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Abstract 
We have built a Galton board where the traditional nails can be encapsulated by threaded (and removable) hollow 

cylinders, eventually obtaining a board with screws. Ideally our board, with 12 rows, should have 13 columns. Due to 

material limitations, it has only 5 columns, making the contribution of the absorbing side walls significant. The 

absorption in each of these 5 columns is calculated, in the nail and screw arrangement, making use of the binomial 

distribution that would be valid for an ideal board. In the screw arrangement, a bias to the right of value p = 0.53 ± 

0.14 arises, which increases to p = 0.58 ± 0.11 when the absorption effect is corrected. Using the gambler's ruin theory 

it is possible to calculate the "average life" of the marble before it is absorbed in its downward motion: it would be 16 

shocks for the nails and a little more than 14 shocks for the screws. Although these "average lives" have not been 

directly measured, our experimental results are consistent with these values.  
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Resumo 
Construímos uma tábua de Galton onde os tradicionais pregos podem ser encapsulados por cilindros ocos rosqueados 

e removíveis, obtendo-se assim uma tábua com parafusos. Idealmente nossa tábua, com 12 linhas, deveria ter 13 

colunas. Por limitações materiais, ela tem apenas 5 colunas, tornando significativo a contribuição das paredes laterais 

absorvedoras. A absorção em cada dessas 5 colunas é calculada, no arranjo de pregos ou parafusos, fazendo-se uso da 

distribuição binomial que seria válida para uma tábua ideal. No arranjo com parafusos, surge uma distribuição com 

bias para a direita de valor p = 0,53 ± 0,14 e que se eleva para de p = 0,58 ± 0,11, quando se corrije o efeito da absorção. 

Usando a teoria da ruína do jogador é possível calcular a “vida média” da bolinha de gude antes de ser absorvida no 

seu movimento descendente: seria de 16 choques para os pregos e um pouco mais que 14 choques para os parafusos. 

Embora essas “vidas médias” não tenham sido diretamente medidas, nossos resultados experimentais são compatíveis 

com esses valores.  

 

Palavras-chave: probabilidade, distribuição gaussiana, distribuição normal, distribuição binomial, viés, paredes 
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I. INTRODUCTION  
 

The normal distribution, represented by a Gaussian curve 

(bell shape), is of fundamental importance in the analysis of 

random variations of many phenomena (although there are 

notable exceptions [1]). The Galton board, formed by an 

inclined plane through which a marble descends and collides 

with pins arranged in the form of quincunxes (like the figure 

of the number 5 on a die), shows this distribution, provided 

the number of pins is quite large [2]. This distribution of the 

marbles in the lower collection boxes (called bins) is discrete 

and, strictly speaking, cannot be represented by the normal 

distribution, which is continuous. In fact, we have an 

approximation of the correct distribution, called binomial 

(see equation 1). This approximation process is a particular 

case of the central limit theorem [3, 4], which essentially 

states that the sum of random independent variables tends to 

a Gaussian distribution when the number of variables 

approaches infinity. 

This apparatus was first built by Sir Francis Galton in 

1873 [2] and nowadays can also illustrate phenomena such as 

nonlinear dynamics [5], granular systems mixing [6], 

mechanical [7] or light [8] diffusion, ion transport in organic 

compounds [9], etc. 

Our board differs from the traditional one in two basic 

aspects: the pins that are normally cylindrical (nails) can now 

be replaced by cylinders hollowed out by helices (screws).  

This allows inducing a preferential direction for the marbles 

after each shock (a bias). Another difference is that, due to 

material limitations, our board is narrower than ideal and the 

side walls limit the movement of the marbles.  

 

 

II. MATERIALS AND METHODS  
 

A standard Galton board is wide enough that the side walls 

do not interfere with the movement of the marbles [2, 10, 11]. 

The larger the number of rows with pins, the larger the 
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number of bins, which collect the marbles. So, if we have 12 

rows, we should have 12+1=13 bins, commonly numbered 

from left to right (for someone looking at the board) from 0 

to 12. These 13 bins would include all possibilities, from a 

marble suffering the 12 deviations to the left (falling in bin 

zero) to one with the 12 deviations to the right (falling in bin 

thirteen). In no case would there be a collision with any side 

walls of the board. 

In this situation, the probability Pk for a marble to fall into 

bin k, is given by the binomial distribution function [11, 12]: 

 

𝑃𝑘 =  
𝑛!

𝑘!(𝑛−𝑘)!
 𝑝𝑘(1 − 𝑝)𝑛−𝑘,                  (1) 

 

where n is the number of times the experiment (collision) 

repeats itself and p is the probability of "success". We choose 

"success" for marble move to the right after the collision with 

a pin. So-called Bernoulli trials [12] are assumed, that is, 

three hypotheses are considered valid: the events are 

independent (it does not depend on what happened before), 

the possible outcomes are just two (“success” or “failure” or, 

in our case, right or left) and the probability of a “success” is 

always constant (but not necessarily equal to the probability 

of a “failure”). 

There are several paths that lead to a given bin. In 

common, they must always have the same number of left and 

right turns. The second term on the right-hand side of the 

equation 1 (the one that does not involve factorials) gives us 

the probability of the marble making this specific number of 

turns, regardless of the order in which they are made. 

Whereas the first term on the right-hand side of the equation 

1 (the one involving the factorials) tells us how many 

trajectories there are with that number of turns, each 

trajectory being defined by the order in which the turns are 

performed [11]. 

Our board, shown in figure 1, has 12 effective lines of 

pins (nails or screws), each of which has 5 or 4 equally-

spaced pins alternately. Therefore, the arrangement of the 

pins is in quincunx, that is, just like the figure that represents 

number 5 of a die. The nails can be encapsuled with steel 

sleeves, hollowed out by helices in the exterior, becoming 

then like screws. In the photo appear 13 lines, but the marble 

does not hit the first one (with 4 pins). This would only 

happen if it was thrown inclined, which is not the case in our 

experiment. There are also (only) 5 vertical columns which, 

at the bottom, will correspond to 5 bins where the marble may 

end, numbered 4 to 8 from left to right. This numbering, odd 

at first glance, is chosen to be in accordance with that 

corresponding to an identical Galton board, but without side 

walls, where the possible bins would go from 0 to 12 (in both 

cases number 6 is the central bin). Furthermore, there is an 

extra space (as if they were half columns) at the extreme right 

and left sides of our board. The marble, when it reaches these 

spaces, is imprisoned and cannot continue its journey down 

towards the 5 bins. When this occurs, for reasons that will be 

better explained below, the marble is deliberately removed, 

not contributing to the final count in the bins. It is as if the 

side walls were absorbing walls. 

 

The measurements of our Galton board are (with errors of 

the order of ± 5%): 

 Board: width = 120mm, length = 330mm, inclination with 

horizontal = 25 degrees, made of wood. 

 Nails: diameter = 3mm, height = 22mm, made of steel. 

 Separations: horizontal between consecutive nails = 24mm, 

vertical between consecutive nails = 24mm. 

 Screwed "nail sleeve": height = 25mm, internal diameter = 

4mm, external diameter = 6mm, threads per millimeter = 

0.75, right thread, made of steel. 

 Marble: diameter = 18mm, made of glass, distance between 

the point where it is dropped and the first pin it hits = 90mm. 

 

In our case the marbles were launched one by one, 800 times 

for nails and again for screws. In some experiments they are 

thrown almost simultaneously and collisions among them 

occur, at least during a transient time [2,6,13]. It becomes 

clear that the hypothesis of the binomial distribution is 

undermined, if there are such collisions. Nevertheless, it 

seems that significant changes from the one-by-one launches 

method (like ours) would be restricted to the dynamics of the 

marbles, with different dependencies of their average 

velocity on certain parameters [6,13]. 

As explained earlier, the marble, upon touching one of the 

two side walls, becomes trapped and is removed from our 

Galton board. This corresponds to absorbing walls, as 

opposed to reflecting walls, where the marble would continue 

on its downward journey. Why we choose to remove? The 

fundamental reason is that those marbles get trapped due to 

the particular arrangement in our board.  Therefore, its 

relocation would be somewhat arbitrary, as to the modulus 

and direction of the velocity with which this would be 

accomplished. Moreover, an experiment with reflecting walls 

[13] shows that when these walls are very close together there 

is a tendency to form a uniform final distribution, without a 

well-defined maximum. This would hinder the visualization 

of an eventual bias, introduced when the nails are replaced by 

screws. The bias would cause an asymmetry in the final 

distribution of the marbles using screws, in relation to the 

expected symmetrical distribution using nails. However, if, 

when using nails, but due to the proximity of reflecting walls, 

the distribution tends to be uniform, when changing to 

screws, the eventual introduced bias would be masked, since 

the uniform distribution is always symmetrical. These are the 

two reasons why we opted for absorbing rather than reflecting 

walls. 
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FIGURE 1. Our Galton board with 12 effective lines and 5 columns ending in bins that collect marbles. The choice of numbering for the bins 

follows the standard of traditional broad boards (not limited by walls). On the left, one can sees the removable sleeve that turns the nails into screws. 

 

 

 

III. RESULTS AND DISCUSSION 
 

A. Quantifying the absorption for nails 

 

Experimental distribution of the marbles are shown in figure 

2 for nails and figure 3 for screws. We can calculate, from 

equation 1, what the binomial distribution would look like 

(without bias and without sidewalls) in the central 5 bins, if 

there were 12 bins on the Galton board. If we subtract, from 

these ideal values, the values obtained in the experiment with 

nails, we will obtain the absorption Ak, for each of the 5 bins 

of our nail board. As we are assuming perfect symmetry, the 

experimental values will be equalized on the left and on the 

right, with the average between these 2 values. The resulting 

absorption values for each of the bins are:  

 

      A6 = - 11%,       

         A5 = A7 = 1%,            

           A4 = A8 = 45%. 

 

Thus, as expected, the effect of the absorbing walls is greater 

in the bins closest to these walls (bins 4 and 8). But surprising 

is that the absorption effect is negative in the central bin 6. 

Put another way, there is an increase in the number of balls 

in this bin relative to what would be expected if there were 

no absorber walls. It is difficult to imagine a plausible 

mechanism for this negative absorption. What seems likely is 

that it is an upwards fluctuation from the expected value for 

this central bin. But this explanation, of statistical 

fluctuations, fails to explain how absorption decreases 

without variations in behavior (monotonically) from the bins 

farther away toward the central one. In short, the only way 

we can see to explain this negative absorption with absorbing 

walls compared to the case without walls, are statistical 

fluctuations, coming from a not sufficiently high sampling 

(800 balls thrown in the total). But if this were so, it would 

also be reasonable that the fluctuations in the other bins 

would result in a non-monotonic absorption behavior, as one 

moves from the side bins to the central one; but this is not 

what is experimentally verified. 

 

B. Quantifying the bias for screws 

 

Comparing our experimental distribution for the screw board, 

an asymmetry is observed with respect to that with nails. The 

ideal binomial distributions with biases are also asymmetric, 

and due to the shock of the marbles with the right threaded 

screws, it can be assumed that each shock will cause a 

constant bias in the movement of the marbles. Therefore, one 

can search for the value of the theoretical bias that would lead 

to a distribution similar to our screw board. But, regardless of 

the simulated bias we choose [10,11], there are no binomial 

that resemble our experimental distribution. Among the 

possible reasons for that, a main issue is that our experiment 

has absorbing lateral walls and equation 1 does not take this 

into account. In spite of that, a possibility to evaluate the 

experimental bias is by averaging all 10 combinations of the 

5 bins, two by two. Thus, for example, the relationship 

between the marbles in the central bin 6 with  
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FIGURE 2. The experimental distribution of 800 marbles in the five bins in our Galton board with nails. The colorless columns show absorption 

on the left and right walls. 

 

 
FIGURE 3. The experimental distribution of 800 marbles in the five bins in our Galton board with screws. The colorless columns show absorption 

on the left and right walls. 

 

 
their first neighbor on the left (bin 5) worth 256/61 = 4.20. In 

ideal binomial distributions [10] this corresponds to a 0.75 

bias, or p = 0,75 in the binomial formula of equation 1 

(remembering that p = 0,50 would mean no bias). Taking all 
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10 possible bins combinations, we obtained an experimental 

mean value of p = 0.53 ± 0.14 for our screw board. Note that 

the standard deviation has two significant figures, which is 

acceptable, especially when its first significant digit is the 

unit [14].  

 On the other hand, it is also possible to evaluate the bias 

by taking into account that there is absorption in the side 

walls. One way to do this would be to consider valid the 

empirical absorption already observed in our nail board. That 

is, we will assume that the same absorption for each bin of 

the nail board also applies to the screw board. But this is not 

enough, because it is important to consider the asymmetry in 

the absorption of the screw board (which arises in addition to 

that in the distribution itself). That is, the absorbed marbles 

on the left and on the right are in a ratio of 94/107 = 0.88. 

Considering these two terms, the absorption for each bin 

observed in the nail board, and the left-right asymmetry in 

absorption, it is possible to introduce a correction in the 

effective number of marbles in each bin in the screw board.  

Having done this, it is observed that, again, the distribution 

does not correspond to any ideal binomial distribution, 

whatever the bias chosen in the simulation. But, as before, it 

is possible to evaluate the experimental bias by averaging 

over all 10 combinations of the 5 bays, two by two. Thus, the 

new experimental mean bias value for our screw board 

(considering the lateral absorption) is p = 0.58 ± 0.11.  

 

C. Application of the gambler's ruin theory 

 

The absorbing side walls introduce a difficulty in analytically 

forcast the final distribution, even in the simplest case of 

nails, where there is no bias. At any rate, as is physically 

consistent, the motion cannot continue indefinitely with the 

marble having a non-zero probability of being absorbed. That 

is, in the limit where the number of lines tends to infinity, it 

is easy to predict the final distribution of marbles: it will be 

uniform, with all null values (all empty bins at the end). No 

marble will reach the bottom of the board. Besides being a 

reasonable result, it is possible to demonstrate this 

mathematically using gambler's ruin theory [15], which we 

will also use below for another calculation. It is also possible 

to calculate the "average lifetime" of a marble, that is, how 

many shocks it will suffer on average before it is absorbed by 

one of the two walls. This calculation is based on a standard 

random walk problem known as gambler's ruin [15]. It gets 

its name because it is related to how many bets on a roulette 

wheel a player can make before losing his money. Remember 

that in a casino the probability of the banker winning is 

always a little higher (there is a bias favoring the house) 

because of the roulette zeros (1 in Monte Carlo and 2 in 

American casinos). When the result is "zero", all bets are for 

the banker. Making an analogy between this problem and our 

Galton board (nails or screws), suppose that marble 

movements to the left are failures (bet loss) and moves to the 

right are successes (bet gain). If from the first shock, in its 

zig-zag movement, there is a net displacement of 4 times to 

the left, the marble will touch the left wall and be absorbed. 

In a similar way, with a net displacement of 4 times to the 

right, the marble will be absorbed by the right wall. The 

correspondence would be a player with start-up capital of 4 

dollars, who will abandon roulette when he doubles his initial 

capital or, of course, when he is out of money, "ruined". 

Therefore, with this analogy, the gambler´s ruin theory 

predicts that the "average lifetime" of the marble before it is 

absorbed is [15]: 

 

𝐸 =
𝑐

1−2𝑝
 −  

2𝑐

(1−2𝑝)
 

(
1−𝑝

𝑝
)

𝑐
−1

(
1−𝑝

𝑝
)

2𝑐
−1

.                      (2) 

 

In the above equation 2, E represents the average number of 

shocks the marble must suffer before being absorbed, c the 

“start-up capital” and p still is the probability of the marble 

going to the right. Using this equation, if the bias of our screw 

board is taken to be p = 0.58 (or p = 0.53, when correcting 

for absorption), the marble should most likely be absorbed 

after E = 14.3 (or E = 14.2, when correcting for absorption) 

shocks. That is, a larger number than the 12 shocks that occur 

in practice. This is consistent with the experimental fact that 

the percentage of absorbed marbles is smaller than those not 

absorbed, in the 800 throws. 

          This same equation 2 is indeterminate for p = 0.5 (no 

bias).  In this case, one should use the following equation 

[15]: 

 

                                    𝐸 = 𝑐2.                                   (3)  

 

If we assume that, ideally, the nail board has no bias, then we 

have precisely this case, of p = 0.5. Since c = 4, the prediction 

is an average lifetime of E = 16 shocks before absorption. 

Again, not in contradiction with our experimental results. 

 

 

IV. CONCLUSIONS 

 
We show that an asymmetric distribution can be obtained by 

modifying the traditional Galton board by exchanging nails 

for screws. The exit direction of the marbles, after collisions 

with the screws, has a bias to the right. It is reasonable to 

assume that this bias would be to the left if the chirality 

associated with the screws were reversed and they were left-

hand threaded. Galton boards, especially smaller ones like 

ours, are often used as toys, although various probability 

phenomena (such as binomial and Gaussian distributions) 

can be studied with them. Here we can experimentally 

introduce the presence of bias, by using screws. There are 

several computer simulators available that demonstrate bias, 

although for students real experiments are generally more 

attractive.  

The ease of constructing a small board is counterbalanced 

by the more complex mathematical analysis due to the 

presence of the side walls. In our case they were absorbing. 

We were able to measure the absorption value in each column 

and also the bias associated with the board as a whole. 

Important parameters to control the numerical value of the 

bias should be relationships between the radius of the marbles 

and the thread dimensions. In summary, the use of removable 

sleeves allows the same quincux obstacle configuration to be 

easily interchanged between nails (symmetric distribution) 
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and screws (asymmetric distribution), extending the teaching 

and research applications of traditional Galton boards. 
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