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Abstract: (1) Background: Occupational stress is high in academia, and is partly related to time
pressure. Mindfulness-based programs are known to be effective in reducing stress and increasing
well-being. Recent work suggested that these programs may also improve time management.
This study tested the effects of a mindfulness-based program on academics’ psychological flexibility,
mental health, well-being, and time management. (2) Methods: The study was conducted in a
French research department. Participants were offered to join a mindfulness-based program (n = 21)
or to be on a wait-list control group (n = 22). Self-reported measures of psychological flexibility,
mental health (stress, anxiety, and depression symptoms), well-being, and time use were collected
before and after the eight week program. (3) Results: Results showed that psychological flexibility,
mental health, well-being, and efficient time use significantly increased in the intervention group
compared to the control condition. (4) Conclusions: The results suggested that the mindfulness-based
programs were effective in improving adaptive functioning, well-being, and optimal time use in
academia, thus underlining potential useful perspectives to help academics improve mental health
and time management.

Keywords: occupational stress; time management; well-being; mindfulness; academia

1. Introduction

About one third of workers experience mental health issues such as chronic stress in developed
countries, which results in significant human and financial costs [1,2]. Almost all sectors are affected and
academia is no exception. Surveys in UK, Australia, Canada, and other countries have revealed high
to very high levels of occupational stress in academia, a situation that is shared by all disciplines [3–10].
Occupational stress seems even higher in academics compared to the general population or other similar
“white-collar” (office) workers [3,10]. Identified stressors in academia are numerous [3,10,11] and
include cuts in funding and resources (e.g., [12]), job insecurity (e.g., [4,12]), pressure to publish and to
obtain external funding (e.g., [4,12,13]), increased student/staff ratio (e.g., [12–15]), increased workloads
(e.g., [4,12,13]), working outside office hours (e.g., [13]), work-life conflicts (e.g., [9]), slow career
advancement (e.g., [4,12]), lack of recognition (e.g., [12]), poor management practices (e.g., [12,13]),
and lack of trust in institutions (e.g., [12]). Exposure to stressors affects both the mental and physical
health of the academics (e.g., difficulties concentrating and making decisions, decreased self-esteem,
depression, sleep disturbances, headaches, stomachaches, susceptibility to infections), and also has
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Abstract: In educational large-scale assessment (LSA) studies such as PISA, item response theory (IRT)
scaling models summarize students’ performance on cognitive test items across countries. This article
investigates the impact of different factors in model specifications for the PISA 2018 mathematics
study. The diverse options of the model specification also firm under the labels multiverse analysis or
specification curve analysis in the social sciences. In this article, we investigate the following five
factors of model specification in the PISA scaling model for obtaining the two country distribution
parameters; country means and country standard deviations: (1) the choice of the functional form of
the IRT model, (2) the treatment of differential item functioning at the country level, (3) the treatment
of missing item responses, (4) the impact of item selection in the PISA test, and (5) the impact of
test position effects. In our multiverse analysis, it turned out that model uncertainty had almost the
same impact on variability in the country means as sampling errors due to the sampling of students.
Model uncertainty had an even larger impact than standard errors for country standard deviations.
Overall, each of the five specification factors in the multiverse analysis had at least a moderate effect
on either country means or standard deviations. In the discussion section, we critically evaluate the
current practice of model specification decisions in LSA studies. It is argued that we would either
prefer reporting the variability in model uncertainty or choosing a particular model specification that
might provide the strategy that is most valid. It is emphasized that model fit should not play a role in
selecting a scaling strategy for LSA applications.

Keywords: large-scale assessment; item response model; scaling; PISA; multiverse analysis;
specification curve analysis; model uncertainty

1. Introduction

Item response theory (IRT) models [1,2] are central to analyzing item response datasets
that emerge in educational large-scale assessment (LSA; [3]) such as the (PISA; [4]), the
(PIAAC; [5]) or (TIMSS; [6]). The IRT models provide a unidimensional summary of the
performance of students on test items in different cognitive test domains. The process of
extracting a single summary variable from multivariate item responses is labeled as scaling
in LSA.

Interestingly, there is no consensus on which IRT modeling approach should be
employed in LSA studies [6–8]. This article simultaneously and systematically analyzes
the impact of analytical decisions in the scaling model in LSA studies. We use the PISA
2018 mathematics dataset [9] as an example. We follow an approach that integrates results
from multiple models because findings from a single model chosen by a particular criterion
might not be scientifically sound [10,11]. Moreover, because LSA studies are primarily
policy-relevant and less relevant for research, it is vital to investigate whether particular
findings are robust regarding different modeling assumptions.
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The statistical theory of model uncertainty (or multi-model inference) quantifies the
variability in statistical parameters of interest that can be traced back to different model
specifications [12–15]. At its core, the parameter of interest is estimated as a weighted
(or unweighted) average of results from multiple models [16–22]. Many applications
can be found in climate research in which researchers have to deal with uncertainty in
assumptions about their substantive models [23,24]. This uncertainty is reflected in the
variability of findings obtained from different models [25]. A simple example might be
reporting uncertainty in weather forecasting of temperature three days or one week ahead.

In the social sciences, the diverse possibilities of model specifications has been ad-
dressed with the concepts of multiverse analysis [26–28] and specification curve
analysis [29,30]. The main idea is to study the variability of findings under the speci-
fication of plausible modeling alternatives. This variability should also be reported as an
integral part of statistical inference.

In this article, we investigate five important analytical decisions for the scaling model
in educational LSA data. First, we consider the choice of the functional form of the IRT
model. This choice defines the weighing of each item in the unidimensional summary
ability variable [31]. Second, we investigate the treatment of differential item functioning
at the country level in the scaling models. Different treatments effectively define at the
country level which items should be used for linking a country to an international reference
value [32]. Third, the impact of different treatments of missing item responses is investi-
gated. In LSA studies, it is occasionally recommended not to score all missing items as
incorrect because missingness might reflect low motivation, which should not be part of
the ability variable [33]. Fourth, we discuss the impact of findings due to the choice of
particular items in the test. It has been shown that results at the country level could depend
on the selected items [34]. Fifth, we investigate the impact of test position effects. It was
often empirically shown that items administered at later test positions were more difficult
than those presented at earlier test positions. Critically, the impact of test positions also
varies across countries which illustrates the dependence of country comparisons on the
choice of a particular test design [35].

The rest of the article is structured as follows. In Section 2, we discuss the dataset, the
different factors in our multiverse analysis, and the analysis strategy. Section 3 presents the
results for the PISA 2018 mathematics dataset. Finally, the paper closes with a discussion
in Section 4.

2. Method
2.1. Data

The mathematics test in PISA 2018 [9] was used to conduct the multiverse analysis.
We included 45 countries that did receive the PISA test in a computer-based test adminis-
tration. These countries did not receive test booklets with lower difficulty items that were
specifically targeted for low-performing countries.

In total, 72 test booklets were administered in the computer-based assessment in PISA
2018 [9]. Test booklets were compiled from four clusters of items of the same ability domain
(i.e., mathematics, reading, science). In our analysis, we selected test booklets that had two
item clusters of mathematics items. As a consequence, students from booklets 1 to 12 were
selected. The cluster of mathematics items appeared either in the first and second (booklets
7 to 12) or the third and fourth positions (booklets 1 to 6) in the test.

In total, 70 mathematics items were included in our multiverse analysis. In each of
the 12 selected booklets, 22, 23 or 24 mathematics items were administered. Seven out
of the seventy items were polytomous and were dichotomously recoded, with only the
highest category being recoded as correct. In total, 27 out of 70 items had the complex
multiple-choice (MC) format, and 43 items had the constructed-response (CR) format.

In our analysis, 167,092 students from 45 countries were included in the analysis.
The sample sizes per country are presented in Table 1 (p. 8). The average sample size of
students per country was M = 3713.2. The average number of students per item within each
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country ranged between 415.8 (MLT, Malta) and 4408.3 (ESP, Spain) and had an average of
M = 1120.3.

The IRT scaling models were first fitted on an international calibration sample [36]
consisting of N = 44,820 students (see Section 2.3). In each of the 45 countries, 996 students
were randomly chosen for inclusion in this calibration sample. In a second step, all students
within a country were used in the country-wise scaling models to obtain country means
and standard deviations.

2.2. Analytical Choices in Specification Curve Analysis

In the following five subsections, the definition of five model misspecification factors
of our multiverse analysis is described.

2.2.1. Functional Form of the Item Response Model (Factor “Model”)

An IRT model is a representation of the multivariate item response vector X =
(X1, . . . , XI) that takes values in {0, 1}I if I denotes the number of items [37,38]. Hence,
there are 2I different item response patterns. The IRT model assumes the existence of a
unidimensional latent variable θ, and item responses Xi are conditionally independent of θ.
Formally, the IRT model is defined as

P(X = x;γ) =
∫ I

∏
i=1

Pi(θ;γi)
xi (1− Pi(θ;γi))

1−xi f (θ)dθ for x = (x1, . . . , xi) , (1)

where the item response functions (IRF) are defined as Pi(θ;γi) = P(Xi = 1|θ;γi) and γi
denote item parameters. We define γ = (γ1, . . . ,γI). In principle, IRFs can be nonpara-
metrically identified [39–42]. Notably, one can view the unidimensional IRT model as an
approximation of a true multidimensional IRT model with (possibly strongly) correlated
dimensions [43–46].

In our multiverse analysis, we specify three functional forms of the IRF. First, the one-
parameter logistic 1PL (also referred to as the Rasch model; [47]) IRT model is
defined as

1PL model : Pi(θ; a, bi) =
1

1 + exp(a(θ− bi))
, (2)

where bi is the item difficulty and a is the common item discrimination parameter. Second,
in the two-parameter logistic (2PL) model [48], the item discriminations are allowed to be
item-specific:

2PL model : Pi(θ; a, bi) =
1

1 + exp(ai(θ− bi))
. (3)

Third, the three-parameter model with residual heterogeneity (3PLRH) extends to the
2PL model by including an asymmetry parameter δi [49,50]

3PLRH model : Pi(θ; ai, bi, δi) =
1

1 + exp
(
−{1 + exp(−δiθ)}1/2(aiθ+ bi)

) . (4)

The 3PLRH model has been successfully applied to LSA data and often resulted in
superior model fit compared to the three-parameter logistic model (3PL; [48]) that includes
a guessing parameter instead of an asymmetry parameter [51–54]. In this study, we did not
include the 3PL model for two reasons, even though the PISA test includes multiple-choice
items. It has been argued that the guessing parameter in the 3PL model is not necessarily
related to the probability of randomly guessing an item for students that do not attempt to
solve an item referring to their knowledge [55,56]. Alternative models might be preferable
if the goal is to adjust for guessing effects adequately [55,57]. In a previous study, we
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demonstrated that the 3PL model did not substantially improve the model fit compared to
the 2PL model [54]. In contrast, the 3PLRH model significantly improved the model fit in
terms of information criteria [54]. The 3PLRH model is able to account for guessing and
slipping effects, as well as for asymmetry in item response functions [53].

In total, the three IRT models, 1PL (factor level “1PL”), 2PL (factor level “2PL”), and
3PLRH (factor level “3PLRH”), are utilized in our multiverse analysis. The 1PL model
was used in the PISA study until PISA 2012 [7], while the 2PL model has been employed
since PISA 2015 [8,9]. To our knowledge, the 3PLRH has not yet been implemented in the
operational practice of any important educational LSA study. The choice of the IRT model
in LSA studies has been investigated in [54,58–61].

2.2.2. Treatment of Differential Item Functioning Based on the RMSD Item Fit Statistic
(Factor “RMSD”)

Educational LSA studies compare ability performances across multiple countries.
In applications, IRFs are often not invariant across countries. That is, there could exist
country-specific item parameters γig for item i in country g [34]. This property is also
labeled as (country) differential item functioning (DIF; [62,63]). Some restriction(s) on the
parameters must be imposed for identification. A popular identification assumption is
partial invariance (PI; [64,65]) model in which most of the item parameters for an item i are
assumed to be equal across countries, while they can differ from a common international
item parameter γi for a few countries [5,66–70].

In the operational practice of scaling in educational LSA studies, for each item i and
each country g, a decision is made whether the item parameters are fixed to a common
international parameter or they are freely estimated for a country. In practice, the com-
putation of country means and country standard deviations only relies on the invariant
items because the linking to the international metric is only conducted on those items. In
PIAAC [5] and PISA [8] studies, the root mean square item deviation (RMSD) item fit
statistic is used [70–72] that is defined as

RMSDig =

√∫
(Pig(θ)− Pi(θ;γi))2 fg(θ)dθ (5)

where fg is the density of the ability variable θ in country g.
It has been shown that the RMSD statistic can be effectively used for detecting

DIF [5]. Several studies have demonstrated that the RMSD statistic depends on the pro-
portion of misfitting items and the sample size [73–75]. Moreover, the distribution of the
RMSD statistic for a country depends on the average of uniform DIF effects (i.e., whether
DIF is unbalanced or balanced; see [74]).

If the RMSD statistic exceeds a chosen cutoff value, an item is declared to be nonin-
variant because the country-specific IRF Pig substantially deviates from the model-implied
IRF Pi. In LSA studies, the cutoff of 0.12 is frequently chosen [5,76]. However, it has been
pointed out in the literature that lower cutoff values must be selected to efficiently handle
country DIF [72,77–79]. In our multiverse analysis, we explore the choice of the three RMSD
cutoff values 1.00 (factor level “RMSD100”), 0.08 (factor level “RMSD008”), and 0.05 (factor
level “RMSD005”). A rationale for this choice can be found in [78,79]. The cutoff of 1.00
means that all item parameters are assumed to be invariant because the RMSD statistic is
always smaller than 1. The RMSD values are obtained from the 2PL scaling in which all
item parameters were invariant across countries. In principle, the choice of DIF items will
depend on the chosen IRT model. However, to disentangle the factor of the definition of
DIF items from other model specification factors in the multiverse analysis, we decided
to let the DIF item sets be the same across specifications. Note that the PI approach is
practically equivalent to a robust linking approach in which the impact of some items is
downweighted (or entirely removed) for a particular country [75,78,80].
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2.2.3. Treatment of Missing Item Responses (Factor “Score0”)

In LSA studies, students often do not respond to administered items [81–87]. Two
different types of missing item responses can be distinguished [88]. First, not reached
items [89] are missing item responses at the end of a test booklet (or an item cluster).
Second, omitted items are missing item responses within the test booklet (or an item
cluster) and are no not reached items.

Until PISA 2012, all missing item responses are scored as incorrect. Since PISA 2015,
not reached items are treated as non-administered items (i.e., treating it as “NA” in the
scaling model), while omitted items are scored as incorrect. Several psychometricians argue
that missing item responses should never be scored as incorrect [33,90–96], while others
argue that the treatment of missing item responses is not an empirical question because it
should be framed as an issue in scoring, not an issue of missing data modeling [45,88,97,98].

Likely, the choice of the treatment of missing item responses impact on country
rankings if the proportion of missing item responses and the missing mechanisms differ
between countries [99]. Relatively large differences for some countries have been reported
for the PISA study in [88].

In our multiverse analysis, we use three different scoring methods for the treatment of
missing item responses. First, all missing item responses are scored as incorrect (factor level
“S960”). Second, we scored omitted item responses as incorrect and treated not reached
items as non-administered (factor level “S90”). Third, we treat omitted and not reached
items as non-administered (factor level “S0”). We have to admit that other proposals in the
literature [33,95] will typically lead to results that lie between those from the second and
the third approach. However, our three specifications are helpful in deriving bounds for
different possible missing data treatments.

2.2.4. Impact of Item Choice (Factor “Items”)

It has been emphasized in generalizability theory that the choice of items should
also be included as part of statistical inference, like the sampling of persons [100–108].
The uncertainty with respect to items has been quantified as linking errors for trend
estimates [109–111]. However, a similar error can also be computed for cross-sectional
country means [34,112,113]. The reason for the variability in country means with different
item sets is the presence of country DIF. That is, performance differences between countries
appear to be item-specific. Hence, the country mean is also influenced by the average of
country DIF effects for a particular set of chosen items. The variability in country means
and standard deviations due to the choice of items can be investigated by using subsamples
of items in the multiverse analysis. The half sampling method is a particular subsampling
method [80,114] that uses resampling based on half of the sample sizes for determining
the variability in estimates. It has been shown that half sampling has superior statistical
properties compared to the widely used jackknife method [109].

In our multiverse analysis, we use two item sets. First, we consider the full item set
administered in the PISA 2018 mathematics assessment (factor level “All”). Second, we
used half of the items in the test (factor level “Part”). In more detail, we used every second
testlet (i.e., a group of items with a common item stimulus; see [115]). In the presence of
country DIF, we expect that the estimated country means and standard deviations will
differ in the two factor levels.

We now formally derive the expected variability due to item choice for our two
specifications. Let µ0 be the country mean estimate based on the full item set with I items
and µ1 be the estimated country mean based on half of the items (i.e., I/2 items). The
variance of µ0 and µ1 due to DIF effects is given by

Var(µ0) =
σ2

DIF
I

and Var(µ1) =
σ2

DIF
I/2

, (6)

respectively. The DIF variance is denoted by σ2
DIF = Var(eig) for DIF effects eig of item i in

country g, and Var(µ0) = σ2
DIF/I is the square of the cross-sectional linking error [112]. In a
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multiverse analysis, we average across all model specifications. We compute the composite
mean µ = (µ0 + µ1)/2 based on the two specifications. Then, we can evaluate the total
variance as

E
(

1
2
(µ0 − µ)2 +

1
2
(µ1 − µ)2

)
=

1
4

E(µ0 − µ1)
2 =

1
4

E

(
−1

I

I/2

∑
i=1

eig +
1
I

I

∑
i=I/2+1

eig

)2

=
σ2

DIF
4I

. (7)

By comparing (7) with (6), we see that the associated variance with the factor item
choice in our multiverse analysis is smaller than the error component associated with
Var(µ0). The linking error is σDIF/

√
I, while the square root of the variance of the as-

sociated variance component in our multiverse analysis is given by σDIF/(2
√

I) (see
Equation (7)). Because we report the square roots of variance components in the Results
section, we have to multiply the result regarding the multiverse analysis factor “Items” by
two to obtain the linking error. It can be shown that considering only half samples of items
would result in an unbiased variance component [80,114]. However, in such an approach,
the original scaling model that includes all items would not be part of the multiverse
analysis, which might be considered a disadvantage.

2.2.5. Impact of Position Effects (Factor “Pos”)

The PISA test involves testing students with a test booklet that lasts two times
60 min of testing time. It is conceivable that student’s test performance can fluctuate
in the course of a test. Most likely, performance declines will be observed during the
test [116–120]. Items administered at later test positions will typically be more difficult
than if they were earlier administered in the test [121–123]. Moreover, position effects often
differ between persons and, hence, across countries in LSA studies [124–128].

The investigation of position effects in LSA studies is often conducted by including
additional latent variables [126,129,130]. In such an approach, the ability variable of interest
is defined as the performance at the first test position [35,131–133]. If students only got
items at the third or fourth test position, the abilities of those students are adjusted and
extrapolated to the first test position. Hence, the country means of an ability variable are
model dependent.

Consequently, in our multiverse analysis, we study the impact of position effects in a
design-based approach. We use three test specifications. First, we considered all students
and items at all test positions (factor level “Pos1234”). Second, we used students and items
at the first and second test positions in the scaling models (factor level “Pos12”). Third, we
used all students and all items at the first test position (factor level “Pos1”). Obviously, the
sample size was reduced in the second and the third specification. However, the definition
of the ability variable is entirely defined by the test design and, in contrast to the approaches
in the literature, is not dependent on a particular scaling model.

2.3. Analysis

In total, 3 (scaling models) × 3 (RMSD cutoff values) × 3 (missing data
treatments) × 2 (item choice) × 3 (position effects) = 162 models were specified in our
multiverse analysis. We declared the reference model as the 2PL model with an RMSD
cutoff value of 0.08, scoring only omitted items as incorrect (while treating not reached
items as non-administered), used all items for scaling, and the students and items at all
four test positions. This approach follows the one employed in PISA 2018 [9].

In each model specification, we scaled the international calibration sample of
N = 44,820 students for obtaining international item parameters. In the next step, the
country mean and country standard deviation were obtained in a separate scaling model
for each country in which item parameters were fixed to the international item param-
eters from the first step except for items whose RMSD values exceed the pre-specified
cutoff value. For the country-wise scaling models, student weights were used in marginal
maximum likelihood estimation. To enable comparisons across the different model specifi-
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cations, the ability distributions were linearly transformed such that the total population
involving all students in all countries in our study has a mean of 500 and a standard
deviation of 100. According to the official PISA approach, standard errors are computed
based on the balanced repeated replication (BRR) method [9,114].

For each country, M = 162 distribution parameters γ̂m (m = 1, . . . , M) for means
and standard deviations are obtained in the multiverse analysis. These parameters are
summarized in a multi-model inference [12]. A composite estimate γ̂comp based on all
model specifications is defined as the equally weighted average

γ̂comp =
1
M

M

∑
m=1

γ̂m (8)

Model uncertainty is quantified as the model error (ME) that is computed as the square
root of average squared parameter deviations (see [12,54])

ME =

√√√√ 1
M

M

∑
m=1

(γ̂m − γ̂comp)2 (9)

It is interesting to compare the influence of model error (i.e., uncertainty due to
different model specifications) with the uncertainty due to sampling of students that is
reflected in the error ratio (ER; [54]). The error ratio is defined by

ER =
ME
SE

, (10)

where SE is the standard error of the composite estimate γ̂comp. This standard error is also
easily computed with the BRR method because the estimated model parameters for each
model specification are available in each replication sample.

It should be noted that we equally weigh all models in the computation of the compos-
ite estimator (Equation (8)) and the quantification of variability (Equation (9)). However,
such a choice assumes that all model specifications would be considered equally plausi-
ble, which has been criticized in the literature [54,134,135]. It might be more legitimate
to downweight similar models and upweight models that provide very different results
with respect to a target criterion [136–138]. Because to our knowledge, almost all of the
applications of multiverse and specification curve analysis used equal weights, we also
follow this strategy in this article.

Our multiverse analysis varies 5 model specification factors, each having 2 or 3 factor
levels. To analyze the importance of each of the factors in model outcomes, we specified a
two-way analysis of variance (ANOVA) and computed the extent of explained variance
of each of the one-way and two-way factors (see also [139]). In a preliminary analysis,
it turned out that no higher-order interactions than two are required because no non-
negligible amount of variance was explained by additional higher-order factors. For ease
of comparability with standard errors due to sampling of students, we report the square
root of the variance component (SRVC; i.e., a standard deviation) for each factor (see
also [140,141]). Note that we computed the ANOVA model separately for each countries
and averaged the variance components across countries before taking the square root to
obtain the standard deviations for each factor.

We used the statistical software R [142] in all computations. The R package TAM [143]
was used for determining the RMSD statistic from the 2PL model, assuming international
item parameters obtained from the calibration sample. The xxirt() function in the R
package sirt [144] was used for estimating all scaling models. Graphical visualization of the
multiverse analyses was presented using the default plot taken from specification curve
analysis [29] in the specr [145] package.
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3. Results

Table A1 in Appendix B The estimated common item discrimination a in the 1PL
model was 1.273. The average of the item difficulties bi was 0.43 (SD = 1.47). In the 2PL
model, the item discriminations ai had an average of 1.43 (SD = 0.54). The harmonic mean
of the item discriminations was slightly lower at 1.32. The item difficulties bi had a mean
of 0.60 (SD = 1.73). Interestingly, the correlations between the item discrimination and the
item difficulty in the 2PL model was relatively large with r = 0.60. The descriptive statistics
of the estimated item parameters in the 3PLRH model are for item discriminations ai:
M = 1.00, a harmonic mean of 0.93, SD = 0.38; for item difficulties bi: M = 0.40, SD = 1.26;
and the asymmetry parameter δi: M = 0.31, SD = 0.78. Like in the 2PL model, item
discriminations and item difficulties were strongly correlated (r = 0.57), while the other two
correlations were less substantial (r(a, δ) = 0.33; r(b, δ) = −0.12).

In Table 1, the results of the ANOVA of the multiverse analysis for country means
and country standard deviations in PISA 2018 are presented. Square roots of variance
components (SRVC) of factors are displayed in Table 1.

Table 1. Square roots of variance components (SRVCs) associated with factors of the multiverse
analysis in a two-way analysis of variance for country mean µ and country standard deviation σ.

µ σ

Total 3.05 2.98
Items 0.89 1.13
Model 0.60 1.48
Pos 1.83 1.76
RMSD 1.52 0.91
Score 1.37 0.84
Model × Items 0.20 0.35
Model × Pos 0.20 0.42
Model × RMSD 0.36 0.54
Model × Score 0.09 0.19
Pos × Items 0.41 0.69
Pos × RMSD 0.43 0.44
Pos × Score 0.41 0.29
RMSD × Items 0.89 0.55
Score × Items 0.22 0.15
Score × RMSD 0.14 0.10

Note. Total = standard deviation associated with total variability across models; Items = item choice (see
Section 2.2.4); Model = specified IRT model (see Section 2.2.1); Pos = choice for handling position effects
(see Section 2.2.5); RMSD = used cutoff value for RMSD item fit statistic for handling DIF (see Section 2.2.2);
Score0 = scoring of missing item responses (see Section 2.2.3); Square roots of variance components larger than
0.50 are printed in bold.

For the country mean and standard deviation, it turned out that the position effect
factor (“Pos”) explains most of the total variance in the multiverse analysis. For the country
mean, the DIF treatment (“RMSD”) is based on the chosen RMSD cutoff value and the
missing data handling (“Score0”). While the chosen IRT scaling model (“Model”) had
the least influence on country means, its impact on SRVC was much larger. The two-way
interactions in the ANOVA model were less important. Hence, only square roots of variance
components for main effects in the ANOVA are reported at the level of countries in the
next tables.

In Table 2, the results of the multiverse analysis of PISA 2018 mathematics for µ are
presented. For example, Austria (AUT) had a country mean of 508.7 (SE = 3.20) in the
reference scaling model. The country means for Austria in the 162 model specifications
ranged between 503.6 and 514.8 with an average of M = 509.7. The variability is reflected
in the computed model error of ME = 2.97. Hence, model uncertainty has almost the
same importance as sampling error which is reflected in the error ratio ER = 0.93. Inter-
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estingly, most of the variability in Austria’s country means can be attributed to the DIF
treatment based on different RMSD cutoff values (SRVC = 2.34), followed by position effects
(SRVC = 1.50).

Table 2. Results of a multiverse analysis for PISA 2018 mathematics for country means.

Reference Model Multi-Model Inference Square Root of Variance Component (SRVC)

cnt N Est SE M Min Max ME ER Pos RMSD Score0 Items Model

ALB 2116 439.7 3.39 442.8 434.7 450.1 3.38 1.00 2.44 0.46 1.12 0.00 1.00
AUS 6508 504.4 2.17 505.8 499.6 510.3 2.80 1.29 2.37 0.82 0.60 0.82 0.15
AUT 3104 508.7 3.20 509.7 503.6 514.8 2.97 0.93 1.50 2.34 0.36 0.44 0.38
BEL 3763 523.6 2.39 525.3 522.4 529.4 1.63 0.68 1.08 0.23 0.61 0.78 0.34
BIH 2934 415.4 3.21 418.0 405.4 426.8 4.18 1.30 0.73 1.78 2.72 0.46 1.52
BLR 2681 482.5 2.88 478.0 472.9 483.6 2.52 0.88 1.95 0.65 0.97 0.35 0.04
BRN 2259 439.0 2.08 430.1 420.0 446.7 5.74 2.75 3.57 2.99 2.09 0.08 1.16
CAN 7200 530.4 2.54 527.7 522.8 531.4 1.96 0.77 0.88 0.93 0.59 1.17 0.32
CHE 2679 522.7 2.96 524.3 519.5 530.4 2.59 0.88 1.93 0.82 0.58 1.24 0.33
CZE 3199 510.8 2.70 512.5 507.0 518.6 2.31 0.86 1.41 0.85 1.03 0.91 0.35
DEU 2482 514.6 3.18 514.1 508.0 518.9 2.39 0.75 1.23 1.11 1.25 0.69 0.35
DNK 3304 522.5 2.30 522.3 515.9 527.8 3.06 1.33 0.81 2.18 0.79 1.53 0.36
ESP 11855 491.3 1.63 492.7 488.6 497.3 1.91 1.17 1.40 0.06 0.45 0.77 0.20
EST 2467 532.7 2.36 534.4 529.7 539.7 1.95 0.83 1.21 1.15 0.23 0.50 0.22
FIN 2573 514.2 2.40 515.1 512.1 517.4 1.22 0.51 0.25 0.43 0.55 0.08 0.70
FRA 2880 506.0 2.64 506.5 502.4 511.1 2.24 0.85 0.58 1.49 0.67 0.99 0.26
GBR 5979 513.3 3.16 516.4 511.7 521.6 1.96 0.62 1.32 0.57 0.42 1.04 0.17
GRC 2114 458.9 3.74 456.0 450.2 459.7 2.15 0.58 1.56 0.83 0.34 0.13 0.23
HKG 2008 564.2 3.74 560.5 546.0 571.9 4.85 1.30 2.44 2.82 1.21 0.80 0.70
HRV 2150 471.1 3.08 470.9 464.0 476.7 3.16 1.03 2.46 0.48 0.69 1.65 0.19
HUN 2361 492.1 2.77 486.3 476.6 494.9 3.97 1.43 2.90 1.73 0.13 1.12 0.27
IRL 2581 510.4 2.54 502.7 493.7 510.4 3.59 1.41 2.87 1.17 1.41 0.38 0.56
ISL 1485 501.3 2.64 506.6 494.8 517.6 4.83 1.83 3.68 1.35 1.60 0.71 1.04
ISR 1944 465.5 4.85 470.0 462.2 478.2 3.57 0.74 2.20 1.38 1.88 0.20 0.94
ITA 5475 496.8 3.00 499.6 494.0 507.8 3.03 1.01 1.17 1.72 1.51 1.28 0.29
JPN 2814 539.5 3.08 542.2 537.0 549.1 2.63 0.85 0.09 1.48 1.62 0.21 0.23
KOR 2200 535.2 3.76 534.3 530.0 541.6 2.66 0.71 0.28 1.94 0.26 0.12 0.06
LTU 2265 491.1 2.33 488.7 481.5 495.5 2.99 1.28 1.87 1.16 1.12 1.31 0.89
LUX 2407 491.8 2.23 493.6 489.3 499.4 1.89 0.85 1.28 0.57 0.79 0.47 0.25
LVA 1751 503.9 2.46 500.5 491.4 508.7 3.34 1.36 2.23 1.81 1.23 0.11 0.69
MLT 1113 481.3 3.77 486.1 480.4 495.9 3.34 0.89 2.08 1.10 1.34 0.99 0.31
MNE 3066 435.6 1.84 441.8 434.4 449.6 3.40 1.84 0.92 1.17 2.29 1.33 1.10
MYS 2797 445.4 3.17 441.3 430.2 453.5 5.05 1.60 2.37 0.97 3.76 0.73 0.56
NLD 1787 542.6 2.71 541.5 532.4 549.1 3.50 1.29 1.36 2.61 1.23 0.52 0.31
NOR 2679 507.5 2.07 511.1 502.5 519.1 3.41 1.64 1.79 0.91 1.58 1.82 0.68
NZL 2821 508.0 2.29 505.3 501.9 509.1 1.60 0.70 0.34 0.93 0.29 0.38 0.31
POL 2577 524.4 3.32 521.6 516.3 526.0 2.29 0.69 2.04 0.35 0.20 0.15 0.68
PRT 2730 501.1 2.74 503.3 497.8 513.5 3.46 1.26 0.38 2.03 0.95 2.30 0.48
RUS 2510 495.4 3.46 497.1 488.9 504.0 3.21 0.93 1.93 1.73 0.66 1.15 0.78
SGP 2201 584.2 2.03 580.3 567.8 592.8 5.21 2.57 3.01 2.95 1.31 0.29 1.07
SVK 1904 496.4 3.00 498.9 493.7 506.6 2.90 0.97 1.54 2.04 0.42 0.58 0.76
SVN 2863 522.0 2.49 523.6 520.0 527.6 1.82 0.73 1.08 0.89 0.34 0.14 0.50
SWE 2539 503.4 3.20 511.4 498.9 519.6 4.83 1.51 2.21 2.10 2.93 1.08 0.34
TUR 3172 469.1 2.42 462.7 456.1 469.5 2.86 1.18 0.86 1.63 1.90 0.31 0.28
USA 2218 490.0 3.43 486.3 479.1 492.3 3.08 0.90 0.90 1.29 2.32 0.37 0.28

Note. cnt = country label (see Appendix A); N = sample size; M = composite estimator for multi-model infer-
ence (see (8)); ME = model error (see (9)); ER = error ratio defined as ME/SE (see (10)); Items = item choice
(see Section 2.2.4); Model = specified IRT model (see Section2.2); Pos = choice for handling position effects
(see Section 2.2.5); RMSD = used cutoff value for RMSD item fit statistic for handling DIF (see Section 2.2.2);
Score0 = scoring of missing item responses (see Section 2.2.3); Square roots of variance components larger than
1.00 are printed in bold.
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The variability in the country means across countries was very similar for the refer-
ence model (M = 500, SD = 33.37) and the composite estimator across models (M = 500,
SD = 33.34). At the level of countries, the model error ranged between 1.22 (FIN) and 5.74
(BRN) with an average value of 3.05 (SD = 1.05). The distribution of the error ratio ER
across countries indicated that model uncertainty was (on average) of similar importance
like standard errors (M = 1.12), while it substantially varies across countries (SD = 0.47,
Min = 0.51, Max = 5.74). These findings imply that there could be good reasons to include
the component of model uncertainty in statistical inference.

In Figure 1, the country means for four countries Austria (AUT), Spain (ESP), the
Netherlands (NLD) and USA are displayed as a function of factors in the multiverse analysis.
These four countries were intentionally chosen to illustrate that the factors in the multiverse
analysis have country-specific impacts on their means. Country means that differs from
the reference value by at least 0.5 times a standard deviation of a corresponding model are
displayed in red or blue lines, respectively. We do not use confidence intervals for inference
in Figure 1 because the estimates are strongly dependent across models, and model error
is practically uncorrelated with sampling error. That is, model uncertainty constitutes
an additional source of uncertainty that is, at least in large sample sizes, unrelated to
sampling uncertainty.

For Austria (AUT; ME = 2.97, ER = 0.93; upper left panel in Figure 1), Table 2 indicated
that position (“Pos”: SRVC = 1.50) and the RMSD cutoff (“RMSD”: SRVC = 2.34) were
the most important factors for the country mean in the multiverse analysis. It can be seen
that low country means are obtained for model specifications that involve “RMSD100”.
This specification corresponds to the scaling model in which all items were assumed to be
invariant. In contrast, specifications with RMSD cutoff values of 0.08 (“RMSD008”) or 0.05
(“RMSD005”) resulted in higher country means for Austria. These specifications allow for
some noninvariant items. Critically, the noninvariant items do not contribute to the linking
of Austria to the common international metric, which possibly explains difference between
the factor levels of “RMSD”. Moreover, if only students and items at the first test position
(“Pos1”) were included in the analysis, country means were lower on average compared
with the overall mean of M = 509.7 across all model specifications in the multiverse analysis.

For Spain (ESP; ME = 1.91, ER = 0.93; upper right panel in Figure 1), position effects
(SRVC = 1.40) were the most important factor. Model specifications that included all four
test positions resulted in lower country means (“Pos1234”) than those that included only
the first (“Pos1”) or the first and the second test position (“Pos12”). Interestingly, the lowest
country mean was obtained if all items were used in combination with RMSD cutoff values
of 0.08 and 0.05, resulting in an elimination of some items from linking for Spain.

For the Netherlands (NLD; ME = 3.50, ER = 1.29; lower left panel in Figure 1), the
RMSD cutoff value for the treatment of DIF (“RMSD”) had the largest impact (SRVC =
2.61), followed by test position (“Pos”; SRVC = 1.36) and missing data treatment (“Score0”,
SRVC = 1.23). The country means for the Netherlands were lowest when the most strict
RMSD cutoff value of 0.05 was applied (“RMSD005”). Moreover, if only the first (“Pos1”) or
the first and second (“Pos12”) test positions were used in the analysis, country means in the
different model specifications were larger on average than the country means based on all
four test positions (“Pos1234”). Finally, country means were larger on average if all missing
item responses were scored as incorrect (factor level “S960” for the factor “Score0”).

For the USA (USA; ME = 0.90, ER = 0.90; lower right panel in Figure 1), the missing
data treatment (“Score0”) had the largest impact on country means (SRVC = 2.32). Country
means were lower on average if all missing items were scored as non-administered (“S0”).
In contrast, country means for the USA were larger if all missing items were scored as
incorrect (“S960”) or only omitted items were scored as incorrect (“S90”).
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1

Figure 1. Graphical visualization of multiverse analysis involving M = 162 models for country
means µ for countries Austria (AUT; upper left panel), Spain (ESP; upper right panel), Netherlands
(NLD; lower left panel), and USA (lower right panel). The dashed line corresponds to the value
from the reference model. Country means colored in blue, gray, or red indicate that they are larger,
similar, or smaller than the reference value, respectively.

In Table 3, the results of the multiverse analysis of PISA 2018 mathematics for σ

are presented. The average model error (ME) across countries was 2.98 (SD = 1.13) and
ranged between 1.27 (Spain; ESP) and 5.55 (The Netherlands, NLD). The error ratio (ER) for
country standard deviations was 1.45 on average (SD = 0.50; Min = 0.74, Max = 3.05) and
slightly larger than the ER for country means. This means that model uncertainty induced
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more variability in standard deviations than sampling uncertainty due to the sampling of
students (see also findings in [54]).

Table 3. Results of a multiverse analysis for PISA 2018 mathematics for standard country deviations.

Reference Model Multi-Model Inference Square Root of Variance Component (SRVC)

cnt N Est SE M Min Max ME ER Pos RMSD Score0 Items Model

ALB 2116 87.9 2.03 84.9 75.9 96.2 5.09 2.50 3.12 1.27 0.67 0.18 3.11
AUS 6508 98.2 1.56 95.7 90.3 100.8 2.23 1.43 1.91 0.54 0.62 0.18 0.17
AUT 3104 95.5 2.16 94.3 90.7 98.9 1.60 0.74 0.13 0.25 0.24 0.43 0.43
BEL 3763 95.2 1.89 96.4 92.2 100.1 1.73 0.91 0.90 0.22 0.28 0.56 0.89
BIH 2934 87.1 1.78 84.7 74.3 104.0 5.43 3.05 3.07 1.00 0.96 0.12 3.72
BLR 2681 95.0 2.33 100.1 92.7 108.5 3.63 1.56 3.05 0.13 0.86 1.20 0.41
BRN 2259 96.5 1.73 94.3 88.8 102.5 3.12 1.81 1.15 0.55 0.30 0.29 2.19
CAN 7200 92.8 1.43 93.2 88.9 97.5 1.88 1.32 0.56 0.24 0.42 0.84 1.02
CHE 2679 97.8 2.00 97.3 90.9 101.0 2.00 1.00 1.24 0.32 0.55 0.75 0.64
CZE 3199 94.3 1.94 98.0 94.3 103.5 1.75 0.90 0.69 0.70 0.87 0.66 0.56
DEU 2482 97.6 1.73 98.1 93.0 104.0 2.30 1.33 0.63 0.60 0.24 1.47 0.43
DNK 3304 86.1 1.78 84.9 77.8 90.3 2.89 1.62 2.45 0.72 0.37 0.38 1.03
ESP 11855 87.8 1.31 87.4 84.0 91.0 1.27 0.97 0.60 0.48 0.35 0.21 0.25
EST 2467 85.4 1.70 87.6 79.0 95.1 3.49 2.05 0.64 0.31 0.68 1.96 2.30
FIN 2573 83.2 1.84 85.4 81.0 90.2 2.12 1.15 0.67 0.90 0.68 0.40 0.87
FRA 2880 95.4 2.10 93.1 86.1 96.2 1.87 0.89 1.17 0.53 0.44 0.48 0.74
GBR 5979 100.4 1.90 98.7 91.8 105.0 2.83 1.49 1.69 0.17 1.59 1.04 0.42
GRC 2114 91.8 2.45 92.8 86.5 103.4 3.87 1.58 2.76 0.83 0.70 0.66 1.90
HKG 2008 98.9 2.79 96.8 85.7 107.0 5.03 1.80 3.45 1.92 0.57 0.02 2.62
HRV 2150 86.8 2.54 87.8 82.1 94.8 2.71 1.07 1.70 0.56 0.38 0.46 1.58
HUN 2361 94.7 2.15 98.7 92.8 106.9 3.52 1.64 1.36 1.35 0.26 2.47 1.21
IRL 2581 80.0 1.42 80.1 76.5 84.3 2.11 1.49 1.31 0.53 0.28 1.11 0.29
ISL 1485 93.5 2.33 93.4 88.2 97.5 2.03 0.87 0.51 0.51 0.43 0.29 0.47
ISR 1944 119.8 3.15 117.9 109.8 128.8 3.97 1.26 2.05 0.69 1.38 1.29 1.81
ITA 5475 94.6 2.49 93.9 87.6 97.1 2.11 0.85 0.92 0.34 0.30 1.59 0.19
JPN 2814 91.4 2.33 89.1 79.0 97.8 4.33 1.86 3.08 0.90 0.39 1.68 1.64
KOR 2200 103.4 2.48 98.0 86.3 107.8 3.99 1.61 1.36 1.47 1.30 1.16 1.71
LTU 2265 93.3 2.07 95.6 90.8 101.5 2.29 1.11 0.65 0.35 1.11 1.52 0.02
LUX 2407 101.2 1.64 101.0 95.7 106.1 2.05 1.25 0.33 0.28 0.67 1.33 0.78
LVA 1751 84.1 2.08 83.0 73.3 88.5 3.33 1.60 0.85 1.10 0.23 2.51 0.87
MLT 1113 112.8 3.17 104.2 95.3 114.7 4.27 1.35 2.16 1.35 2.96 0.23 0.45
MNE 3066 89.2 1.57 84.3 78.2 92.4 2.84 1.81 0.97 0.35 1.03 1.23 1.61
MYS 2797 88.2 1.90 88.5 80.0 96.9 3.72 1.95 1.44 1.42 1.04 0.05 2.19
NLD 1787 90.0 2.54 90.2 78.7 101.5 5.55 2.19 3.75 0.31 0.22 1.80 2.96
NOR 2679 95.2 1.78 91.7 86.2 96.5 2.08 1.17 0.71 1.10 0.33 0.99 0.59
NZL 2821 97.9 1.64 99.4 95.9 103.4 1.79 1.09 0.36 0.05 0.37 1.33 0.43
POL 2577 94.2 2.12 95.4 89.7 99.3 1.94 0.92 1.18 0.87 0.14 0.70 0.75
PRT 2730 97.6 2.17 103.5 94.9 113.1 4.13 1.90 3.23 0.48 1.21 1.90 0.26
RUS 2510 84.6 2.16 85.7 81.0 93.0 2.59 1.20 2.01 1.01 0.24 0.38 0.30
SGP 2201 101.5 1.90 102.2 89.6 111.6 4.73 2.49 0.23 1.78 0.81 1.09 3.92
SVK 1904 97.8 2.26 99.2 92.0 109.8 3.06 1.35 0.71 1.28 0.73 1.41 0.96
SVN 2863 91.1 1.97 92.9 89.0 96.6 1.79 0.91 0.91 0.63 0.22 0.06 0.72
SWE 2539 95.1 1.89 97.0 89.3 103.3 3.23 1.71 2.25 1.23 0.84 0.88 0.20
TUR 3172 94.2 2.37 96.9 89.1 107.6 3.44 1.45 0.87 2.14 1.27 1.21 0.45
USA 2218 97.1 2.34 98.9 93.1 106.2 2.60 1.11 0.94 0.76 0.91 1.39 0.38

Note. cnt = country label (see Appendix A); N = sample size; M = composite estimator for multi-model inference
(see (8)); ME = model error (see (9)); ER = error ratio defined as ME/SE (see (10)); Items = item choice (see
Section 2.2.4); Model = specified IRT model (see Section2.2.1); Pos = choice for handling position effects (see
Section 2.2.5); RMSD = used cutoff value for RMSD item fit statistic for handling DIF (see Section 2.2.2); Score0 =
scoring of missing item responses (see Section 2.2.3); Square roots of variance components larger than 1.00 are
printed in bold.
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In Figure 2, the country standard deviations for four countries Austria (AUT), Spain
(ESP), the Netherlands (NLD) and USA are displayed as a function of factors in the mul-
tiverse analysis. The model errors for Austria (ME = 1.60) and Spain (ME = 1.27) were
smaller than for the Netherlands (ME = 5.55) and the USA (ME = 2.60).

The variability in standard deviations for the Netherlands (NLD; lower left panel in
Figure 2) was particularly large (M = 90.2, Min = 78.7, Max = 101.5). Test position (“Pos”;
SRVC = 3.75), choice of the IRT model (“Model”; SRVC = 2.96), and item choice (“Items”;
SRVC = 1.80) had the largest impact. The country standard deviations computed on all
four test positions (“Pos1234”) were larger than those obtained from the first (“Pos1”) or
the first and the second (“Pos12”) test positions. The standard deviations based on the 1PL
model were larger on average than those obtained with the 2PL or the 3PLRH models.2 Sigma
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Figure 2. Graphical visualization of multiverse analysis involving M = 162 models for country
standard deviations σ for countries Austria (AUT; upper left panel), Spain (ESP; upper right panel),
Netherlands (NLD; lower left panel), and USA (lower right panel). The dashed line corresponds
to the value from the reference model. Country standard deviations colored in blue, gray, or red
indicate that they are larger, similar, or smaller than the reference value, respectively.
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4. Discussion

Our study illustrates that model uncertainty (i.e., model error) cannot be neglected
in outcomes of educational LSA studies such as PISA. It was shown that model error was
more pronounced in country standard deviations than in country means. Discussions
about model specifications in the literature often focus on the influence of country means
or country rankings. This might have led to false impressions that particular modeling
choices were less consequential.

It turned out that all five considered specification factors in our multiverse analysis
had an impact on either country means or standard deviations or both statistics. Test
position impacted the mean and the standard deviation. Interestingly, the DIF and the
missing item response treatment mainly affected the country mean more than the standard
deviation. At the same time, the choice of the IRT model strongly influenced the standard
deviation (see also [54]).

Particular model specification choices differentially impact the mean or the standard
deviation of a country. For example, the choice of different RMSD cutoff values depends on
the proportion of DIF items in a country. Moreover, the missing item response treatment
will mainly affect countries with relatively low or high missing proportions compared to
the average proportion of all countries. We studied the model error and the error ratio for
quantifying the country-specific model uncertainty in our multiverse analysis.

If all model specifications are plausible, model uncertainty can be ignored and consid-
ered part of the statistical inference in country comparisons in educational LSA studies. By
varying different model specifications, different assumptions about model generalization
are made. This perspective was taken in a sampling model of validity [146,147].

In [45], we argued that the computation of statistics for the latent variable θ (i.e., the
ability variable) should be mainly motivated by design-based considerations. We think
that particular specification choices are preferable for the five considered factors in our
multiverse analysis. We will discuss our preferences in the following.

First, for the test position, we think that the test design should be defined a priori. We
do not think that it is a threat to validity because country rankings can change if the first
two or all test positions were used in an analysis. The computed ability in a longer test of
120 min testing time represents a different test situation than in a test that only involves
60 min of testing time. A researcher must define how ability should be assessed. Some
researchers argue that test position must be disentangled from performance decline that
could be due to lower test motivation at later test positions [131]. We do not think that it is
useful to define ability independent of test motivation. One could put the argument to the
other extreme that average performance should be computed only for one administered
item per student at the beginning of the test because the performance on subsequently
administered items also depends on test persistence.

Second, we think that the mechanistic inclusion of country-specific item parameters
for DIF items based on certain RMSD cutoff values decreases validity because country
comparisons effectively only rely on the items that are declared to be non-DIF-items [45,79].
If substantial DIF for an item is detected, researchers must judge whether the DIF truly
refers to a bias in measurement for a country. That is, it must be decided whether DIF is
construct-relevant or construct-irrelevant [32,63,78]. In the PISA studies until PISA 2012,
DIF items were only removed from analysis if technical reasons or explanations for the
DIF were found [148,149]. Hence, DIF items for a particular item had international item
parameters that were assumed to be invariant across countries, although there is a misfit in
some countries. We argued elsewhere [45] that model misfit should be no concern in LSA
studies because all IRT models are intentionally misspecified. The model parameters in a
selected IRT model receive their sole meaning because of their definition in the likelihood
function for deriving summaries of the multivariate item response dataset. Hence, item
and model parameters such as country means and standard deviations can be unbiased
even if the IRT model is grossly misspecified. Hence, conclusions in the literature that there
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might be biased country means or standard deviations due to the presence of DIF [70,150]
are misplaced.

Third, we believe that missing item responses should always be treated as incorrect
in educational LSA studies [45,98]. Otherwise, countries can simply manipulate their
performance by instructing students to omit items they do not know [88]. We are also
unconvinced that response times are beneficial for obtaining more valid ability measures by
downweighing item responses with very fast item responses (see [33] for such arguments).
Moreover, proponents of model-based treatments of missing item responses assume that
the probability of omitting an item depends on latent variables but not the particular
item itself (i.e., they pose a latent ignorability assumption; see [33,85]). It has been shown
that this modeling assumption must be refuted by means of model fit [88]. Interestingly,
analyses for PISA have shown that the missingness of constructed-response items can be
statistically traced back to the fact that students do not know the item. We are also less
convinced of the scoring of not-reached items as non-administered since PISA 2015. We
think that not-reached items should always be scored as incorrect because ability should
be defined on student’s performance for a fixed length, not a test length chosen by the
test taker.

Fourth, we have shown that the choice of items can impact country means and
standard deviations. We think the uncertainty due to item choice should be included in
statistical inference. For cross-sectional and trend estimates [45,112], this concept is labeled
as linking error and can be simply determined by resampling techniques of items [54,80]. In
this sense, all items should be included in a cross-sectional analysis. With a larger number
of representative items for a larger item domain [151,152], the linking error will be smaller.
The situation is a bit more intricate for trend estimation in LSA studies (i.e., the trend in
country means for PISA mathematics between PISA 2015 and PISA 2018) if the item sets in
the two studies differ. Typically, there will be link items that appear in both assessments
and unique items that are only administered in one study. In this case, trend estimates
computed only on link items might be more efficient than those computed on all items [112]
if DIF between countries exists. If the same items were used for trend estimation, stable
country DIF effects are blocked because only changes in item performances are effectively
quantified in trend estimation. In contrast, the average of DIF effects of unique items and
of link items impacts trend estimates if all items were used in the analysis [45].

Fifth, the choice of the IRT model is crucial for defining the impact of items in the
ability variable [31,45,54]. Until PISA 2012, the 1PL model was used that equally weighs
items in the ability variable. Since PISA 2015, the 2PL model has been utilized that weighs
item discriminations that are estimated in the IRT model. We concur with Brennan ([153];
see also [154]) that it is questionable to let a statistical model decide how items should
be weighed in the ability variable. The resulting weighing of items might contradict the
intended test blueprint composition [31]. Some researchers argue that one should not
fit more complex IRT models than the 2PL model, such as the three-parameter logistic
(3PL) IRT model. They argue that at most two item parameters can be identified from
multivariate data [75] and base their argument on a result of the Dutch identity of Hol-
land [155]. However, Zhang and Stout [156] disproved the finding. Hence, using the
2PL model instead of the 3PL or the alternative 3PLRH model might in LSA studies be
rather a personal preference than due to model fit or validity reasons. In typical LSA
datasets, item responses are multidimensional, and violations of local dependence are
likely found [157–159]. We argued above that the chosen unidimensional IRT model must
(and will typically) not hold (see also [160]). However, we have shown that for reasons of
model fit, the 2PL model must be refuted in the PISA study [54].

Finally, we would like to emphasize that we believe that decisions for model specifi-
cations in LSA studies must not be primarily convincing based on research findings, but
are selected by purpose. We doubt that that model fit should play a role in reaching a
decision. It could be more honest to state that the model specifications of a particular test
scaling contractor in LSA studies are part of its role as a player in the testing industry, and
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every company has its own brands (i.e., IRT models and model specifications). Choices are
almost always made by conventions and historical or recent preferences, but the underly-
ing motivations should be transparently disclosed [161]. We doubt that discussions about
analytical choice can be resolved by relying on empirical findings.
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Abbreviations
The following abbreviations are used in this manuscript:

1PL one-parameter logistic model
2PL two-parameter logistic model
3PL three-parameter logistic model
3PLRH three-parameter logistic model with residual heterogeneity
ANOVA analysis of variance
DIF differential item functioning
ER error ratio
IRF item response function
IRT item response theory
LSA large-scale assessment
ME model error
MML marginal maximum likelihood
PIAAC programme for the international assessment of adult competencies
PISA programme for international student assessment
SE standard error
SRVC square root of variance component
TIMSS trends in international mathematics and science study

Appendix A. Country Labels for PISA 2018 Mathematics Study

The country labels used in the tables of the Results Section 3 are as follows:

ALB = Albania; AUS = Australia; AUT = Austria; BEL = Belgium; BIH = Bosnia
and Herzegovina; BLR = Belarus; BRN = Brunei Darussalam; CAN = Canada;
CHE = Switzerland; CZE = Czech Republic; DEU = Germany; DNK = Denmark;
ESP = Spain; EST = Estonia; FIN = Finland; FRA = France; GBR = United King-
dom; GRC = Greece; HKG = Hong Kong; HRV = Croatia; HUN = Hungary;
IRL = Ireland; ISL = Iceland; ISR = Israel; ITA = Italy; JPN = Japan; KOR = Korea;
LTU = Lithuania; LUX = Luxembourg; LVA = Latvia; MLT = Malta; MNE = Mon-
tenegro; MYS = Malaysia; NLD = Netherlands; NOR = Norway; NZL = New Zealand;
POL = Poland; PRT = Portugal; RUS = Russian Federation; SGP = Singapore; SVK =
Slovak Republic; SVN = Slovenia; SWE = Sweden; TUR = Turkey; USA = United States.

https://www.oecd.org/pisa/data/2018database/
https://www.oecd.org/pisa/data/2018database/
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Appendix B. International Item Parameters for PISA 2018 Mathematics Study

Table A1 presents estimated item parameters for the international calibration sample
551 including 70 items if all missing item responses were treated as incorrect.

Table A1. Estimated item parameters for the 1PL, 2PL, and the 3PLRH model.

1PL 2PL 3PLRH

Item a bi ai bi ai bi δi

CM033Q01S 1.273 −1.818 0.903 −1.615 0.656 −1.149 0.026
CM474Q01S 1.273 −0.951 0.924 −0.834 0.690 −0.668 0.763
DM155Q02C 1.273 −0.133 1.594 −0.113 1.045 −0.271 1.454
CM155Q01S 1.273 −0.999 1.482 −1.040 1.059 −0.864 1.142
DM155Q03C 1.273 2.259 1.357 2.318 0.962 1.643 −0.283
CM155Q04S 1.273 −0.176 0.995 −0.138 0.652 −0.220 1.091
CM411Q01S 1.273 0.072 1.683 0.119 1.090 −0.122 1.524
CM411Q02S 1.273 0.394 0.912 0.375 0.639 0.349 −0.832
CM803Q01S 1.273 1.482 1.918 1.824 1.282 1.205 0.626
CM442Q02S 1.273 1.223 1.940 1.528 1.296 0.971 0.769
DM462Q01C 1.273 3.612 1.413 3.726 1.010 2.623 −0.189
CM034Q01S 1.273 0.706 1.331 0.744 0.845 0.396 0.907
CM305Q01S 1.273 0.505 0.314 0.414 0.226 0.300 −0.155
CM496Q01S 1.273 0.240 1.500 0.287 1.025 0.125 0.506
CM496Q02S 1.273 −0.782 1.240 −0.771 0.881 −0.651 0.884
CM423Q01S 1.273 −1.489 0.833 −1.324 0.633 −0.974 0.393
CM192Q01S 1.273 0.541 1.428 0.601 0.991 0.459 −0.303
DM406Q01C 1.273 1.653 1.810 1.997 1.267 1.457 −0.824
DM406Q02C 1.273 2.575 2.595 3.802 1.865 2.743 −0.088
CM603Q01S 1.273 0.799 0.916 0.746 0.658 0.569 −0.416
CM571Q01S 1.273 0.374 1.376 0.416 0.955 0.342 −0.395
CM564Q01S 1.273 0.194 0.737 0.184 0.489 0.219 −0.988
CM564Q02S 1.273 0.275 0.718 0.253 0.455 0.295 −1.489
CM447Q01S 1.273 −0.638 1.440 −0.653 0.979 −0.392 −0.554
CM273Q01S 1.273 0.379 0.997 0.364 0.700 0.259 −0.036
CM408Q01S 1.273 0.885 1.290 0.921 0.850 0.557 0.680
CM420Q01S 1.273 0.118 1.041 0.125 0.715 0.023 0.481
CM446Q01S 1.273 −0.779 1.775 −0.886 1.264 −0.728 0.678
DM446Q02C 1.273 3.121 2.280 4.190 1.595 3.060 0.544
CM559Q01S 1.273 −0.458 0.876 −0.401 0.591 −0.241 −0.371
DM828Q02C 1.273 −0.498 1.082 −0.459 0.755 −0.446 1.053
CM828Q03S 1.273 1.154 1.271 1.185 0.768 0.699 1.038
CM464Q01S 1.273 1.545 2.006 2.001 1.389 1.379 0.280
CM800Q01S 1.273 −2.329 0.639 −1.988 0.711 −1.450 1.417
CM982Q01S 1.273 −2.075 0.922 −1.889 0.829 −1.407 1.387
CM982Q02S 1.273 0.995 0.977 0.912 0.603 0.552 0.725
CM982Q03S 1.273 −0.718 1.082 −0.673 0.772 −0.514 0.272
CM982Q04S 1.273 0.188 1.463 0.219 1.007 0.206 −0.426
CM992Q01S 1.273 −1.188 1.207 −1.164 0.792 −0.759 −0.530
CM992Q02S 1.273 2.333 1.846 2.779 1.291 1.961 −0.064
DM992Q03C 1.273 3.310 2.817 5.055 2.141 3.942 0.802
CM915Q01S 1.273 0.548 0.938 0.499 0.654 0.426 −0.718
CM915Q02S 1.273 −0.976 1.215 −0.956 0.889 −0.819 1.427
CM906Q01S 1.273 −0.485 1.233 −0.470 0.830 −0.283 −0.391
DM906Q02C 1.273 0.888 1.824 1.086 1.201 0.598 1.370
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Table A1. Cont.

1PL 2PL 3PLRH

Item a bi ai bi ai bi δi

DM00KQ02C 1.273 2.551 1.166 2.464 0.883 1.763 −0.426
CM909Q01S 1.273 −2.383 1.710 −2.707 1.263 −1.941 0.322
CM909Q02S 1.273 −0.429 1.595 −0.455 1.110 −0.266 −0.520
CM909Q03S 1.273 1.024 2.379 1.445 1.677 0.927 0.760
CM949Q01S 1.273 −1.072 1.639 −1.183 1.177 −0.899 0.418
CM949Q02S 1.273 0.876 1.353 0.905 0.951 0.682 −0.447
DM949Q03C 1.273 1.093 1.456 1.160 1.000 0.785 0.177
CM00GQ01S 1.273 3.207 1.839 3.700 1.310 2.582 −0.430
DM955Q01C 1.273 −1.083 0.977 −0.978 0.735 −0.785 1.012
DM955Q02C 1.273 0.914 1.414 0.961 0.957 0.621 0.349
CM955Q03S 1.273 2.982 2.255 3.876 1.543 2.809 0.818
DM998Q02C 1.273 −0.854 1.185 −0.817 0.857 −0.655 0.614
CM998Q04S 1.273 0.690 0.236 0.529 0.264 0.414 −1.939
CM905Q01S 1.273 −1.436 1.020 −1.300 0.709 −0.908 −0.123
DM905Q02C 1.273 0.611 1.965 0.778 1.335 0.413 0.865
CM919Q01S 1.273 −1.781 1.672 −1.980 1.250 −1.490 1.185
CM919Q02S 1.273 0.391 1.106 0.384 0.654 0.110 1.327
CM954Q01S 1.273 −0.966 2.022 −1.177 1.456 −0.901 0.343
DM954Q02C 1.273 0.947 1.636 1.066 1.096 0.668 0.508
CM954Q04S 1.273 1.406 2.065 1.782 1.305 1.070 2.059
CM943Q01S 1.273 −0.053 0.855 −0.029 0.559 0.074 −0.930
CM943Q02S 1.273 3.979 2.474 5.277 1.723 3.909 0.478
DM953Q02C 1.273 0.690 1.435 0.735 0.982 0.469 0.273
CM953Q03S 1.273 0.052 2.007 0.098 1.394 −0.060 0.760
DM953Q04C 1.273 2.727 2.707 3.968 1.882 2.894 1.052

Note. 1PL = one-parameter logistic model; 2PL = two-parameter logistic model; 3PLRH = three-parameter logistic
model with residual heterogeneity.
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