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Abstract
In quantitative electroencephalography, it is of vital 
importance to eliminate non-neural components, as 
these can lead to an erroneous analysis of the ac-
quired signals, limiting their use in diagnosis and 
other clinical applications. In light of this drawback, 
preprocessing pipelines based on the joint use of 
the Wavelet Transform and the Independent Com-
ponent Analysis technique (wICA) were proposed in 
the 2000s. Recently, with the advent of data-driven 
methods, deep learning models were developed for 
the automatic labeling of independent components, 
which constitutes an opportunity for the optimiza-
tion of ICA-based techniques. In this paper, ICLabel, 
one of these deep learning models, was added to the 

wICA methodology in order to explore its improve-
ment. To assess the usefulness of this approach, it 
was compared to different pipelines which feature 
the use of wICA and ICLabel independently and a 
lack thereof. The impact of each pipeline was mea-
sured by its capacity to highlight known statisti-
cal differences between asymptomatic carriers of 
the PSEN-1 E280A mutation and a healthy control 
group. Specifically, the between-group effect size 
and the P-values were calculated to compare the 
pipelines. The results show that using ICLabel for ar-
tifact removal can improve the effect size (ES) and 
that, by leveraging it with wICA, an artifact smooth-
ing approach that is less prone to the loss of neural 
information can be built.
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Resumen
En la electroencefalografía cuantitativa es de vital im-
portancia la eliminación de componentes no neurona-
les, ya que estos pueden conducir a un análisis erróneo 
de las señales adquiridas, limitando su uso al diagnós-
tico y otras aplicaciones clínicas. Dado este inconve-
niente, en la década de 2000 se propusieron flujos de 
preprocesamiento basados   en el uso conjunto de la 
Transformada Wavelet y la técnica de Análisis de Com-
ponentes Independientes (wICA). Recientemente, con 
la llegada de los métodos basados en datos, se desa-
rrollaron modelos de aprendizaje profundo para el eti-
quetado automático de componentes independientes, 
lo que generó una oportunidad para la optimización de 
las técnicas basadas en ICA. En este estudio, se añadió 
ICLabel, uno de estos modelos de aprendizaje profun-
do, a la metodología de wICA para explorar su mejora. 
Para evaluar la utilidad de este enfoque, se comparó 
con diferentes flujos que muestran el uso de wICA e 
ICLabel de forma independiente y en su ausencia. El 
impacto de cada flujo se midió mediante su capacidad 
para resaltar diferencias estadísticas conocidas entre los 
portadores asintomáticos de la mutación PSEN-1 E280A 
y un grupo de control sano. Se calcularon específica-
mente el tamaño del efecto entre grupos y los valores P 
para comparar los flujos. Los resultados muestran que el 
uso de ICLabel para la eliminación de artefactos puede 
mejorar el tamaño del efecto (ES) y que, al aprovecharlo 
con wICA, se puede construir un enfoque de suavizado 
de artefactos menos susceptible a la pérdida de infor-
mación neuronal.
Palabras clave: alzheimer; artefactos; E280A; electroen-
cefalografía; flujos; precuña; preprocesamiento; tama-
ño del efecto; wICA.

Resumo
Na eletroencefalografia quantitativa é de vital impor-
tância a eliminação de componentes não neurais, pois 
estes podem levar a uma análise errônea dos sinais ad-
quiridos, limitando seu uso em diagnósticos e outras 

aplicações clínicas. Diante dessa desvantagem, pipe-
lines de pré-processamento baseados no uso conjun-
to da Transformada Wavelet e da técnica de Análise de 
Componentes Independentes (wICA) foram propostos 
na década de 2000. Recentemente, com o advento dos 
métodos orientados a dados, foram desenvolvidos mo-
delos de aprendizado profundo para rotulagem auto-
mática de componentes independentes, configurando 
uma oportunidade para a otimização de técnicas basea-
das em ICA. Neste artigo, o ICLabel, um desses modelos 
de aprendizado profundo, foi adicionado à metodolo-
gia wICA para explorar sua melhoria. Para avaliar a uti-
lidade dessa abordagem, ela foi comparada a diferentes 
pipelines que exibem o uso de wICA e ICLabel de forma 
independente e sua falta. O impacto de cada pipeline 
foi medido por sua capacidade de destacar diferenças 
estatísticas conhecidas entre portadores assintomáti-
cos da mutação PSEN-1 E280A e um grupo de controle 
saudável. Especificamente, o tamanho do efeito entre 
grupos e os valores P foram calculados para fazer a 
comparação entre os pipelines. Os resultados mostram 
que o uso do ICLabel para remoção de artefatos pode 
melhorar o tamanho do efeito (TE) e que, aproveitando-
-o com o wICA, uma abordagem de suavização de ar-
tefatos menos suscetível à perda de informação neural 
pode ser construída.
Palavras-chaves: Alzheimer; artefatos; E280A; eletroen-
cefalografia; pré-cunha, pré-processamento; tamanho 
do efeito; wICA.

Introduction

Electroencephalography (EEG) is a noninvasive te-
chnique with established clinical applications in 
epilepsy and potential applications in other con-
ditions (Chen et al., 2020; Jadah, 2020; Lee et al., 
2020). It is a low-cost, portable alternative and 
has become an appropriate tool to explore new 
diagnostic tests and research applications. This 
technique could provide accurate information to 
understand the current state of neurological con-
ditions such as Alzheimer’s disease (Maestú et al., 
2019). Furthermore, it allows the researcher to ob-
tain a representation of electrophysiological brain 



Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings

Zapata-Saldarriaga, l. M., VargaS-Serna, a. d., gil-gutiérreZ, J., Mantilla-raMoS, Y. J. Y ochoa-góMeZ, J. F.

Revista Científica • ISSN 0124-2253 • e-ISSN 2344-8350 • enero-abril 2023 • Bogotá-Colombia • N. 46(1) • pp. 61-76
[ 63 ]

It is possible to perform a manual inspection 
to classify the sources obtained by the ICA me-
thod. However, this can be a tedious task since 
the independent components (ICs) do not have a 
particular order or clearly defined interpretations. 
Recently, with the advent of data-driven methods, 
machine learning models were developed for the 
automatic labelling of ICs, which constitutes an 
opportunity for the optimization of ICA-based te-
chniques. One of the most popular implemen-
tations of this is ICLabel, a deep learning model 
trained on over 200 000 ICs (Pion-Tonachini et 
al., 2019). This classifier allows categorizing ICs 
into seven classes: brain, muscle, eye, heart, line 
noise, channel noise, and ‘others’. The classifica-
tion is based on features such as scalp topogra-
phy measurements and power spectral densities 
(PSD). Other approaches have been developed, 
such as the work carried out by Lee et al. (2020), 
who implemented a Bayesian deep learning clas-
sifier, albeit trained on a considerably smaller 
dataset.

Although ICA can be used to separate neural 
components from artifactual sources, and ICLabel 
delivers the labels of each of the sources, an opti-
mized technique is needed to perform an adequate 
cleaning of the signal. This is because the ICA tech-
nique operates in the time domain, and, as some 
sources are in a very narrow frequency range, the 
separation is not perfect, which can lead to neural 
information being misclassified. One of the dan-
gers of this misclassification is that, when the re-
searcher eliminates one of the sources according 
to a mistaken label, he/she may be eliminating re-
presentative data of the EEG signal. This drawback 
can be avoided by performing a frequency-domain 
analysis with approaches such as wavelet analy-
sis, a time-frequency technique that can be used 
to perform isolated denoising of the components 
delivered by ICA, thus avoiding the loss of infor-
mation. Many methodologies combining ICA and 
wavelet analysis (wICA) have been developed. In 
particular, Castellanos and Makarov (2006) deve-
loped a simple and automated technique based on 

activity with a high temporal resolution (He et al., 
2018). However, one of the limitations for the cli-
nical use of EEG is the amount of noise, which im-
pedes clear findings.

The EEG signal contains a large amount of noi-
se from both internal and external sources, such 
as eye blinking, muscular activity, and the electri-
cal line frequency (Fabietti et al., 2020). As a re-
sult, the preprocessing stage has become vital, as 
it increases the quality of the final data. Among the 
commonly used preprocessing stages that allow 
the researcher to achieve an optimal signal-to-noi-
se ratio are line noise removal, the detection and 
interpolation of bad channels, epoch segmentation 
to ensure the assumption of quasi-stationarity, the 
elimination of defective EEG epochs, and the re-
moval of physiological artifacts (Bigdely-Shamlo et 
al., 2015; Kim et al., 2019; Suárez-Revelo et al., 
2016). Different studies show that preprocessing 
EEG signals has a big impact on the final results 
(Vajravelu et al., 2021; Pedroni et al., 2019). The-
refore, it is necessary to find ways to identify and 
separate the different sources of noise in order to 
obtain a clean EEG signal for subsequent analyses 
(Jiang et al., 2019; Kaur et al., 2020). 

One way to extract different neural sources in 
an EEG signal is the method known as indepen-
dent component analysis (ICA), introduced in the 
1990s to solve the problems associated with blind 
source separation (Sintra, 1992). This technique 
decomposes the multichannel EEG into maxima-
lly independent processes related to brain activity 
or artifacts. In EEG processing, ICA has positioned 
itself as one of the main techniques for artifact co-
rrection, and research continues to be done in or-
der to optimize the procedure. For example, Klug 
and Gramann (2020) recently pinpointed that the 
high-pass filter frequency cut-off must be adjusted 
differently depending on whether the EEG was ac-
quired on a mobile or stationary setting. Moreo-
ver, obtaining an optimal ICA decomposition is 
important not only for artifact correction, but also 
for analyzing information from the neural point of 
view (Wessel, 2018).



Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings

Zapata-Saldarriaga, l. M., VargaS-Serna, a. d., gil-gutiérreZ, J., Mantilla-raMoS, Y. J. Y ochoa-góMeZ, J. F.

Revista Científica • ISSN 0124-2253 • e-ISSN 2344-8350 • enero-abril 2023 • Bogotá-Colombia • N. 46(1) • pp. 61-76
[ 64 ]

wavelet-thresholding for the identification of arti-
fact-contaminated epochs.

This paper aims to explore a new preprocessing 
pipeline based on the combined use of the wICA 
and ICLabel techniques. This approach is compared 
to other pipelines that showcase the independent 
use of both tools and a lack thereof. Comparing 
the preprocessing pipelines in terms of their effec-
tiveness for artifact correction is ideal. However, 
this would imply having a ground truth for clean 
signals. Therefore, the comparison is performed by 
evaluating each pipelines’ impact on the statisti-
cal discrimination capacity between two groups 
known to be statistically different: asymptomatic 
subjects carrying the PSEN1-E280A mutation and 
healthy non-carriers, as reported by Duque-Graja-
les et al. (2014) and Ochoa et al. (2017). This mu-
tation is involved in the production of amyloid-β, 
altering the gene of the Presenilin-1, and causes an 
early onset familial Alzheimer’s disease.

The paper is organized as follows: the methodo-
logy section describes the EEG dataset to be used, 
the preprocessing pipelines explored, and how 
the comparisons are carried out. The results sec-
tion shows the values obtained for each of the pi-
pelines from various perspectives. Finally, the last 
two sections discuss and draw conclusions from 
the results.

Methodology 

EEG Dataset

EEG data were recorded from 58 electrodes with a 
midline reference and a sampling rate of 250 Hz, 
following the international 10-10 standard. The 
EEG records correspond to two distinct groups. The 
first group (ACr) consisted of 22 subjects carrying 
the PSEN1-E280A mutation of the Colombian fa-
mily. These participants were between 20 and 45 
years old and do not have cognitive impairment. 
The second group (Ctrl-1) comprised 18 subjects 
from the PSEN1 kindred, but they do not carry 
the E280A mutation, nor do they have cognitive 

symptoms or memory complaints. They were be-
tween 20 and 59 years old (Ochoa et al., 2017). 
These groups were previously shown to be statisti-
cally different regarding their resting-state relative 
power at the alpha-2 and theta bands (Ochoa et 
al., 2017; Duque-Grajales et al., 2014). 

Preprocessing Pipelines

Based on the pipeline approaches proposed by 
Suárez-Revelo et al. (2016), four similar automated 
preprocessing lines were explored using the FastICA 
implementation of the Scikit-learn library and the 
EEGLAB toolbox (Iversen and Makeig, 2019). Here, 
a common stage is first applied, based on the PREP 
pipeline (Bigdely-Shamlo et al., 2015), which perfor-
ms line-noise removal, robust referencing, and faulty 
channel interpolation. Moreover, this stage includes 
a 1 Hz high-pass filter (FIR filter with zero phase sinc 
using a Hamming window, order = 3300, transition 
bandwidth = 1 Hz) in order to remove the low-fre-
quency trends of the signal, as it is well-known that 
ICA is sensitive to them (Winkler et al., 2015). 

The next step in some of the preprocessing pi-
pelines is to apply the FastICA algorithm in order 
to obtain the independent components needed for 
the wICA and the ICLabel algorithms. In essen-
ce, the ICA algorithm outputs two matrices as so-
lutions to the separation problem: the mixing and 
the unmixing matrices. Once these solutions are 
available, the EEG signal is transformed from sen-
sor space to source space via matrix multiplica-
tion. The sources are obtained by ‘unmixing’ the 
EEG data, which is accomplished by multiplying it 
by the unmixing matrix. Similarly, to mix the data, 
the sources are multiplied by the mixing matrix. It 
is important to note that, in order to solve the se-
paration problem through ICA, it is necessary to 
define the number of sources that are expected to 
be mixed in the EEG data. Naturally, the real va-
lue of this number is unknown, but, by setting it to 
the rank of the EEG data matrix, one can still ob-
tain physiologically meaningful sources. This is the 
approach used in this paper.
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The overall goal of this work is to assess the in-
fluence of the mentioned algorithms on the EEG 
recordings. In this sense, four pipelines, as shown 
in Figure 1, are evaluated in order to characterize 
their impact in the between-group effect size ob-
tained from contrasting the relative powers of the 
EEG bands. The following EEG frequency bands 
were used: delta (1.5-6 Hz), theta (6-8.5Hz), al-
pha 1 (8.5-10.5 Hz), alpha 2 (10.5-12.5 Hz), beta 
1 (12.5-18.5 Hz), beta 2 (18.5-21 Hz), beta 3 (21-
30 Hz), and gamma (30-45 Hz).

As shown in Figure 1, the pipelines are imple-
mented in the following steps: 

Pipeline 1. Here, only the common stage 1 is 
applied, along with segmentation into 5 s epochs. 
Small-time windows hinder the quantification of 
slow rhythms (1.5 Hz lower delta limit in our case). 
Similarly, in large windows, the signal may no lon-
ger be stationary. 12 s are considered to be the sta-
tionarity upper limit, as suggested by B. A. Cohen 
and Sances (1977). Thus, choosing 5 s constitutes 
a midpoint that is short enough to assume statio-
narity and simultaneously allows for at least seven 
cycles of our lowest frequency of interest.

Pipeline 2. Following the common stage 1, 
an ICA decomposition is obtained through Fas-
tICA. Subsequently, the wICA algorithm is imple-
mented as suggested by Castellanos and Makarov 
(2006). It consists of wavelet-thresholding not 

the observed EEG, but the de-mixed indepen-
dent components. Specifically, a discrete wavelet 
transform is applied to the independent compo-
nents, which is based on the Daubechies 6 mo-
ther wavelet, following the conclusions of Salis et 
al. (2013). Nevertheless, much has been discus-
sed about which wavelet function is best for EEG 
denoising (see, among others, Lema-Condo et 
al., 2017; Mamun et al., 2013). For the threshol-
ding, the universal fixed form relation proposed 
by Donoho and Johnstone (1992) is used. After 
the wICA correction is done, the signal is trans-
formed back into sensor space in order to obtain 
the denoised EEG.

Pipeline 3. After the common stage 1, indepen-
dent components are found through the FastICA 
algorithm and are afterwards classified using the 
ICLabel tool into one of the following classes: ocu-
lar, muscular, cardiac, neuronal, line noise, chan-
nel noise, and others. In this case, only the neural 
components were retained for EEG reconstruction.

Pipeline 4. Once the common stage 1 has been 
applied and the components have been classified, 
the segmentation of the signal is implemented, fo-
llowing the same methodology described for pipe-
line 2, but with wICA being applied only to those 
components labeled by the ICLabel model as ocu-
lar, muscular, cardiac, line noise, channel noise, 
and others.

Figure 1. Summary of EEG preprocessing pipelines. The solid line represents an independent workflow for each 
pipeline. The dotted line represents an internal workflow. Common stage 1 corresponds to the PREP pipeline with a 

1 Hz high-pass FIR filter. Common stage 2 corresponds to a 50 Hz low-pass FIR filter.
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Finally, a 50 Hz low-pass filter (FIR filter with 
zero phase sinc, with Hamming window, order = 
264, transition, bandwidth = 12.5 Hz) is applied in 
all pipelines. This filter is applied because the main 
feature of this study is the power of the resting-state 
EEG signal, which is between 0.5 and 45 Hz (Ba-
biloni et al., 2020). This filter is not applied prior 
to the ICA procedure, as high-frequency informa-
tion may be relevant to the separation of sources. 
After the preprocessing pipelines is complete, the 
relative power is obtained by estimating the power 
spectral density using the multitaper technique 
(Thomson, 1982). This spectrum is then divided 
into the EEG bands for study, and, finally, each 
band is normalized with respect to the total power 
of the spectrum. The obtained relative powers can 
be interpreted as the percentage of power that each 
band contributes with respect to the total power 
spectrum (Suárez-Revelo et al., 2016).

Comparisons Between Groups 

A single dataset was used to assess the impact of 
each of the preprocessing pipelines studied on the 
between-group effect size (ES) by using the Hed-
gesg test and a non-parametric T-test. To evaluate 
the ES, the Hedgesg test provides information on 
the differences between the comparison groups 
in terms of standard deviations (J. Cohen, 1988). 
The rule of thumb used for interpretation consists 
of labeling ESs around 0.50 as ‘medium’ and those 
around or above 0.80 as ‘large’ (J. Cohen, 1988). 
On the other hand, the Bramila test is a ‘non-pa-
rametric’' two-sample T-test that, instead of relying 
on the t-distribution, uses permutations of group 
labels to estimate the null distribution (Glerean, 
2015). Relative power among the frequency bands 
was calculated by focusing on four regions of inte-
rest (ROIs), as shown in Figure 2A: frontal, tempo-
ral, central, and parietal-occipital (Babiloni et al., 
2020).

In addition to the ROIs, one of the independent 
components found by Ochoa et al., (2017a) (Figu-
re 2B) was evaluated. This component is associated 

by the author to the precuneus region. Hereafter, 
it is labeled as the ‘precuneus component’ (PC). 
Moreover, the ratio between the theta and alpha-2 
powers is also explored, as it was selected by 
Ochoa et al. (2017a) as an index to track changes 
in the E280A population and was able to success-
fully discriminate between the two groups explo-
red: asymptomatic carriers and healthy controls.

Figure 2. A) Schematic picture of the 10-10 electrode 
system and the ROIs generated: F: frontal, T: temporal, 

C: central, PO: parietal-occipital. B) Precuneus 
component topography.

The ES is presented for each pipeline and each 
ROI (including the PC), with this value being the 
main comparison metric between pipelines. As the 
main interest is to validate pipelines, focus is pla-
ced on the bands that have already shown statisti-
cally significant differences between groups, such 
as theta (Ө), alpha-2 (α2), and their ratio (Ө/α2) 
(Duque-Grajales et al., 2014; Ochoa et al., 2017). 
The above implies having an ES for each of the 
bands studied, which complicates the compari-
son. To solve this problem, the results are aggre-
gated into a single score (‘ES Score’) defined as the 
cumulative sum of the absolute values of each of 
the effect sizes of a pipeline along the evaluated 
bands:

                                                               
(1)

As suggested by the Equation, for the pipeline 
i, the absolute values of the effect sizes are aggre-
gated along the studied bands (subindex j). Thus, 
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the proposed ES Score reflects the accumulated ES 
of all the bands for a given pipeline with a single 
number. The larger the ES Score for a given pipeli-
ne, the greater the ES for that pipeline along the ex-
plored bands (although not necessarily in the same 
proportion for each one).

Results

The relative power graphs obtained for each of the 
defined regions (ROIs) are presented below (Figu-
re 3) by applying the different pipelines to two di-
fferent study groups (ACr and Ctrl-1) for each EEG 
band. In the delta (δ), theta (Ө), alpha-1 (α1), and 

beta-2 (β2) bands, the Ctrl-1 group shows an in-
crease in relative power with respect to the ACr 
group. This pattern is broken in the following ca-
ses: pipelines 1 and 2 in the delta band at the fron-
tal region, and pipeline 1 in the alpha-1 band at 
the central, temporal, and parieto-occipital re-
gions. On the other hand, the beta-3 (β3) and al-
pha-2 (α2) bands present a pattern where the ACr 
group has greater relative power than the Ctrl-1 
group. In the beta-1 (β1) band, no noticeable di-
fferences were found. Finally, the gamma (૪) band 
does not follow a clear pattern, except in the pa-
rieto-occipital region, where the ACr group has a 
greater relative power.

Figure 3. Relative power in the different ROIs: A) frontal, B) temporal, C) central, D) parieto-occipital. P1: pipeline 1, 
P2: pipeline 2, P3: pipeline 3, P4: pipeline 4.
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For the theta and alpha-2 bands, the statistical 
significance of the results shown in Figure 3 is pre-
sented in Table 1.

For the other bands, the statistical significance of 
the results is shown in Appendix 1. Figure 4 shows 
a comparison of the application of different pipe-
lines to the same signal, where notable differences 
are observed for the indicated region. Figure 4A 
shows the signal obtained after applying only the 
common preprocessing pipeline while using the 
FIR filter and the robust reference. In Figure 4B, a 
smoothing of the signal is observed when applying 
pipeline 2 which, in addition to what is applied 
in pipeline 1, has the wICA method. In Figure 4C, 

a notable change is evidenced by eliminating the 
components corresponding to the identified arti-
facts. Finally, in Figure 4D, the effect of pipeline 4 
is observed, where, in contrast to pipeline 2, only 
the artifactual components are filtered by the wICA 
procedure.

The following Tables present the results of the 
Hedgesg and Bramila tests applied in MATLAB. 
The Hedgesg test is used to calculate the effect si-
zes (ES), and a confidence interval (CI) is assigned 
to each one. The ES was calculated in such a way 
that a positive value indicates that the carriers have 
higher values than the non-carriers, and a negative 
value indicates that the carriers have lower values 

Figure 4. Comparison of the preprocessing pipelines: A) without wICA, B) wICA, C) deleted artifactual components, 
D) wICA in artifactual components
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than the non-carriers. ESs with confidence inter-
vals that crossed the zero boundary were ignored. 
In addition to the effect size, the Bramila test is 
used to calculate the p-value, which supports the 
ES inferred by the Hedgesg test. P-values lower 
than 5% are considered statistically significant.

The data to be analyzed is distributed in two 
ways: Table 1 shows the results for the previous-
ly defined ROIs, and Table 2 contains information 
about the power from the precuneus component. 
For all Tables, the statistically significant values are 
highlighted in bold.

Table 1. Differences between pipelines estimated for ROIs: A) Central, B) Frontal, C) Temporal, D) Parieto-occipital. 
ES: effect size, CI: Confidence Interval for effect size.
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Table 2 has the advantage that all its results are 
statistically significant, so it is used to compare the 
pipelines.

Discussion

In this article, the effect of different artifact correc-
tion pipelines on EEG signals was explored. The 
pipelines made use of ICA-based methods supple-
mented with the ICLabel tool in order to determi-
ne the artifactual sources present in the recordings. 
Nevertheless, the results, regardless of the pipeli-
ne, will be discussed first. For Table 1, the theta 
band resulted in negative values for all pipelines 
and ROIs, indicating that the control group presen-
ted higher values than the ACr group. Similarly, for 
the alpha-2 band, positive values were obtained 
for all pipelines and ROIs, indicating that the ACr 
group has higher values than the control group. 
The above shows that the results of Table 1 agree 
with the theta and alpha-2 relative powers of the 
ROIs shown in Figure 3.

The relevance of activity in the theta and al-
pha-2 bands during the neurodegenerative pro-
cess has been demonstrated by Duque-Grajales 
et al. (2014), and our results regarding the theta 
and alpha-2 bands agree with the ones reported in 
that study, mainly because, for the theta band the-
re is a significant increase in the control group in 
comparison to the ACr group and, for the alpha-2 

band, there is a noticeable increase in the ACr 
group in relation to the control group for the diffe-
rent regions of interest. Despite agreeing with Du-
que-Grajales et al. (2014), in our results, not all 
band-ROI combinations have statistical significan-
ce; the theta band, for example, does not have sta-
tistical significance in any of the ROIs (Table 1). 
Likewise, for the alpha-2 band, the temporal and 
central ROIs had statistical significance in every pi-
peline, but, for the frontal ROI, the results are only 
significant for pipeline 2. In the parietal-occipital 
ROI, the results are not significant in any of the 
pipelines. The results obtained for the precuneus 
component (Table 2) show that the difference be-
tween the ACr and Ctrl-1 groups is statistically sig-
nificant for all pipelines in the theta and alpha-2 
bands, along with their ratio. Overall, this study 
only shows statistical significance for every pipe-
line in the precuneus component (theta, alpha-2, 
and its ratio), as well as for the central and tempo-
ral ROIs (alpha-2 band and the theta/alpha-2 ratio).

In addition to the power analysis, the effect of 
applying different preprocessing pipelines is dis-
cussed from the visual inspection shown in Figure 
4. Some differences were found when comparing 
the performance of the wICA-based preprocessing 
pipelines to pipeline 1, demonstrating the benefi-
cial effect of this procedure. In general, noise re-
duction and signal smoothing against brain artifacts 
is evidenced in pipelines 2, 3, and 4. Despite the 

Table 2. Differences between the pipelines estimated for the precuneus component. ES: effect size, CI: Confidence 
Interval for effect size. The ES Score aggregates the results along the three bands to allow for an overall comparison 

of the pipelines.
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fact that pipeline 3 shows the smoothest signal in 
Figure 4, it is possible that, because of its drastic re-
moval of components, it induces losses of relevant 
neuronal information. Although hard evidence of 
this cannot be provided, a wICA-based approach 
may be more appropriate, as it is less drastic. In 
particular, Paradeshi and Kolekar (2017) showed 
that the use of the wICA technique preserves neural 
activity. On the other hand, it is difficult to spot di-
fferences between pipelines 2 and 4 by visual ins-
pection of Figure 4. Therefore, the comparison must 
be made in a more quantitative manner.

This numerical comparison between pipelines 
can be done through Table 2, as all its values are 
statistically significant. When comparing the pipe-
lines through the ES Score proposed in the metho-
dology section, it was found that pipeline 3 has the 
highest value. Ochoa et al. (2017a) obtained ana-
logous results by using a preprocessing approach 
similar to pipeline 2. However, in the theta band, 
their results (ES = -0.75) were considerably better 
than those found in this study (ES = -0.6152, Ta-
ble 2). Similarly, in the alpha-2 band, the effects 
sizes (ES = 0.77) are greater than the ones obtai-
ned herein (ES = 0.7410, Table 2), but, in this case, 
the difference is smaller. There are many possible 
causes for these differences. For example, Ochoa’s 
implementation was in MATLAB, whereas our im-
plementation was in Python.

As was mentioned before, pipeline 3 has the 
best ES Score, but it is debatable whether it can 
be regarded as the best. For example, if it is dis-
covered by manual inspection that a neural com-
ponent was mislabeled as an artifactual one, then 
pipeline 3 will lose this information. The closest 
alternative to pipeline 3 is pipeline 4, as they both 
make use of ICLabel to assign classes to the in-
dependent components found, with the main di-
fference being what is done with this information: 
pipeline 3 drastically removes the components, 
whereas pipeline 4 merely smooths them. Which 
pipeline is sounder depends on our stance regar-
ding the confidence and certainty of the classes 
provided by ICLabel. Another possible strategy 

may be changing pipeline 3 to only perform the 
cancellation if the label is provided with a high 
certainty, i.e., if the class probability overcomes a 
certain threshold.

On the other hand, pipelines 2 and 4 are closely 
tied to 2nd place, as they have similar ES Scores. Pi-
peline 4 can be regarded as even softer than pipe-
line 2 since the former only smooths the artifactual 
components and the latter smooths everything. The 
fact that pipeline 2 obtained a slightly better score 
than pipeline 4 may be caused by the softer nature 
of the latter. A possibly better alternative to pipeline 
4 is given in recent studies, which have used ano-
ther way of combining the wICA technique with an 
ICA labeling tool (be it MARA, ICLabel, or another) 
(Monachino et al., n.d.; Swarnkar and Miyapuram, 
2020). It consists of performing wICA in all compo-
nents and then a new ICA decomposition, which 
is then labeled with some tool. Finally, a subse-
quent cancellation of artifactual components is ca-
rried out. Although this approach was not explored 
in our work, it is considered that it may improve 
upon pipeline 3 and 4, as it follows the logic of the 
wICA stage, bettering the signal quality for the later 
ICA decomposition, which results in a better com-
ponent labeling and thus in a lower probability of 
label mismatches for the artifactual components 
cancellation. Nevertheless, label mismatches are 
still possible, so considering the class probability 
when canceling components is recommended.

From a clinical perspective, the most relevant 
results correspond to the findings obtained for the 
precuneus component and the alpha-2 band in 
the temporal ROI. The precuneus component has 
the advantage of having a completely statistical 
significant Table, but the magnitude of the ES va-
lues only achieves the ‘medium’ category (mean 
= 0.625) when using the classification proposed 
by B. A. Cohen and Sances (1977). On the other 
hand, the Table for the temporal region (Table 1C), 
even though it does not have statistical significan-
ce in all its values, does indeed stand out in the al-
pha-2 band by having both high ES values (mean = 
0.847) and statistically significant results. Overall, 
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the best differentiating factor corresponds to the al-
pha-2 band in the temporal region through pipeli-
ne 1 (ES = 0.8770, P-value = 0.005). This result is 
quite unexpected, as the first pipeline is precisely 
the one without artifact correction measures. Ne-
vertheless, this pattern was only observed in the 
temporal ROI; in general, pipeline 1 does not show 
better results with respect to its alternatives when 
examining the other ROIs and the precuneus com-
ponent. This indicates that, overall, it is better to 
perform the artifact correction measures.

Conclusions

In this article, different pipelines were evaluated in 
order to identify which of them could optimize the 
effect size. Regarding the precuneus component, 
it was identified that the pipeline that obtained the 
best performance with respect to the ES was pipeline 
3, followed by pipelines 2 and 4. From the point of 
view of future development, the approach of pipe-
line 4 is more susceptible to be improved upon, as 
it leverages both well-known and recent techniques 
(wICA and ICLabel). As the automatic labeling of ICA 
components has the potential to largely impact EEG 
preprocessing pipelines focused on automatization, 
future work will focus on exploring other ways to 
approach the joint use of wICA and ICLabel. One 
of the proposed approaches is making use of class 
probability thresholds to cancel only the artifactual 
components that comply with a certainty criterion. 
This work highlights the relevance of preprocessing 
pipelines as tools to improve existing statistical di-
fferences between clinically different populations. 
Many relevant results may be hidden underneath the 
artifacts that contaminate physiological signals.
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A) 

Table A. Differences between pipelines in δ, α1, β1, β2, β3 estimated for the frontal ROI. ES: effect size, CI: 
Confidence Interval for effect size.

Appendix 1 

Table B. Differences between pipelines in  δ, α1, β1, β2, β3 estimated for central ROI. ES: effect size, CI: Confidence 
Interval for effect size. 
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Table C. Differences between pipelines in δ, α1, β1, β2, β3 estimated for temporal ROI. ES: effect size, CI: 
Confidence Interval for effect size.

Table D. Differences between pipelines in δ, α1, β1, β2, β3 estimated for parietal-occipital ROI. ES: effect size, CI: 
Confidence Interval for effect size. 


