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Abstract: Research in education is often associated with comparing group 
averages and linear relations in sufficiently large samples and evidence-based 
practice is about using the outcomes of that research in the practice of education. 
However, there are questions that are important for the practice of education 
that cannot really be addressed by comparisons of group averages and linear 
relations, no matter how large the samples. Besides, different types of cons-
traints including logistic, financial, and ethical ones may make larger-sample 
research unfeasible or at least questionable. What has remained less known in 
many fields is that there are study designs and statistical methods for research 
involving small samples or even individuals that allow us to address questions 
of importance for the practice of education. This article discusses one type of 
such situations and provides a simple coherent statistical approach that provides 
point and interval estimates of differences of interest regardless of the type of 
the outcome variable and that is of use in other types of studies involving large 
samples, small samples, and single individuals. 

Keywords: 95% Credible Interval; Percentage of All Non-Overlapping Data 
(PAND); Percentage of All Non-Overlapping Data Bayes (PAND-B); Single Case 
Design (SCD); Single Case Experimental Design (SCED).

Resumo: A pesquisa em educação é frequentemente associada à comparação 
de médias de grupo e relações lineares em amostras suficientemente grandes, 
e a prática baseada em evidências trata do uso dos resultados dessa pesquisa 
na prática educacional. No entanto, há questões importantes para a prática da 
educação que não podem ser realmente abordadas por comparações de médias 
de grupo e relações lineares, por maiores que sejam as amostras. Além disso, 
diferentes tipos de restrições, incluindo as logísticas, financeiras e éticas, podem 
tornar a pesquisa com amostras maiores inviável ou, pelo menos, questionável. O 
que tem ficado menos conhecido em muitos campos é que existem desenhos de 
estudos e métodos estatísticos para pesquisas envolvendo pequenas amostras 
ou mesmo indivíduos que nos permitem abordar questões de importância para 
a prática da educação. Este artigo discute um tipo de tais situações e fornece 
uma abordagem estatística coerente simples que fornece estimativas de ponto 
e intervalo de diferenças de interesse, independentemente do tipo de variável de 
resultado e que é útil em outros tipos de estudos envolvendo grandes amostras, 
pequenas amostras, e indivíduos solteiros.

Palavras-chave: Intervalo de credibilidade de 95%; Porcentagem de todos 
os dados não sobrepostos (PAND); Porcentagem de todos os Bayes de dados 
não sobrepostos (PAND-B); Projeto de caixa única (SCD); Projeto Experimental 
de Caso Único (SCED).

ABBREVIATIONS: PAND, percentage of all non-overlapping data; PAND-B, 
PAND Bayes; PAND-BC, PAND-B corrected; SCD, Single Case Design; SCED, 
Single Case Experimental Design.
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Introduction

Research in education most commonly involves 

samples of participants in actual education or 

artificial (e.g., laboratory) settings and its outcomes 

are generalized far beyond the samples studied. 

Whether we deal with a survey study that 

focuses on motivation to learn, a randomized 

controlled experiment that compares effects 

of different types of instruction on learning or a 

study aimed at developing an assessment tool, 

we generally deal with groups of participants 

for which linear relations between variables of 

interest are calculated or, where different groups 

are available, these different groups are compared 

in terms of average scores on some outcome 

variables of interest. Even in studies where no 

numbers appear to be involved (e.g., qualitative 

judgments from interviews, focus groups or 

observations), the abstract and discussion section 

of the resulting papers often clearly imply a 

wide generalizability (or as some ‘qualitativists’ 

prefer to name it: transferability). In some fields 

of education, researchers studying small groups 

or even individuals resort to qualitative methods 

partly because there is a common belief that 

quantitative methods are mainly or even only 

about linear relations and average comparisons in 

large samples. However, quantitative methods can 

be used for all kinds of relations and for samples 

as small as one single individual or subject (i.e., N = 

1). Examples of clearly non-linear patterns include 

the evolvement of a pandemic like COVID-19 and 

changes in stock markets and price trajectories 

of many goods and services over time. 

An example of a non-linear pattern with 
N = 1: Gold prices

Figure 1 presents an example of a clearly 

non-linear pattern of the gold price in American 

Dollars ($) in a five-year period (18 April 2015 – 18 

April 2020) measured once a week, on Saturdays, 

when the gold price does not move because 

markets are closed. 
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Figure 1 – Price of one gram of gold in US Dollars ($) from 18 April 2015 (week 1) until 18 April 2020 (week 262).
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Whether we express the gold price in $, in Euros 

(€), in British Pounds (£) or in another currency, 

gold prices tend to gradually go up in times of 

inflation and may peak substantially after major 

regional or global geopolitical, financial or health-

related events that contribute to uncertainty, even 

more so when multiple events come together 

(e.g., COVID-19 paralyzing the economy in many 

countries and postponing crucial negotiations for 

trade deals such as between the United States 

and China or between the United Kingdom and 

the European Union). Although a change in price 

after a specific event does not imply a causal 

relation between that event and the price change, 

it is known that investment tends to move away 

from uncertainty. With significant events such 

as war, large-scale economic downturn and/or 

a pandemic, many stocks may (temporarily) go 

down, except for stocks in specific sectors that 

gain importance in such times, but gold tends to 

go up (and may come down substantially once 

the geopolitical, financial or health storm lays 

down). While it is impossible to tell exactly where 

the gold price is headed in the short term (e.g., a 

few weeks from now) let alone in the medium to 

long term, statistical time-series methods (e.g., 

[1-2]) that use the information of historical gold 

prices, combined with knowledge of important 

regional or global geopolitical, financial or health-

related events coming up can help us to predict 

to some extent where gold and other prices are 

headed, at least in the short run. 

The remainder of this article

For simplicity, the example in Figure 1 uses gold 

prices observed on a weekly basis, but where we 

have gold prices on a daily or even hourly basis, 

we can use the same time-series methods and 

knowledge to make forecasts about next hours or 

days. Further, where learning (or behavior) among 

humans or animals is concerned and many carefully 

timed measurements are available, we can use the 

same time-series methods, in combination with 

learning theory, to model, understand, and predict 

future learning (or behavior) [3]. 

In hardly any practical education setting, we 

will be able to collect hundreds of measurements 

about learning or behavior of interest from the 

same individuals. However, even if numbers of 

measurements per individual are much smaller 

(e.g., fifteen or twenty), with the right study 

designs, we can use statistical methods to address 

questions that matter for practice and research 

in education. This article discusses one type of 

such situations and provides a simple coherent 

statistical approach that provides point and interval 

estimates of differences of interest regardless of 

the type of the outcome variable and that is of use 

in other types of studies involving large samples, 

small samples, and single individuals as well.

Questions and constraints drive 
methodological choices

Some readers may wonder why not just 

aim for large-sample experiments and quasi-

experiments. After all, randomized controlled 

experiments have, at least in some fields, been 

considered a kind of ‘gold standard’ and quasi-

experiments a kind of second-best alternative. 

However, while larger-sample experiments and 

quasi-experiments can certainly address a wide 

range of questions that are relevant and important 

for research and practice in education, there are 

questions that cannot really be addressed with 

such studies or can be addressed more efficiently 

with studies using smaller samples. Larger-sample 

experiments and quasi-experiments are typically 

intended to address questions of relevance to a 

wide range of research and practical settings. 

However, from a practical perspective, a common 

question is whether a specific type of instruction, 

assessment or intervention is effective for a given 

individual or small group of individuals, and 

average comparisons from large samples may 

not adequately address that question. Besides, 

random sampling, and in the case of experiments 

also random allocation to the available conditions, 

is important in large-sample research, but what 

if that is not an option? And what if logistic and 

financial constraints researchers and practitioners 

often deal with do not allow for large-sample 

research? Or what if withholding a treatment is 
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considered unethical? This is where studies using 

a single case design (SCD) or, in experimental 

form, a single case experimental design (SCED), 

come in (e.g., [3-7]). There are many different types 

of SC(E)Ds and, as for larger-scale experiments 

and quasi-experiments, which type is to be 

considered depends on the question(s) asked. 

A full overview of all possible SC(E)Ds is beyond 

the scope of this article, but some common ones 

are discussed in the next sections. 

Interrupted time series

A first common type of SCD is found in so-

called interrupted time-series designs: studies 

where two or more sequences of measurements 

or observations are carried out. Perhaps the 

simplest form is found in two sequences equal 

in number of measurements. For example, in a 

classroom, students may have 10 practice trials 

with linear algebra and then face 10 testing trials 

with linear algebra. Alternatively, in a weight loss 

program, a client’s weight may be registered 

weekly prior to intervention A for a total of 20 times 

and then for a total of 20 times after intervention A. 

To return to education, suppose that practitioners 

who developed a six-week online training to 

deliver education during COVID-19 lockdown 

discover that statistics of daily study time in the 

first three weeks of the training are not as high as 

anticipated and therefore decide to make a small 

change hoping that the statistics in the second 

half of the training will indicate an increased study 

time. Given that a combination of factors may 

contribute to a difference in algebra performance, 

weight or study time between the phases, we 

cannot just interpret that difference as a causal 

link between the manipulated change and more 

(or less) favourable outcomes. However, if we 

are pragmatic and interested in achieving better 

outcomes regardless of causal inference, any 

sufficiently substantial change in weight or study 

time for the better may be worth the change. 

Experimental designs

If additional to achieving better outcomes causal 

inference is of interest, we need stronger types 

of SCDs, and these can be found in a range of 

SCEDs. SCEDs are sometimes mistaken as non-

experimental research, because most researchers 

associate experiments with random allocation of 

a sufficiently large random sample to control and 

treatment conditions. However, like in larger-sample 

experiments, there is manipulation (e.g., before and 

after the intervention in the weight loss program 

or in the COVID-19 online training). In addition, 

randomness is found in the timing of treatment, that 

is: while in many larger-sample experiments the 

question is if a given participant receives treatment, 

in SCEDs the question is when a participant receives 

treatment, and that ‘when’ is the result of some 

form of random allocation. In the weight loss or 

online training example, for instance, we could 

let the timing of (the start of) the intervention be a 

result of randomness. Whether we have 15 clients 

signing up for our weight loss intervention or we 

have 15 students taking our online training in times 

of COVID-19, we can randomize the start of the 

intervention across participants. 

For some types of outcomes, an alternative 

to randomizing the start of the treatment can be 

found in randomizing the occurrence of treatment 

for each individual trial or randomizing blocks of 

treatment-no-treatment sequences to different 

individuals. For instance, in a study on online 

learning of statistics where the interest lies in 

comparing a traditional text-only (i.e., no treatment) 

and innovative infographic (i.e., treatment) 

condition in terms of the time needed to complete 

the section where the information is provided, and 

the online training requires students to complete 

a total of 40 short (i.e., a few minutes) sections, we 

may choose a study design where the occurrence 

of one format (treatment) vs. the other (traditional, 

no treatment) is randomized either for each trial 

or for blocks of trials. Although randomizing for 

each trial yields many more possible sequences 

than randomizing for blocks of trials, a problem 

with randomizing for each trial is that it includes 

sequences with few or no observations in one 

of the two conditions as well as sequences in 

which most or all observations of one condition 

are grouped together. Randomizing for blocks of 
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trials avoids such grouping together and allows us 

to have equal numbers of observations for each 

condition. For instance, if we divide the 40 trials (i.e., 

the 40 short sections) into 20 blocks of 2 trials and 

use two possible random orders for each block 

– AB and BA – we have 220 = 1048576 possible 

sequences, in which at most two consecutive 

measurements are from the same condition (i.e., 

two times A or two times B in a row). 

From questions to study designs and 
statistical methods

Which type of SC(E)D should be used largely 

depends on the question(s) of interest as well as on 

the nature of the phenomenon studied. For instance, 

while the type of randomized block designs with 

rapidly alternating AB/BA sequences may be useful 

in many health-related settings, it is problematic in 

many settings where learning takes place, because 

treatment received at one stage may influence 

outcomes of many if not all later measurements 

in more than one way even if treatment is not 

continued, and in most practical education settings 

withdrawing a potentially effective intervention is 

considered both unusual and unethical. 

As for larger-sample experiments and quasi-

experiments, which statistical methods to use 

depends on the question of interest, the type of 

design used, the level of measurement of the 

outcome variables, and distributional features 

of the outcomes. However, regardless of the 

design and outcomes of a given study, findings 

from individuals can be combined into models 

using data from groups of individuals as in larger-

sample experiments and quasi-experiments and 

meta-analytic studies combining outcomes of 

different studies [3, 8]. 

Example: improved task performance 
after an intervention?

To revisit our COVID-19 online training example, 

suppose we have a new cohort of 6 health science 

students completing a training on statistical 

inference that comprises a total of 40 short 

sessions of about 15 minutes each, each of which 

involves studying a piece of information followed 

by completing a short task that results in correct 

(1) or incorrect (0) result. Each of the 40 sessions 

focuses on slightly different content, but the 

difficulty level of each of the assignments is such 

that historically they have resulted in about 40% 

correct response. Students have complained that 

the tasks are difficult, and the training developers 

have developed alternative versions of the last 20 

tasks (i.e., the second half of the 40 sessions) that 

present the same questions on the same content 

but with an additional instructional support in 

the form of a brief explanation what is expected 

from the student in the task at hand. Before 

developing alternatives for the other 20 sessions 

as well, the training developers want to run the 

training with this new cohort of 6 students, who 

will complete the first 20 sessions in the usual 

format and the subsequent 20 sessions in the 

new format. This is an example of an interrupted 

time-series design SCD with 20 measurements 

in a baseline condition (A) and 20 measurements 

in a treatment condition (B). It is not an SCED 

because there is no randomization of the start 

or occurrence of treatment; instead, treatment 

starts at the same time for all 6 students. Table 1 

presents the task performance outcomes for each 

of the 6 students in each of the two conditions. 
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TABLE 1 – Performance per trial (0 = incorrect, 1 = correct) and per condition (%) for the 6 students in 
the online training study.

Student First half (A) Second half (B)

Per trial % Per trial %

#1
0 0 1 0 0 0 1 0 1 0

1 1 0 0 1 0 0 0 1 0
35

0 1 0 1 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 0
45

#2
0 1 0 0 1 0 1 0 0 1

0 1 0 1 0 0 1 0 0 1
40

0 1 0 1 0 0 0 1 1 0

1 0 1 0 0 1 0 0 0 1
40

#3
1 0 0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1 0 1
40

0 0 0 1 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0
30

#4
0 0 0 1 0 0 0 1 0 1

0 1 0 1 1 0 0 1 0 0
35

1 0 1 0 1 1 0 0 1 1

0 1 1 0 1 0 1 1 1 1
65

#5
0 0 1 0 0 1 0 0 0 1

0 1 0 0 0 1 0 1 0 0
30

1 1 1 0 1 1 0 1 1 1

1 0 1 1 1 1 0 1 1 1
80

#6
0 1 0 0 1 0 1 0 0 0

1 0 1 0 0 0 1 1 0 0
35

1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1
95

Percentages such as in Table 1, or mean or 

median differences when dealing with scale or 

multicategory ordinal outcome variables, can be 

interpreted as effect size estimates at the level of 

the individual. While these simple measures do not 

account for possible trends in the baseline phase 

(in the case of dichotomous outcome variables, 

for example more correct performance towards 

the end), with small numbers of observations 

such as in the example at hand such trends are 

difficult to estimate, at least at the level of the 

individual, and like in larger-sample studies, one 

should not interpret statistics without graph and/

or table inspection anyway. Some might prefer an 

effect size statistic such as Cohen’s d [9], Pearson’s 

correlation r or in squared form R2, but these 

statistics still do not adjust for baseline trends, 

can be quite sensitive to outliers, and assume 

independent residuals while in time-series data 

residuals tend to be correlated (e.g., [1-3]). 

Non-parametric point and interval 
estimates for individual treatment 
effects

There are non-parametric approaches to the 

effectiveness of interventions that reduce the 

problem of correlated residuals, including the 

percentage of all non-overlapping data (PAND, a 

better alternative) [10], and a Bayesian modification 

of the percentage of all non-overlapping data 

(PAND-B, where B stands for ‘Bayes’) which applies 

a correction for smaller samples and provides a 

95% credible interval as an interval estimate (i.e., 

none of the other two overlap approaches provides 

interval estimates which makes statistical testing 

difficult) [3]. While none of these non-parametric 

approaches resolve the potential problem of 

baseline trends, combined with graph and/or 

table inspection they do enable researchers 

to draw tentative conclusions regarding the 

effectiveness of interventions for individuals as 

well as for groups of individuals [3, 10]. 

The rationale behind PAND and PAND-B is to 

determine how many observations (scores) would 

need to be ‘swapped’ between conditions in order 

to have 100% separation (i.e., no overlap at all). In 

addition, given that the effect of an intervention can 

often be either positive or negative, a more precise 

way to conceptualize PAND and PAND-B is how 

many percent of the observations are in favor of 

the treatment. When dealing with scale outcome 

variables such as counts, time, and quantitative 

performance, this can be done through careful 

visual inspection of time-series graphs (for an 
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example, see Chapter 16 in Leppink [3]), and for 

all types of outcome variables two-way tables 

can be used. In our example, where we have a 

baseline condition (A) of 20 observations followed 

by a treatment condition (B) of 20 observations, 

all ‘0’ in the baseline condition and all ‘1’ in the 

treatment condition are observations in favor of the 

treatment, while all ‘1’ in the baseline condition and 

all ‘0’ in the treatment condition are observations 

pointing against the treatment. PAND and PAND-B 

are functions of these two types of outcomes 

(i.e., in favor vs. against the treatment). Table 

2 summarizes the outcomes for each of the 6 

students and for the group in our example study. 

TABLE 2 – PAND and PAND-B outcomes for each of the 6 students and for the group of 6 students in 
our online training example study.

Counts PAND PAND-B

Student Favor Against Point Point 95% LB 95% UB

#1 22 18 0.550 0.548 0.397 0.693

#2 20 20 0.500 0.500 0.351 0.649

#3 18 22 0.450 0.452 0.307 0.603

#4 26 14 0.650 0.645 0.494 0.779

#5 30 10 0.750 0.742 0.597 0.858

#6 32 8 0.800 0.790 0.651 0.894

All, U 148 92 0.617 0.616 0.554 0.676

All, C 44.835 27.870 0.617 0.615 0.501 0.720

All’, U, uncorrected; All’, C = intraclass correlation (0.059) corrected; 95% UB = 95% credible interval upper bound; 
95% LB, 95% credible interval lower bound.

PAND is found by dividing the frequency of 

observations in favor of the treatment by the total 

number of observations, in this case 40 for the 

individual student. PAND values of 0.55, 0.65 and 

0.75 correspond with 10%, 30%, and 50% difference 

in performance in favor of the treatment condition, 

and values of 0.45, 0.35 and 0.25 correspond with 

10%, 30%, and 50% difference in performance in 

favor of the baseline condition. 

Although traditionally PAND has been treated 

as a variable with a range of [0.5, 1] with 0.5 

indicating no treatment effect and 1 being the 

maximum possible value, given that a treatment 

can be positive or negative, the range of PAND is 

actually quite a different one and depends on the 

outcome variable of interest. For scale outcome 

variables, PAND-values can in theory range from 

(almost) 0 to (almost) 1, a value of 0.5 indicates 

no effect, values below 0.5 indicate negative 

effects (i.e., the outcome being worse in the 

treatment condition) and values above 0.5 indicate 

positive effects. When dealing with dichotomous 

outcome variables, more positive outcomes in 

the treatment condition result in a higher lower 

bound of PAND while more positive outcomes 

in the baseline condition result in a lower upper 

bound of PAND. For example, in the study at hand, 

30% positive outcomes in the baseline condition 

implies a maximum possible PAND value (i.e., 

upper bound) of 0.85. Likewise, for multicategory 

nominal outcome variables, where the interest lies 

for example in a change in choice from a three or 

more options the ordering of which is arbitrary, 

the proportion of observations resulting in a given 

option in the baseline condition influences the 

maximum possible shift away from that option in 

the treatment condition. Finally, for multicategory 

ordinal outcome variables, the PAND-range is 

influenced by the proportion of outcomes in the 

best category in the baseline condition (lower 
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upper bound) and the proportion of outcomes 

in the best category in the treatment condition 

(higher lower bound). For dichotomous and 

scale outcome variables, PAND values of 0.5 

indicate no effect; for multicategory nominal and 

ordinal outcome variables, in designs where the 

baseline and treatment condition differ in length, 

PAND sometimes cannot be exactly 0.5 and the 

outcomes nearest to 0.5 (i.e., on either side of 0.5) 

are to be interpreted as no effect.

PAND-B differs from PAND in that it uses a Beta(1,1) 

prior distribution that is updated with the data coming 

in to obtain a Beta posterior distribution [3]:

Prior + Data = Posterior.

For instance, for Student #1, the data is Beta(22,18), 

and therefore the posterior is Beta(23,19):

Beta(1,1) + Beta(22,18) = Beta(23,19).

The Beta(23,19) distribution has a posterior 

median (point estimate) of 0.548 and a 95% 

credible interval of [0.397; 0.693]. The more data, 

the more the posterior median approaches the 

PAND estimate; in small samples, it is slightly 

pulled towards 0.5 to avoid ridiculous estimates 

like 0% or 100% based on very small numbers of 

observations. Another advantage of PAND-B over 

PAND is that it comes with an interval estimate, 

in the form of the 95% credible interval, which 

can be used for hypothesis testing as follows. To 

start, intervals excluding [0; 0.5] indicate positive 

effects, while intervals excluding [0.5; 1] indicate 

negative effects. In the example study, we find 

sufficient evidence in favor of a treatment effect 

only for Student #5 and Student #6. Further, if in 

a specific context we only consider differences of 

at least 10% of practical importance, the PAND-B 

region of [0.45; 0.55] indicates differences that 

are not of practical importance, and a difference 

of practical importance can be concluded if the 

95% credible interval excludes [0.45; 0.55]. In the 

example study, we find sufficient evidence in favor 

of such a practically important treatment effect for 

Student #5 and Student #6, in both cases in favor 

of the treatment (i.e., positive treatment effect). 

From individual to group

PAND-B estimates for individuals can be 

combined to obtain group estimates, and we 

can correct for the intraclass correlation due to 

the same individuals being measured repeatedly 

and some individuals performing better than 

others. As PAND-B does not deal with the actual 

scores or order of measurements, the intraclass 

correlation is much lower than in time-series 

models. However, there is still some intraclass 

correlation, due to which simply summing the 

frequencies in favor of and against the treatment 

of the different individuals (i.e., ‘All, U’ in Table 

2) yields numbers for the group larger than the 

effective sample size, and a correction factor 

is needed to correct the numbers for group 

downward [3]. Given k number of measurements 

per individual, the correction factor is:

Correction factor = 1 + [(k – 1) * intraclass 

correlation].

We can estimate the intraclass correlation 

in a two-level logistic regression model which 

treats student (upper) and observation (lower) 

as hierarchical levels, includes the student-level 

intercept as random effect and condition as fixed 

effect. The outcome variable is a dichotomous 

variable, with for each observation either ‘0’ 

(against treatment) or ‘1’ (in favor of treatment). 

For the data at hand, we find an intraclass 

correlation coefficient of 0.059. Given k = 40 (i.e., 

40 observations per individual), the correction 

factor is 3.301. This explains the numbers of 44.835 

and 27.870 in ‘All, C’ in Table 2 and the resulting 

95% credible interval being slightly wider than the 

interval in ‘All, U’ which incorrectly assumes zero 

intraclass correlation. The estimates in ‘All, C’ in 

Table 2 are also referred to as PAND-BC, where C 

stands for ‘corrected’. As new cohorts of students 

come in, more observations become available, 

intraclass correlation estimates become more 

accurate, and 95% credible intervals become 

smaller. Although in large samples and in SCDs 

involving much larger numbers of measurements 

than in the example study discussed in this article 

time-series methods that account for baseline 
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(and other trends) will normally provide more 

powerful methods (e.g., [3]), PAND-B and PAND-

BC – both point and interval estimates – can be 

used for any sample size from very large to as 

small as a single individual (N = 1).

The need for combining individual outcomes 

into group outcomes depends on the setting and 

question of interest. Where the question of interest 

is whether a given treatment is effective for a given 

individual – which is a legitimate question in 

many practical education settings – the PAND-B 

point estimate and 95% credible interval of the 

individual at hand provide the outcome, and there 

is no need to merge outcomes from different 

individuals. Besides, while in the example study 

at hand it may make sense to treat the 6 students 

as one cohort or group, where different individuals 

undergo very different procedures in potentially 

quite distinct settings, it may make little sense 

to combine findings from different individuals 

into single ‘group’ estimates even if the (type of) 

treatment is the same across individuals. Finally, 

in any case, two other summarizing statistics 

for the effectiveness of an intervention at group 

level are the frequency and/or proportion of 

individuals for which we find sufficient evidence 

for a treatment effect (or for a treatment effect 

of practical importance if that is the question of 

interest). For the example study, that number 

of students is 2, and that corresponds with 

33%. These statistics do not require any kind of 

correction for intraclass correlation and have 

another attractive feature: the Bayesian updating 

procedure with Beta-distributions applies to these 

statistics as well. Suppose, for example, that we 

deal with a cohort of 35 students and we find 

sufficient evidence for a positive treatment effect 

for 25 students. Using a Beta(1,1) prior distribution, 

this results in a Beta(26,11) posterior distribution, 

which yields a point estimate of 0.706 and a 95% 

credible interval of [0.548; 0.837]. This interval 

indicates that we have sufficient evidence to 

assume that the treatment works for more than 

50% of the individuals (i.e., it exceeds [0; 0.5]). 

To conclude: a consistent non-
parametric approach to individual 
treatment effects

Although when dealing with much larger 

numbers of measurements and/or much 

larger samples of individuals, more powerful 

parametric methods should be used, PAND-B 

provides a point estimate and a 95% credible 

interval that can be used to answer questions 

regarding the effectiveness of an intervention for 

any given individual under study as well as for a 

group of individuals. Of course, there is no free 

lunch; as for any statistical method, detecting 

treatment effects of interest is more difficult with 

small numbers of observations than with larger 

numbers of observations. For instance, with 

40 measurements (cf. the example study), any 

number of observations in favor of the treatment 

for an individual of 27 (67.5%) or higher results in a 

95% credible interval completely above 0.5; with 

50 measurements, the minimum number in favor 

of the treatment needed for an individual is 32 

(64%), while with 30 measurements that number is 

21 (70%) and with 20 measurements that number 

is 15 (75%). Given that the PAND-B procedure 

is the same for all possible outcome variables, 

these numbers are no different for scale than for 

categorical outcome variables. It is important to 

keep this in mind when planning your study. With 

relatively strong treatment effects, it may be fairly 

easy to achieve such high percentages, but with 

somewhat weaker treatment effects which may 

still have important implications for practice lower 

percentages are likely and 95% credible intervals 

are then more likely to include 0.5 unless the 

number of observations is increased. 

While research in education is often associated 

with linear relations and average comparisons 

in large samples, study designs and statistical 

methods for research involving individuals and 

small samples are available, and when dealing 

with specific practical questions or facing logistic, 

financial and/or ethical constraints, well-designed 

studies involving individuals or small samples may 

be more appropriate than larger-sample studies. 

Although larger-sample experiments and quasi-
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experiments will most probably remain valuable 

for research and practice in education, SCDs 

and SCEDs can help to address both questions 

concerning what works for larger groups and what 

likely does or does not work for specific individuals 

and can as such help to bridge possible gaps 

between education research and practice. 
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