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Dynamics of Close Earth Satellites by Picard Iterations
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The proliferation of crowded constellations of small
satellites in low Earth orbit (LEO), ranging from the cur-
rent 150 units of Planet Labs1 to the eventual 42000 pro-
grammed for SpaceX’s Starlink satellite megaconstella-
tion,2 is producing a revival in the use of simple analytical
solutions of the artificial satellite problem, which fit quite
well for their design and operation [1]. This fact motivates
me to revisit the main effects on the LEO dynamics of the
gravitational disturbances of Keplerian motion. As is well
known, they are due to the dominant effect of the Earth’s
zonal harmonic of the second degree, whose nondimen-
sional coefficient is customarily denoted J2 [2].

Beyond the integrable equatorial case [3] the J2 prob-
lem lacks of the needed integrals that would guarantee the
existence of a closed form solution [4]. Nevertheless, the
non-integrability can be ignored in practice for the small
value of the Earth’s J2 “ Op10´3q ą 0, which makes the
size of the regions in which chaos may emerge negligible
[5]. Indeed, machine-precision accuracy can be preserved
for long times with high order perturbation solutions of the
J2 problem [6]. However, the length of the series involved
in this kind of solution, together with the inadequacy of
the J2 model for simulating the real dynamics of circum-
terrestrial orbits, makes that highly accurate solutions of
the J2 problem are of limited interest in practice.

Conversely, the bulk of the J2 dynamics is captured by
much simpler intermediary orbits, which share the mean
dynamics of the satellite problem at least up to OpJ2q ef-
fects. To wit, on average, the intermediary orbit must un-
dergo a small linear variation of the right ascension of the
ascending node, and a small but steady motion of the ar-
gument of the perigee in the orbital plane. These gen-
eral properties of the oblateness perturbation are usually
derived from an average representation of the disturbing
function D of the J2 problem [7]. That is,
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where µ is the gravitational parameter, RC is the Earth’s
equatorial radius, p “ aη2, a is the orbit semimajor axis,
η “ p1´ e2q1{2, e is orbital eccentricity, c is the cosine of
the orbit inclination I , and M is the mean anomaly [8].
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Replacing (1) in the variation of parameters equations,
we readily obtain the well-known mean variations of the
right ascension of the ascending node Ω and the argument
of the perigee ω. Namely,
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where n “ pµ{a3q1{2 is the mean motion. While (2) rea-
sonably agrees with the average dynamics, the average rate
of variation of the mean anomaly obtained with this pro-
cedure [9, 10, 11]
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soon yields large in-track errors with respect to which
would be expected from a OpJ2q average solution. Rather
than starting from an average disturbing function, I will
show that the mean rate in (3) is amended when the av-
erage dynamics is computed by neglecting the periodic
terms from the true solution. The latter is obtained using
Picard’s constructive proof for the existence and unicity of
solutions to ordinary differential equations [12].

Thus, let

dξi
dτ

“ χipξj , τq, ξipτ0q “ ξi,0, i, j “ 1, . . .m, (4)

be a first order differential system in which τ is the in-
dependent variable, and ξi are m dependent variables. As-
suming that the functions χi are analytic, they are replaced
by corresponding Taylor series expansions in powers of
∆τ “ τ ´ τ0. When constraining to such interval ∆τ
that the differences ξj ´ ξj,0 remain small enough, these
differences can be neglected, and hence an analytical ap-
proximation to the solution of (4) is computed from the
convergent sequence

ξi,k “ ξi,0 `

ż τ
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χirξj,k´1pτ, ξj,0q, τ sdτ, (5)

which starts from ξi,1 “ ξi,0 `
şτ

τ0
χipξj,0, τqdτ .

I apply this procedure to the variations of the traditional
Keplerian variables a, e, I , Ω, ω, and M , whose detailed
expressions can be consulted elsewhere [13]. However, to
deal with strict elements the variation of M is replaced by
[7]
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Still, M is present in the variation equations through its
implicit dependence on the true anomaly f . Then, in order
for the variation equations to take a form amenable to so-
lution by Picard iterations, the integration is carried out in
a fictitious time τ , given by the differential relation

dt “ pr2{Gqdτ, (7)

where G “
?
µp is the specific angular momentum.

Comparison of (7) with Kepler’s law of areas shows that
τ evolves at the same rate as the argument of the latitude.
Alternatively, for an OpJ2q solution the fictitious time can
be replaced by f as the independent variable [14, 15].
Then, the variations in the physical time are replaced by

dξj
df

“
r2

G

dξj
dt
, j “ 1, . . . 6, (8)

which are integrated in closed form of the eccentricity by
Picard iterations starting from the initial values a0, e0, I0,
Ω0, ω0, and β0 “ 0, for f0. The first iteration results in

a1 “ a0 ` a0εra1,Ppfq ´ a1,Ppf0qs

e1 “ e0 ` εre1,Ppfq ´ e1,Ppf0qs

I1 “ I0 ` εcrI1,Ppfq ´ I1,Ppf0qs

Ω1 “ Ω0 ´ 6εc∆M ` εcrΩ1,Ppfq ´ Ω1,Ppf0qs

ω1 “ ω0 ` 3εp5c2 ´ 1q∆M ` εrω1,Ppfq ´ ω1,Ppf0qs

β1 “ 3εηp3c2 ´ 1q∆M ` εrβ1,Ppfq ´ β1,Ppf0qs
(9)

where ε “ 1
4J2R

2
C{p

2, ∆M “M´M0, and ξ1,P are such
trigonometric polynomials that xξ1,PpfqyM “ 0. Refer to
[13] for detailed expressions.

Next, M1 “ M0 ` β1pfq `
?
µ
şt

t0
a1ptq

´3{2 dt, from
(6), where the integrand a1ptq´3{2 is replaced by an OpJ2q
approximation to obtain a solution in closed form of e.
Thus,

M1 “M0 ` n
˚pt´ t0q ` ε rMPpfq ´MPpf0qs , (10)

in which
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and the detailed form of MP can be consulted in [13].
Finally, from (7),
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Note that, in a typical ephemeris evaluation, the errors in-
troduced in the physical time determination may be as im-
portant as those of the elements [16].

Removing the purely periodic terms ξ1,Ppfq from (9)
it is readily obtained that, in the approximation provided
by the first Picard iteration, the semi-major axis, eccen-
tricity, and inclination, remain constant on average. On
the other hand, (2) is recovered by differentiation of the
secular terms of Ω1 and ω1 with respect to the physical

time. Analogously, the removal of purely short-period
terms from (10) shows that, at the precision of the first
Picard iteration, M advances, on average, at the rate n˚

given in (11), thus amending (3) with the additional term
3
8nJ2pRC{pq

2a1,Ppf0q.
The accuracy of the first Picard iteration with respect

to the true, numerically integrated solution is illustrated in
the left column of Fig. 1 for an example eccentric orbit
with a0 “ 9500 km, e0 “ 0.2, I0 “ 20˝, Ω0 “ 6˝,
ω0 “ 274˝, and M0 “ 0 (µ “ 398600.4415 km3{s2,
RC “ 6378.1363 km, J2 “ 0.001082634). The mild
behavior of the errors of M is due to the new secular term
in (11). It can be checked that when n˚ is replaced in
(10) by (3), the error of M grows by about two orders
of magnitude at the end of the one-day interval shown in
the current example, reaching an amplitude close to 1˝ —
or about 200 km along-track as opposed to the km level
reached when using (11).

The first iteration of Picard’s method misses the long-
period effects of the true solution, which are clearly appar-
ent in Fig. 1 coupled with the short-period errors. A refine-
ment of the analytical solution that captures non-resonant
long-period effects of the dynamics is obtained by an ad-
ditional iteration of (5). To OpJ2q, the whole procedure is
equivalent to substituting M by n˚t in (9), and replacing
the appearances of the constant ω0 throughout ξ1,P by the
low frequency ωpfq ” ω0 ` 3p5c2 ´ 1qpεfq [13].

The improvements produced by the second Picard itera-
tion are illustrated in the right column of Fig. 1. While the
errors start with the same amplitudes as before, the influ-
ence of the long-period terms becomes now evident, and
the amplitude of the errors remains mostly constant along
the propagation, improving the errors with respect to the
first Picard iteration by about one order of magnitude at
the end of the one-day propagation interval. Remaining
secular and long-period components are a consequence of
the OpJ2q truncation of the Picard iterations solution.
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Figure 1: Errors of the first (left column) and second Picard iteration (right colum) of the test orbit [13].
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