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Abstract 
It is important that new strategies are developed for the management of geoelectrical data produced from engineering and geoscience 
processing techniques. For this reason, the article demonstrates how pyGIMLi can be used for this purpose. pyGIMLi is an open-source 
library for the inversion of apparent resistivity array that are often obtained with different geoelectrical survey equipment. The aim is to be 
able to use this library unaided for various projects and/or to perform various data operations in which the results obtained are more specific 
and differentiated than those derived from other processing techniques, taking advantage of the fact that this tool is open-source. 
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Aprendizaje de código abierto como habilidad para el procesamiento 
de datos geoeléctricos: caso pyGIMLi  

 
Resumen 
Debido a la importancia de utilizar nuevas estrategias para el manejo de datos geoeléctricos a partir de las técnicas de procesamiento de la 
ingeniería y ciencias de la tierra, este artículo se centra en mostrar la estructura para el uso de pyGIMLi, una librería de código abierto para 
realizar la inversión de la matriz de resistividad aparente que se obtienen a menudo con diferentes equipos de prospección geoeléctrica, 
con la finalidad de adquirir la habilidad de usar esta librería de forma independiente en diversos proyectos y/o realizar varias operaciones 
con los datos en las se puedan obtener resultados más específicos y diferenciados de otras técnicas de procesamiento; gracias a las ventajas 
de usar código abierto. 
 
Palabras clave: aprendizaje en ingeniería; ciencias de la tierra; código abierto; pyGIMLi; datos geoeléctricos. 

 
 
 

1. Introduction 
 
The dependence on commercial software to process 

electrical data [1-3], including geoelectrical data, has certain 
consequences. The first is that the analysis of the results is 
affected by the very direct way in which these programs 
process them. The second is that it is not cognitively 
beneficial for the engineer processing the data because, in 
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research, there should not be a gap between knowledge and 
application [4]. This is often the case when working with 
closed-source software, as it is difficult to understand the 
software’s behavior and the information it has produced.    

A promising alternative that addresses this situation is 
open-source software or environment, in which the same 
geoelectric data processing tools have been developed, but 
with code that can be seen, modified, and distributed freely 
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[4], or simply as part of environments provided by open-
source platforms. This has stimulated new training strategies 
for working on the exploration and logistics stages of 
research on energy, minerals, and resources [5]. It has also 
strengthened engineering education in the undertaking of 
multiple tasks at the same time, such as the collection, 
processing, and analysis of data [6]. 

This is in clear contrast to the black box model, which is 
a fairly common type of closed-source software where no 
prior knowledge is required for its use and which often 
requires exploration to achieve new data analysis techniques. 
However, this exploration is not possible precisely due to its 
information-only input-output philosophy [7-10]. 

The purpose of this article is therefore to give a 
demonstration of geoelectrical signal processing for the 
exploration of mineral resources, and to illustrate the data 
structure and parameters by applying the useful features of 
the open-source environment pyGIMLi, with the aim of 
replicating the results and acquiring the ability to perform all 
of these processes correctly. 

 
2. Data description 

 
2.1 Localization  

 
The geoelectrical data samples correspond to line-3 of an 

electrical resistivity tomography (ERT) profile taken in an area 
adjacent to drill hole 171 (PM-171 as seen in Fig. 1) on the open 
pit mining license of Inversiones WGM S.A.S. (Fig. 2) located in 
the hamlet of Margento, Caucasia, Antioquia, Colombia (Fig. 3). 

 
2.2 Acquisition and characteristics 

 

The ABEM Terrameter LS was used to take the samples, 
with electrodes fixed at a 5-meter initial center spacing and a 
standard lateral spacing (Fig. 4). A horizontal 5-meter offset 
was applied by ABEM on the surface to acquire the sample 
profile of each depth extension as seen in Figs. 5-7.  

A total of 12 extensions of depth of investigation 𝐼𝐼𝐷𝐷 were 
measured, hereafter referred to simply as depth. The 
maximum depth was approximately 33.8 meters. Fig. 8 
shows the resistivity triangles (Ωm) that represent the entire 
distribution of samples acquired from each data line profile 
of the subsurface. 

 

 
Figure 1. Field polygon of the 3 Electrical Resistivity Tomography profiles 
near borehole PM-171.  
Source: The authors. 
 

 

 
Figure 2. Description of the mining license where the samples were taken.  
Source: The authors. 
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Figure 3. Geographic coordinates for the hamlet of Margento.  
Source: Google Earth Pro. 

 
 

 
Figure 4. Inverted Dipole-Dipole Electrode Configuration, in which the 
power electrodes N-M and the current electrodes A-B can be observed in the 
order N-M-A-B, although they are also commonly ordered A-B-M-N. 
Source: The authors and pyGIMLi. 

 
 

 
Figure 5. Sampling at the first depth of investigation or depth 𝐼𝐼𝐷𝐷 with a center 
spacing of 5 meters and taken approximately 67.5 meters from the point at 
which data collection commenced. 
Source: The authors and pyGIMLi. 

 
 

3. Processing 
 
The pyGIMLi environment is an open-source, structured 

library that provides tools for modelling and inversion of 
electrical geophysical data [11]. It is structured because it 
depends on other libraries and a specific version of the 
programming language Python to function. It is supported by 
R programming languages for scientific computing [12]. 

 
Figure 6. Sampling at the second depth of investigation or depth 𝐼𝐼𝐷𝐷 with a 
center spacing of 15 meters and taken almost 125 meters from the point at 
which data collection commenced. 
Source: The authors and pyGIMLi. 

 
 

 
Figure 7. Sampling at the end of the third depth of investigation or depth 𝐼𝐼𝐷𝐷 
with a center spacing of 25 meters and taken approximately 182.5 meters 
from point at which data collection commenced. 
Source: The authors and pyGIMLi. 

 
 

 
Figure 8. Resistivity triangles of all the samples taken, showing a decrease 
in resistivity values as depth increases.  
Source: The authors and pyGIMLi. 

 
 
This library is particularly useful for manipulating 

RVector type variables, which are used to work with the 
system of linear equations on which pyGIMLi inversion is 
based (eq. 1-3) [13]: 

 
Φ = Φ𝑑𝑑 + λΦ𝑚𝑚 → min (1) 
Φ𝑑𝑑 = ‖𝐃𝐃(𝐝𝐝 − 𝐟𝐟(𝐦𝐦))‖22 (2) 
Φ𝑚𝑚 = ‖𝐂𝐂(𝐦𝐦−𝐦𝐦0)‖22 (3) 

 
where: 

• Φ represents the model solution of the Tikhonov 
regularization for data inversion [14,15]. 

• Φ𝑑𝑑 is the residual norm. 
• λ is the regularization parameter lambda. 
• Φ𝑚𝑚 is the solution norm. 
• 𝐃𝐃 is the diagonal matrix of the inverse of the 
• relative measurement error vector 𝑒𝑒𝑒𝑒𝑒𝑒. 
• 𝐝𝐝 is the apparent logarithmic resistivity vector 

𝑙𝑙𝑙𝑙𝑙𝑙 (𝑒𝑒ℎ𝑙𝑙𝑜𝑜). 
• 𝐦𝐦 is the logarithmic resistance vector 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑒𝑒). 
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• 𝐟𝐟(𝐦𝐦) is an 𝐦𝐦-response model. 
• 𝐦𝐦0 can be a model containing a-priori information, and 𝐂𝐂 

is the identity or diagonal weighting matrix. 
• 𝐦𝐦0 can be a constant vector and use 𝐂𝐂 to control the 

characteristics of the investment model. 
 

3.1 Data import  
 
pyGIMLi uses a structure called unified data format 

(UDF) that organizes the information contained in the 
geoelectrical data entered and ensures that all information is 
more transparent and transportable [16]. In other words, UDF 
makes it much easier to understand the information contained 
in the data delivered by the program and allows fully 
customized variability to be performed in functions like 
assignments, variable type transformation, copying, and 
rewriting. 

Geoelectrical data taken with measurement equipment 
such as the ABEM Terrameter LS, AGI SuperSting, GeoSys, 
GeoTom, IRIS Instrument Syscal Pro, Lippmann [17-22] 
have different output formats, and other formats, such as 
res2dinv [23], also exist. The pyBERT library available in the 
Anaconda distribution [24] uses the lines of code in 
Algorithm 1 to convert these different data formats and line-
3 into UDF. 

 
3.2 Calculation of essential variables 

 
For the basic inversion of geoelectric data in pyGIMLi, 

the following must be calculated: 
• Relative measurement error 𝑒𝑒𝑒𝑒𝑒𝑒. 
• Geometric factor 𝑘𝑘. 
• Resistivity 𝑒𝑒ℎ𝑙𝑙𝑜𝑜. 

These must satisfy the required variables of the inversion 
model in eq. (1), since the samples give us the resistance 𝑒𝑒. 
This is achieved by using the lines of code from Algorithm 2 
using the data already imported into the UDF. 

 
3.3 Inversion process and parameters 

 
With the essential variables now calculated, the ERT 

manager shown in Algorithm 3 performs the following set 
operations on the samples and parameters: 

 
Algorithm 1. 
Command for importing samples and other geoelectrical data output  
formats into the unified data format. 

import pyber as pb 
data = pb.import(“linea-3.dat”) 

Source: Authors and pyGIMLi. 
 

Algorithm 2. 
Commands to calculate the essential variables of the pyGIMLi investment  
model. 

import pygimli as pg 
data['k'] = pg.physics.ert.createGeometricFactors(data) 
data['rhoa'] = data['r']*data['k'] 
data['err'] = pg.physics.ert.estimateError(data) 

Source: Authors and pyGIMLi. 
 
• 𝑠𝑠𝑒𝑒 is defined as 𝑇𝑇𝑒𝑒𝑇𝑇𝑒𝑒 to calculate the primary potentials 

that can be used in the secondary investment grid. 
• 𝑣𝑣𝑒𝑒𝑒𝑒𝑣𝑣𝑙𝑙𝑠𝑠𝑒𝑒 is defined as 𝑇𝑇𝑒𝑒𝑇𝑇𝑒𝑒 to see the data processing 

flow (iterations) and the quality score of the inversion 
(chi-square 𝑥𝑥2). The latter is of vital importance since it 
is essential to obtain an 𝑥𝑥2 of between 1 and 5 [13] or if 
possible, of 1, to achieve a perfect fit. 
Next, in the inversion, the following was defined: 

• Regularization parameter 𝜆𝜆 = 5, corresponding to the 𝜆𝜆 
of eq. (1). 

• Maximum cell size 𝑝𝑝𝑜𝑜𝑒𝑒𝑜𝑜𝑝𝑝𝑜𝑜𝑥𝑥𝑝𝑝𝑒𝑒𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 = 1. 
• Maximum depth 𝑝𝑝𝑜𝑜𝑒𝑒𝑜𝑜𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝ℎ = 33.8. 
• Data boundary interpolation 𝑝𝑝𝑜𝑜𝑒𝑒𝑜𝑜𝑝𝑝𝑙𝑙𝑇𝑇𝑝𝑝𝑝𝑝𝑜𝑜𝑒𝑒𝑝𝑝 = 0. 
• Robust data 𝑒𝑒𝑙𝑙𝑣𝑣𝑇𝑇𝑠𝑠𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜 = 𝑇𝑇𝑒𝑒𝑇𝑇𝑒𝑒, 

and the ERT output was limited to the minimum and 
maximum apparent resistivity values shown in Fig. 8: 
• 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 =  5.82. 
• 𝑐𝑐𝑝𝑝𝑜𝑜𝑥𝑥 =  3120. 

 
4. Results  

 
The application of Algorithm 4 returned the output 

parameters of the inversion shown in Table 1. Here, it is 
important to note that the value of 𝑥𝑥2 is very close to 1, and 
this lends reliability and validity to the processed image and 
to the results for study. Additionally, the number of iterations 
is relatively low, and this indicates that the same machines 
and will easily obtain almost the same results. However, it is 
important not to disregard the fact that here, 
 
Algorithm 3. 
Commands for the inversion of ERT data with parameters defined for a 𝑥𝑥2 
between 1 and 5, and output of the resistivity map (ERT image). 

import pygimli as pg 
manager = pg.physics.ert.ERTManager(data, sr=True, verbose = 
True) 
inversion = manager.invert(lam=5, paraMaxCellSize=1, 
paraDepth=33.8, paraBoundary=0, robustData=True) 
manager.showResult() 

Source: Authors and pyGIMLi. 
 

Algorithm 4. 
Open-source code in pyGIMLi for ERT processing of collected samples and 
applicable to other input data. 

import pybert as pb 
import pygimli as pg 
data = pb.import(“linea-3.dat”) 
data['k'] = pg.physics.ert.createGeometricFactors(data) 
data['rhoa'] = data['r']*data['k'] 
data['err'] = pg.physics.ert.estimateError(data) 
manager = pg.physics.ert.ERTManager(data, sr=True, verbose = 
True) 
inversion = manager.invert(lam=5, paraMaxCellSize=1, 
paraDepth=33.8, paraBoundary=0, robustData=True) 
manager.showResult(cMin=5.82,  cMax=3120) 

Source: Authors and pyGIMLi. 
 
Table 1. 
Sample inversion output parameters. 

Iterations dPhi Chi-square 
7 -3.13 1.1 

Source: Authors and pyGIMLi. 
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Figure 9. ERT from the geoelectric data and the inversion process described in this paper.  
Source: pyGIMLi. 
 
 

The convergence criterion dPhi, while still a negative 
value, is close to 2%, and this is not desirable. 

Fig. 9 shows the ERT that resulted from applying the 
whole processing scheme at once to the apparent 
resistivitydata of the Inverted Dipolo-Dipolo Array. Long 
zones of division between low and high resistivities can be 
observed, as well as a lateral interpolation very much in 
accordance with the distribution of the samples shown in Fig. 8. 

This exercise determines that the structural construction 
produced the inversion of the pyGIMLi model provides 
results that enable the analysis and interpretation of the study 
zones. 

It should be noted that the depth label is not automatically 
generated in the pyGIMLi image, so this must be done 
manually with reference to the plot commands of the 
matplotlib library. 

 
5. Conclusions  

 
The simultaneous sample processing technique gives an 

outstanding result in terms of educational benefit, since the 
process line can be applied constantly and repeatedly to the 
various samples to be taken. In this way, it bridges the gulf 
between knowledge and application, resulting in learning. 
The consolidation of these tools renders them exceptionally 
useful for problem solving, a skill of utmost importance in 
the 21st century and in the context of the fourth industrial 
revolution. 

 
Literature review 

 
Geoelectric processing techniques exist because of ill-

posed problems (inverse problems) that can be applied to the 
field of geophysics through computerized tomography [25]. 
For many years now, mathematical models or numerical 
solutions have provided the main solution to these problems. 

Tikhonov regularization is a model that was established 
by Andréi Nikoláievich Tíkhonov in his pioneering work of 
the 1960s, as mentioned by Benning and Burger [26]. It was 
adapted for the Gauss-Newton model scheme implemented 
by pyGIMLi [27]. However, Inman, Ryu, and Ward’s 
resistivity inversion [28] was fundamental to the 
development of the quasi-Newton inversion system 
developed by Loke and Barker [29] which today has become 
the basis for a large amount of geoelectrical processing 
software used for many applications and research in mining 
and other fields. 

Furthermore, artificial intelligence methods, such as deep 
learning, convolutional neuronal networks, and the fuzzy 
deep wavelet neural network [30-32], have been accruing 
importance as processing techniques in geoelectrics in recent 
years. 
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