018) and Türkoğlu & Hanbay (2019) explain that for related CNNs such as 

InceptionV3 and InceptionResNet, the learning develops based on symmetric and 

asymmetric layers that include stages of convolution and grouping of parallel blocks. 

Furthermore, InceptionResNet integrates residual learning, which has demonstrated 

more stable trainings and higher accuracy in predictions (Szegedy et al, 2016a; Chollet, 

2018). This offers an explanation for the differences found between both CNNs (Table 1). 

 

MobilNet offered a lighter architecture by employing only 3% and 19% of the parameters 

used by other CNNs. This is compensated by using separable convolutions in depth, 

designed to offer an adequate performance under computational limitations (Hammad 

et al., 2019). Table 1 shows the lower weight of this CNN and the computation time 

gained, with accuracies between 30 and 36.2%. 

 

Research by Maeda et al. (2018), Türkoğlu & Hanbay (2019), Hammad et al. (2019), and 

Ouhami et al. (2020) on different horticultural and forest diseases support the results 

obtained here using the four selected CNNs. They report accuracy metrics for validation 

between 85% and 98.1% when discriminating between healthy and diseased leaves. 

However, the difficulty of making rigorous comparisons between studies is evident due 

to the particularities of the plant pathogens, the characteristics of the plant species and 

the hyperparameters used in the CNNs. 

 

We found no evidence of overfitting or underfitting for ResNet101, InceptionResNet, 

MobilNet and InceptionV3, showing that their learning derives in correct 

generalizations of the data. It is shown in Figure 2 and Table 1 that similar performance 

metrics were obtained for train and validation groups with a relatively small variance 

in the successive learning iterations. 

  



Álvarez-Sánchez et al. - CNN for analysis of B. fabae 

 

 

 

 

UNIVERSIDAD DE NARIÑO e-ISSN 2256-2273  Rev. Cienc. Agr. January - April 2023 Volume 40(1): e1198 

   

a) 

 

 

b) 

  

a) first trial and b) second trial. 

 

Figure 2.  Training of CNNs to identify absence or presence of the disease. 
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Conversely, Xception and VGG16 architectures were discarded from this essay for having 

a decrease in validation performance between 9% and 12% compared to other CNNs and 

high fluctuations throughout training (Table 1 and Figure 2). This behavior indicates the 

instability of these CNNs to adapt and model the disease in the leaves (Lozada et al., 2021; 

Maeda et al., 2018). Using these models would increase the rate of false positives or false 

negatives, implying direct consequences for decision-making around disease 

management. This is especially critical because of the development rates of B. fabae 

under favorable environmental conditions. 

 

It has been shown that a temperature between 15 and 22°C and a relative humidity 

above 80% can promote the transition from isolated spots to full necrosis in leaflets 

(Olle & Sooväli, 2020). Under this condition, inaccurate classifications would not allow 

fixed control actions in crops, making CNNs an unfeasible strategy. 

 

It is demonstrated that a CNN cannot be systematized for all training since the metrics 

obtained for one task could not be reflected in other tasks (Ghosal et al., 2018; Liu & 

Wang, 2021). Due to the rigurosity pursued in plant pathology, an infallible 

correspondence between classifications by experts and CNNs is needed to facilitate 

future applications of this technique for crop production and evaluation. 

 

The results of the second trial showed a significant reduction in the performance of 

CNNs when compared to the first trial. This is because it was more difficult to establish 

a learning for the classification of disease symptoms when increasing the number of 

classes. Because of this, only InceptionResNet and ResNet101 (validation accuracy of 

78.2 and 80.3% and F1 values of 0.54 and 0.86, respectively) showed a reasonable 

performance to be selected (Table 2). This behavior ratified the advantages of using 

CNNs that integrate residual learning for binary and multiclass classification tasks, as 

suggested by Chollet (2018), Hammad et al. (2019) and Ouhami et al. (2020). 

 

Table 2. Performance of CNNs to identify severity scales of the disease, second trial. 

 

Model 
Validation 

loss 
Validation 
accuracy 

Training 
loss 

Training 
accuracy 

F1 
value 

Time 
(min) 

InceptionV3 0.560 74.0% 0.697 70.0% 0.63 16.76 

InceptionResNet 0.621 78.2% 0.649 71.7% 0.84 18.00 

MobilNet 0.500 76.2% 0.986 56.5% 0.57 16.41 

ResNet101 0.467 80.3% 0.648 78.8% 0.86 18.76 

VGG16 1.270 40.0% 1.197 49.2% 0.40 18.13 

Xception 0.584 70.6% 0.685 68.9% 0.56 21.98 

 

Regarding MobileNet and VGG16, which previously showed a promising behavior in 

classifying diseased and healthy leaflets, they showed divergence between train and 
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validation sets for this new task, pointing out their incapacity to extract the 

characteristic of interest (Table 2 and Figure 2). This result is possibly related to a lower 

depth of convolutional layers and a higher general stiffness of these architectures, 

which increased errors during prediction. 

 

When employing the confusion matrix, which is considered as a rigorous metric for 

evaluation of multi-class tasks (Lozada et al., 2021), we corroborated the accuracy of 

results from validation and F1 values, which pointed out the evidence about false 

negatives and positives (Figure 3). Most of the CNNs classified leaves correctly in 

extreme degrees of severity (grades 0 and 3) but failed for degrees 1 and 2. 

 

 
 

Figure 3.  Confusion matrix for the test datasets of the second trial. 

 

This behavior has been reported by other researchers, who conclude that the assignation 

of the infection degree of a disease is directly related to the prominence of symptoms in 

the image. This generates confusion in CNNs when the injuries over the leaves are not 

different enough to perform discriminations (Arnal, 2019; Liu & Wang, 2021). 

 

This phenomenon probably worsened because of the small dataset (1.200 registries). 

For example, Ghosal et al. (2018) used 25.000 images to classify soy leaves; Maeda et 

al. (2018) used 3.717, 3.852 and 4.062 images to classify categories of apple, corn, and 

grape crops, respectively; and Ouhami et al. (2020) used 660 images per class to classify 

tomato categories. 
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Additionally, it was evidenced that, despite using a standardized image capture with 

white background and stable light conditions, those images showing shadows, blur, and 

damages other than the target disease caused increased difficulties for CNNs to detect 

the characteristic of interest.  

 

All these results highlight the large potential of high-performance CNN architectures 

and show that when based on different resources, it is possible to fine tune their 

training. This is especially true when increasing the number of images, modifying the 

quantity and shape of hidden layers in the architecture, changing the dimension of input 

images and types of convolutions, and modifying hyperparameters, among others. All 

these factors could increase the stability of CNNs and hence, the confidence in the 

classification results (Chollet, 2018; Géron, 2019; Maeda et al., 2018; Paymode & 

Malode, 2022). 

 

Artificial intelligence offers several advantages over traditional classification methods, 

once the learning process is established its application is scalable, it overrides the bias 

of the researcher and produces diagnostics with enough speed (Ghosal et al., 2018; Liu 

& Wang, 2021). Additionally, this includes the possibility of translating the learning 

process to virtual platforms, smartphones, and unmanned vehicles (Géron, 2019; 

Ghosal et al., 2018). 

 

The results of the research could support the implementation of automated process of 

integrated disease management that, for the agronomical sciences, is based on 

affectation thresholds of the pathogen to establish the application of fungicides. This 

could lead to a reduction in the use of contaminant substances and an increase of crop 

yield due to efficient protection of leaf area. Similarly, this kind of training could be used 

by researchers to gather information on the health response of a crop in real time and 

over large experimental areas. 

 

It is recommended to continue this study under controlled conditions but also to 

expand it to uncontrolled conditions in crop fields to cope with changes in light, type of 

camera, focal distance, lens movement, as well as isolation and overlap of leaflets. These 

points need to be considered to facilitate the transition from an experimental prototype 

to a system of artificial intelligence. 

 

Heat maps. The Grad-CAM algorithm successfully extracted of the map of characteristics 

of the pathogen symptoms over the test registries, showing the areas used by CNNs to 

stablish the classification decision. In other words, it was possible to look at the “black box” 

that represents the intermediate stage between the input of images and the analysis of 

results in the output. This somehow fills the gap of the explanation across how artificial 

vision works (Ghosal et al., 2018; Liu & Wang, 2021; Selvaraju et al., 2020). 
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Figure 4 shows heat maps of CNNs with higher performance InceptionResNet and 

ResNet101 extracted from layers 467 and 101, respectively. Based on those, we noted 

that CNN identified consistent patterns to detect B. fabae disease, bringing 

interpretation to training, which builds confidence in intelligent systems and helps 

advance their applicability (Selvaraju et al., 2020). 

 
 

 
 

Figure 4. Heatmaps of a) ResNet101 and b) InceptionResNet identifyng the symptoms 

of B. fabae. 

 

Typically, changes in hue and texture or repeated shapes within the image are the 

characteristics adopted by the CNN to recognize damage caused by a pathogen (Maeda et al., 

2018; Paymode & Malode, 2022; Yang et al., 2018). This seems to be repeated in this study, 

especially because of the characteristic red color of B. fabae. 

 

They include changes in color, texture or repeated shapes across injuries, which are 

usually reported by literature (Maeda et al., 2018; Paymode & Malode, 2022; Yang et 

al., 2018). 

 

These architectures discarded the white background as an argument over the learning 

process, showing it in blue. The importance of this finding relies on the fact that some 

CNNs use elements of the background or other traits outside the leaf as the main 

characteristic, promoting incorrect learning that increases the classification error 

(Selvaraju et al., 2020). 

 

a)  
 

 

Original image Layer conv5_block3_3_conv Heat map 

b)  
 

Original image Layer conv_7b Heat map 
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These CNNs were capable of recognizing healthy leaves and borders in the image and 

representing them with green colors. Red or yellow colors in between healthy areas 

were identified as B. fabae symptoms (Figure 4). Heat maps also helped to find out that 

the smallest and most dispersed injuries were in some cases ignored, ratifying the 

hypothesis of assignation confusion during the second trial. 

 

As shown over this article, the results demonstrated the potential of CNNs to support 

research on plant pathology by identifying injuries and classifying registries into degrees 

of severity. This is not only important for scientific research but also for applications in 

decision making around crop production and evaluation. 

 

CONCLUSIONS 
 

The results highlight the potential use of InceptionV3, InceptionResNet, MobileNet, and 

ResNet101 CNNs for the classification of V. faba leaves infected with B. fabae under 

controlled conditions, we obtained a successful match of these CNN results with the 

visual diagnosis of an expert. 

 

For the classification of the degree of severity, the architectures with the best behavior 

were InceptionResNet and ResNet101, both candidates to be optimized to scale this 

technique to field conditions. 

 

The Grad-CAM algorithm allowed to establish the inference of classification, evidencing 

the correspondence between the presence of B. fabae in leaves and the regions 

employed by CNNs to generate the learning. 
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