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RESUMEN 

En este artículo se obtienen soluciones para la ecuación KdV. Estas solu-

ciones son obtenidas a través del método de la function-Exp, con ayuda 

del computador. 
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Abstract 
In this paper we obtain some exact solutions for 
the KdV equation. These solutions are obtained 
via the Exp-function method with the aid of a 
computer. 

Key words 
Nonlinear differential equation, nonlinear partial 
differential equation, third order evolution equa-
tion, KdV equation, solitonic solution, traveling 
wave, soliton, Exp-function method, partial diffe-
rential equation, nonlinear evolution equation. 

1. INTRODUCTION 

Nonlinear evolution and wave equations are par-
tial differential equations (PDEs) involving first 
or second-order derivatives with respect to time. 
Such equations ha-ve been intensively studied for 
the past decades [1, 2], and several new methods 
to solve nonlinear PDEs, either numerically or 
analytically, are now available. When the depen-
dent variable " in the PDE corresponds to a physi-
cal quantity (such as the surface height of a water 
wave, the magnitude of an electromagnetic wave, 
etc.), it is important to study the propagation or 
aggregation properties of " . This motivates the 
study of methods to analytically solve evolution 
or wave equations via symbolic methods. The goal 
is to find exact traveling wave solutions. If these 
solutions do not change their form during propa-
gation, they are called solitary waves. Solitary 
waves that preservé their shape upon collision 
are called solitons [3]. Solitary-waves and solitons 
arise due to a critical balance between dispersion 
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and nonlinearity. Due ,to the compleXitST of the 

mathematics involved in finding:exact solution 

for these PDEs, the use of -algorithmic techni-

ques that can' be im7plemented in the syrribolic 

language of computer algebra systems becomes 

a necessity. Several computer algebra packages 

now exist to aid in the study of nonline,ar PDEs 
[4, 5, 6]. For :example, _Painlev'e analysis offers 

an algorithm for testing whether or not a PDE 

is a good candidate to be completely integrable. 

In addition, the Painlev'e method allows one to 

construct solitary wave solutions explicit form. 

A more Powerfur tecInkitie is Hirota's bilinear 

method [7]- whiéh allows one to fina N- sciliton 

solutions of largé classes of completely integra-

ble PDEs [8] The story of the first observation 

of solitary waves-is worthl telling. In 1834, while 

riding horseback beside the narrow Union canal 

near Edinburgh in Scotland, J. Scott Russell 

noticed that a bow wave, rolling away from ,  a 

large barke, traN'i.eled- ás a huáe heap of water 'for 

quite a long distancelefore finálly dispersing into 

smaller ripples. In order to study this intriguing 

phenomenon, Russell did extensiva experiment 

in a large water tank. Further investigátions 

of solitary waves were done by Airy, Stokes, 

Boussinesq, and Rayleigh -in an attempt to, un-

derstand the mechanisrn behind this rem-arkable 

phenomenon [9]. The latter two scientists derived 

approximate models to describe solitary waves. In 

order to -obtain his reSult, Boussinesq derived -a 

one-dimensioral- nonlinear wave equation which 

now bears his name. The issue was finally resol-

ved (in 1895) by -two Dutclimen 5 Korteweg and de  
Vries, when they derived a -nonlinear evolution 

equation governing long, one-dimensional surface 

gravity waves (with small amplitude) propagating 

in shallow water: 

2 	2 	1 
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where 77  is the . surfacé elevation of he wave aboye 

the equilibrium level /7 , ,̀Á  is a small arbitrary cons-

tant related to the uniform motion of the liquid, 

g is the gravitational constant, T  is the surface 

tension, and P  is the density. The independent 

variables r  and c  are scaled versions of the time 

and space coordinates. Equation (1), which is 

called the‘Korteweg-de Vries (KdV) equation, can 

be brought into' á-non-dimensional form via the 

change of variables 

1 
t= 	x = 	2 	 —
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Here subscripts denote partial derivatives, 

a3u 
After some algebra, one obtains 

ut  6uux  u3x  = O. 

(3)  

D'espite this early derivation of the KdV equation, 

it was not until 1960 that any new applications of 

the equation were discovered [9]. In 1960, while 

studying collision-free hydrodynamic waves, 

Gardrier and Morikawa rediscovered the KdV 

equation [10]. Amazingly, the KdV equation 

started to show up in a number of other physical 

contexts such as the study of stratified internal 

waves, ion-acoustic waves in plasma physics, 

lattice dynamics, ande so on (further details can 

be found in Jeffrey and Kakutani [11], Scott et 

al. [12], Miura [13], Ablowitz and Segur [14], 

Lamb [15], Calogéro and Degasperis [16], Dodd 

et al. [17], and Novikov et al. [18]). Since the late 

1960's, the study of the properties of solitons, and 

the search for solitonic equations and methods to 

solve them, has been an active and exciting area 

of research. 

In this papel' we give some new exact solutions of 

equation (4) by the exp-function method. 
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2. EXACT SOLUTIONS THE KDV EQbATION. 

THE EXP- FUNCTION METHOD 

Using the transformation 

u = 	ttx At, 

where 2 , u. are constants, Eq., (4) becomes 

where the ki are some constants. Balancing hig-
hest order of Exp-function in Eqs. (8) and 
(9), we have 7p + c = 2(3p + c) so that c =p. 

Similarly, to determine values of d and q, we ba 
lance the linear term of lowest order in Eq. (6) 

• • ± k, 'exp[—(7q 

• - 	k2  'exp[--8q] 
(9) 

and 

(5) 

  

• • • -1-- k3  'exp[—(d 2qX] _ 

  

In view of the Exp-function method, we assume 
that the solution of Eq. (5) can be expressed in 
the form 

• k,' exp[-3qel 

• • - k3  'exp[-2(3q dX} 

• • k,' exp[-8q11 
E an  exp(n1) 

= a_, exp(—cl.) + - • • 
n 	 + a,  exp(«)  

v(e) =  =c  
exp(m) bm b_p exp(—p) + • • + b exp(q) 

.—p 

(6)  

where c , d , p and q are positive integers which 
are unknown to be determined later, an and bm 
are unknown constants. 

In order to determine values of c and p , we ba-
lance the linear term of highest order in Eq. (6) 
with the highest order nonlinear term, and the 
linear term of lowest order in Eq. (6) with the 
lowest order nonlinear term, respectively. 

By simple calculation, we have 

exp[(7p 	• • 
k2  exp[8p] + • • 

(7)  

and 

3 expRp + 2cW + •  
vWv 	= 

/e, exp [3X] + • • • 

exp[2(3p + c)1]+ • • • 

lc4 exp[8p] + • 

(10) 

where the ki are some constants. Balancing lowest 
order of Exp-function in Eqs. (10) and (11), we 
obtain 7q + d = 2(3q + d) so that d = q. 

The considerations below say that any solution of 
the KdV equation (6) must have the form 

v(1)  a_c  exp(—c1) 	- • ± ac  exp(d1)  
b_p  exp(—pl) • • • ± bp  exp(qe) • 

We will consider two cases. In these cases we set 
b-p = 1, that is, the trial solution has the form 

a exp(—c1) 	- 4- a exp(ck)  

exp(—pe) ± • • • ± bp  exp(q1) 

(8)  
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21 Case 1: p=c-=1 and d = 
	

We obtain periodic solutions in the following 
cases : 

The trial solution Eq. (12) becomes 

- al exp(e) 4-  ao  a_1  exp(:-0 

expW + 1)0  -I- b_ 1  exp(-1) 	'u4 (x, t) = 

(12) 

Substituting Eq. (13) into (6) and equating to zero 
the coefficients of all powers of exp yields a set 
of algebraic equations. Solving it with the aid of a 
computer, we obtain the folloWing solutions_: 

1)0  = 2 and ,u= 

(16) 

bo  =2 a  n 	
7:7 

u = < 1 m : 

 

= 

  

I. a = , bo  = 1)0  , a_ = —a b 2- 
1 1 	A 1 o 

cos 	(m2  - 6a1 ) t)) .  

= 	3  — 6pa , p, = /2. 

(17) 

For b0 = ± 2 the soliton sollitions correspondiiig 
to these values are : 

-}- 	  2 
(2e Px 	boel'12

1-6a1) t 

(13)  

For b0 ± 2 and real /1. 

p,2 

 

1 -I- cosh 	X 	112 --E 6 )t)) .  

(14)  

2.2. Case 2: p = c = 2 and d = q = 2. 

The trial solution Eq. (12) becomes 

a, exp(21) + exp(e) + a +  a exp(-1) + a eXp(-2) 
v() 

= 	 o 	-1 	 -2  

exp(2e) + bl exp(1).+ b0  + b_, exp(—) + b_ 2  exp(-21) 

(18) 

Substituting Eq. (16) into (6) and equating 
to zero the coefficients of all powers of exp() 
yields a set of algebraic equations. Solving it 
with the aid of a computer, we obtain many - 
solutions. For space reasons, we only give 
some of them. 

4
tt2boep(x-f-(p,2 -1-6ajt) 

5 

  

II. a2  = a2 , bo  = bo , = O , = O , a_2  = 

a b 2  2 0 , 	 ao 	4/12b0,b1 =O, 
4 

1— cosh p,(x — + 6a )t)) 

= --6p,a2  4/13 . 

16b
---  -2p(x2(2p2  +3% )t) 

U6 (X, t) = a2 	ofk  

(2 	bo  —2(.-2(2,2+3„,)t) 	• 

(15) 	 = bo  

4 

(19) 



a2  exp(21) + al  exp(1) + ao  + a_ 1  exp(-1) + a_ 2  exp(-21)  
_exp(2) + b exp(1) 	+ b 1  exp(-1) + b_2  exp(-20 

• 

(25) 

1 ai
2  

--2  p,4 
b0  
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In the case when b0 = + 2 we ob'tain periodic 
solutions. More exactly, 

1 
6 

b 1 = — — 4/2 (2a2 I 
3b + 3 p 2  a22b, 3  6a,a22b12  — 6 p, 2  a,a2b,2  4/24a2bob, + 6a12a2  + 3p2a1 2b1  - -  

441b0  2a1 3 ). 

u7  (x, t) = a2 	2/12sech2 (//,(x — 2(2,u 2 	3a2 )t)). „ 
,.,12 (X, t 

(20) 

u8  (x, t) = a2  — 2p2csch2  0,c(x — 2(2,u2  3¿2 )t)). 

(21) Where = p(x (/ 2  — 6a2 )t). 

For 1)0  = *2 and p, =-Nr-71 m 

u9  (x, t) = a2  — 2m2  sec2  (m(x + 2(2m2  — 3a2 )t)). 

(22) 

V. =O, a = 2qNF-1., 

ao  = —4q, a_1  = 	b_2  = 1, 

b_ 1  =b = O, p =-- 

A -= 
u10 (x, t) = a2 — 2m2  c c2  (m(x 2(2m2  — 3a2 )t)). 

III. al  = a1 , a2  = a2  , bl  = o, a__2  = 

	
(23) 	

u13 (x, t) = 	  (q > 0). 
2q 1 + sin (ffix -1- q t))) 

1 + cos (2,[1(x + q t)) 

(26) 

1 22 21 4 1 al e
, a 

1 212 (a2 2p2 ) 
= 	, a„ 

16 /28 	4 11 4 	u 	2  

1 21
4 

b 	O ,b 	, —1
= 	

—2
= 

 16 /18  , 

=-6/a2 - 3 . 

	

e2' + ai2e2142±6a2)9a2 	4P2a1 (a2 + P 2 
 

is(.+(p2 + a, )t) 

(2p2e' + ale'('24-6a2)t  

(24) 

W. 	al = a1 , a2  = , bo  = bo , bi =b 1 , A = —113  — 

(3a1 4 	3a.24 k4 	4p4a22. 0 . 12 

	

o o 	8124  aia2bo bi  + 12/1.2a,2a2b,2  — 12/12a,a22b, 2  
a-2 	16/12  

18a1 2a22b12  — 12a1 a23b1 3  — 12a13a2b1  4p2a1 3b1  + 4/z2a23b14  + 4/24a12bo ), 

a_, = ---2.—(121a 2a1 2a2b, + 4114a12b, –151,2a,a22k2 –8 1,4,92b12 – 3m2,53 +61,2a23k 3  + 
4/26  

4/14a22b1 3  + 2a24k3  6a1 a23b12  + 4/24a22b0b1  + 6a12a2 2b1  — 4/24a1a2b0 —
2a1 3a2  + 4/..t 6a2 bob1  — 4/26a1 b0 ), 

a0  = 2 2a1 a2 b1  + p2a1 b1  + 1.1,2a2b0  — a22b1 2  — tz 2  a2 b 2  a12 ), 

1 
b 2  = --(3a1 4  + 3a2 4 b14  + 4/24 a22b,2b0  81.1.4  aia2bok + 12/1.2a12a2b1 2  12//2a,a22bis  + 

161./8  
18a1 2a22k2  12a,a2 3k3  12a13a2b1  4p2a1 3b1  + 4/42a23b14  + 4/24a1 2b0 ), 

a2  = a_2  = O, = 2q—Nr-71., 

a0  = —4q, a_1  = 	b_2  = 1, 

b_ 1  = = o, tt = —MI  T, A = 

2q — sin (,[1(x + q t))) 
U14 	=

— 	
> O). 

1+ cos (2.,ffix + q t)) 

(27)  

VII. Other interesting periodic solutions are : 

uls  , t) = — 
12-1

r  

1  4 + rcsc
2 m  

r
(rx m 2  m (r -I-12 )t)11. 

2 

2  

(28)  

114 

uns(x, = 
(4 
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= m 	2 M 

	

— r sec 	(rx m 
2r 

	

- 	2r 

m2 (r2 24 8 cos 2m(x — 2m 2t))+ $V16 — r2  sin (m (x 	2t))) 

2 (r. -F 4 cos (m(x— 2m2t)).5.  

(30) 

VIII. Finally, other interesting solitonic solu-

tions are : Figure .2: The function U 14 
	 for. q= 2  

and :t, X E [-3, 3]. 

t 

ur, (x,t) = 	 

u (x t) 	— r csch (1-' rx //2 (r 12)t)11. 
18 2r — 	2r 

4. CONCLUSIONS 
(31)  

In this paper, by casing the exp-function me- 

2 	2 u19 (x, t) = 	— r sech 	rx — p, 2  (r — 12)t)11. 
2r 	 2r 	 some exact solutions for the KdV equation 

thod and the hele of a computer, we obtained 

(4). The method is direct and effective. We 

(32) may apply this method to solve other partial 
and ordinary nonlinear differential equatio- 

	

r2  + 24 + 8 J16 r2  cosh 	2t)+ 8 cosh (2(x 4- 2t)) ns. The Exp-function method is a promising 

2 (7- -- 4 sinh 2t1 

	

	 and powerful new method for NLEEs arising 
in mathematical physics. Its applications are 

(33)  worth further studying. 
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