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Abstract

This article applies the multiplicative quadrinomial tree numerical method with non-constant volatility 

to assess a real option of abandonment, based on an estimate of the conditional volatility for WTI oil 

commodity prices and their respective equivalence in a GARCH-diffusion model. The methodology 

refers to the use of an estimate of type GARCH (1,1) and the numerical method through a quadrinomial 

tree. There are two main findings: 1) when employing the quadrinomial method, the value of the real 

option turned out to be greater than the value estimated through the traditional multiplicative binomial 

method, due to underestimation of the real value of volatility that occurs in a specific period according 

to the latter method; and 2) a methodological contribution that demonstrates plainly way the presence 

of non-constant conditional volatility as well as being able to value all types of options using stochastic 

volatility.
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Resumen

Este artículo utiliza el método de árboles cuatrinomiales multiplicativos con volatilidad no constante 

para valorar una opción real de abandono, a partir de la estimación de la volatilidad condicional para la 

serie de precios del commoditie crudo tipo WTI y su respectiva equivalencia con un modelo de difu-

sión GARCH. La metodología propuesta refiere el uso una estimación tipo GARCH (1,1) y el uso del 

método numérico por arboles cuatrinomiales. Los dos principales hallazgos son: 1) cuando se emplea el 

método cuatrinomial, el valor de la opción tiende a ser mayor que el estimado por el método tradicional 

de árboles binomiales multiplicativos, debido a una subestimación del valor real de la volatilidad para 

el ultimo método, para un periodo de tiempo específico; y 2) la contribución metodológica propuesta 

puede ser utilizada de una forma relativamente sencilla cuando existe presencia de volatilidad condi-

cional no constante y permite la valoración de todo tipo de opciones utilizando volatilidad estocástica.

Código JEL: C19, C32, C65, G13, G32

Palabras clave: GARCH; Series de tiempo; Modelo de difusión GARCH; Arboles cuatrinomiales; Valoración de 

opciones

Introduction

Among academics, the discounted cash flow (DCF) is the most used method for valuing 

capital assets, but it is also criticized because it does not include important elements such as 

the occurrence of contingent events, the present risk in cash flows and volatility (Trigeorgis, 

1996). The real options approach (ROA) serves as a complementary methodology to the DCF 

method, allowing to include volatility as a fundamental parameter to quantify risk and to 

collect some elements associated with uncertainty (Keswani & Shackleton, 2006). Trigeorgis 

(1996), Mun (2006) and Brandão, Dyer and Hahn (2012) have argued the difficulty of its esti-

mation but have also indicated the importance of doing so appropriately to be able to perform 

an adequate valuation. Additionally, to assume that the volatility parameter is constant and 

unconditional, such as the one used in the ROA method, is considered impractical to model 

the price returns of financial series, capital assets and commodities, given the presence of a 

series of empirical characteristics such as leptokurtosis, heavy tail distributions, clustering 

volatility, and conditional variance that changes randomly over time (Grajales Correa & 

Pérez Ramírez, 2007). 
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According to this, it is necessary to make a good estimate of the real option for the ROA 

method, value that depends largely on the way that volatility is described and estimated. 

In other words, the option is very sensitive to the value that is calibrated for this factor, as 

demonstrated by Trigeorgis (1990), who in an analytical and empirical way concluded that 

an increase in that volatility by 50% could result in an increase by 40% of the real option. 

Concurrently, Keswani and Shackleton (2006) presented variations of more than 210% in 

the value of the real option when the volatility increases from 10% to 30% (Brandão et al., 

2012). Taking the above into account, it was possible to conclude that the theory used to 

estimate the parameter of volatility contained in the ROA method has only been focused 

towards the calculation of its structure and its unconditional and constant behavior, without 

exploring the advantages that its conditional and stochastic estimation has (Vasseur, Sanchez, 

& Escobar, 2019).

In the last three decades, several studies have focused on volatility estimation, given its 

importance to economic agents and its use in financial and economic applications and because 

volatility plays an important role in decisions that involve financial risk (Posedel, 2005). It 

is common to find financial time series that exhibit some stylized facts, effects only began 

to be collected after the appearance of the most used classical models corresponding to the 

non-linear time series of autoregressive conditional heteroskedasticity (ARCH). This model 

was developed in the 1980s in the seminal works of Bollerslev (1986) and Engle (1982), who 

focused their efforts on including a functional relation between current and past conditional 

volatility as well as on describing the statistical distribution of the errors in detail (Argáez 

Sosa, Batún Cutz, Guerrero Lara, Kantún Chim, Medina Peralta, & Pantí Trejo, 2014). The 

previously mentioned models included the inertial behavior of volatility as well as the au-

tocorrelation effect in all financial time series (Novales, 1993); that is, fundamentally, it is 

necessary to consider all the past information of a variable in predicting its current and future 

behavior (De Arce, 1998). 

The ARCH generalization process to estimate conditional volatility was presented by 

Bollerslev (1986). His model of generalized autoregressive conditionally heteroskedasticity 

(GARCH) allowed multiple developments and extensions (Hansen & Lunde, 2005). The basis 

and simplicity of the functional structure of GARCH, specifically the type (1,1), has been 

considered to be the starting point for several financial applications (Preminger & Storti, 2017).

Recently, some models include stochastic volatility and were created, fundamentally, to 

overcome the underlying problems when considering volatility in terms of the evaluation 

time horizon. Motivated by this empirical evidence, several authors, such as Chesney and 

Scott (1989), Heston (1993), Hull and White (1987), Scott (1987), Stein and Stein (1991), 
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and Wiggins (1987), proposed models with stochastic volatility as a parsimonious extension 

of the Black–Scholes model (Black & Scholes, 1973); among these models, the GARCH-di-

ffusion type proposed by Drost and Werker (1996) and Duan (1996, 1997) excels. The 

novelty of this model is that it was the first approximation between a GARCH process and 

a stochastic volatility model. Additionally, multiple research developments of this model 

exist, both theoretical (Barone-Adesi, Rasmussen, & Ravanelli, 2005; Chourdakis & Dotsis, 

2011; Christoffersen, Jacobs, & Mimouni, 2010; Ritchken & Trevor, 1999) and empirical 

(Figà-Talamanca, 2009; Plienpanich, Sattayatham, & Thao, 2009; Wu, Ma, & Wang, 2012; 

Wu, Yang, Ma, & Zhao, 2014).

This article is organized as follows. Section 2 describes the GARCH (1,1) type and the 

GARCH-diffusion model. Then, in section 3, the equivalence between the variance of these 

models is formally presented. Section 4 summarizes the multiplicative quadrinomial method 

to assess options, both real and financial. In section 5, some concepts to assess real options 

are summarized. Section 6 describes a counterfactual case as an example. Finally, section 7 

includes discussion, conclusions, and suggestions for future research.

Volatility models
GARCH model

Volatility is a characteristic of any financial time series and, although it is considered 

non-constant, it is usually defined as homoscedastic and long-term estimates to be made. As it 

is unobservable, it is important to analyze and collect the oscillation that occurs in short-term, 

this is known as conditional volatility of the underlying asset (Casas Monsegny & Cepeda 

Cuervo, 2008). Based on this fact, Bollerslev (1986) and Engle (1982) developed models 

to analyze short-term conditional variations. Specifically, Bollerslev (1986) proposed the 

GARCH (p, q) model from the ARCH (q) model to overcome the weakness of estimating, 

in certain cases, many parameters, which complicate its estimation. Avoiding a possible loss 

of precision, a restricted alternative parameterization was defined, dependent on a reduced 

number of parameters. This model has the following structural form (Tsay, 2005):

    	         (1.1)
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where  is the innovation variable or shock variable in the period  is the standard 

deviation in the period  is the normal random variable  with mean 0 and variance 

1 in period  is the conditional variance in period  is the alpha coefficient;  is 

the beta coefficient; and  is the square of the shock’s lagged value. Equation (1.1) is the 

conditioned variance depends on the previous perturbations as well as the lagged variances. 

The best-known and simplest model in the literature is the GARCH (1,1) model, which co-

rresponds to an exponential smoothed model of variance and is considered to be a simple but 

useful model to estimate conditional volatility. Its functional structure is as follows:

 			   			            (1.2)

with  as a sufficient condition to be 

a stationary process. 

This model can be used to emulate the conditional volatility, both the prices and the 

returns of financial assets as well as the risk value in portfolios and the exchange rates be-

tween currencies. For example, Casas Monsegny and Cepeda Cuervo (2008) used Gillette’s 

prices and found that this model explains their behavior to a large degree. Gazda and Výrost 

(2003) used data from the Slovakia Stock Index (SAX) to estimate the respective returns, 

using three different models – GARCH, exponential GARCH (EGARCH), and threshold 

GARCH (TARCH) – and found that the adjustment of the conditional variance could be 

achieved with any of these methods. Engle and Patton (2007) also used it in an index, spe-

cifically the Dow Jones, and reached the conclusion that the GARCH-type models help to 

capture different stylized facts offered by the market. Additionally, Martens (2002) modeled 

and forecast the volatility of the S&P500 futures index, using high-frequency data. Engle 

(2001) used the model to estimate the risk value in a hypothetical portfolio composed by 50% 

of the Nasdaq index, 30% of the Dow Jones index, and long-term bonds. Its use was also 

extended to other contexts, for example, exchange rates. Alexander and Lazar (2006) used it 

to model the American dollar in regard to three important currencies: Pound Sterling, Euro, 

and Yen; their main finding indicated that the empirical evidence favors the use of the normal 

mixture in conjunction with a GARCH (1,1) model. Hansen and Lunde (2005) presented an 

important work, in which it was indicated that the model was not surpassed by 330 similar 

and more sophisticated ARCH-like models. They arrived at this conclusion by using data on 

the exchange rate between the German mark and the American dollar; however, they also 

indicated that, when using the returns of IBM’s stock, the GARCH model apparently is not 

the most appropriate when a leverage effect is present. 
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GARCH-diffusion model 

This model was introduced by Wong in 1964, but its popularity grew following the works 

of Nelson (1990a, 1990b). Drost and Werker (1996) and Duan (1996, 1997) were the first 

authors to propose an approximation between a GARCH process and the stochastic volatility 

model and to indicate that it is possible to exchange such processes as required, offering an 

important development for future research in such regard. Later, Ritchken and Trevor (1999) 
developed the same idea but expressed it in an algorithm to assess options, both European 

and American, based on the trinomial tree model. Subsequently, Barone-Adesi et al. (2005) 
analytically derived the first four moments of the model and obtained a closed solution to 

value an option; in addition, they analyzed the implicit volatility surfaces with this solution. 

An important condition was discovered by Christoffersen et al. (2010), who demonstrated 

empirically, through the use of realized volatilities, S&P500 returns, and an option data 

panel, that the Heston (1993) model was poorly specified, because in the diffusion model 

presented by the author, volatility was found in the square root instead of being considered 

linear. These conclusions were reaffirmed by Chourdakis and Dotsis (2011); although they 

also suggested that the model should consider a nonlinear drift against a linear one. Recent 
studies have indicated that this model gives a better description of the behavior and dynamics 

of financial series than other types of models, such as the well-known model of Heston (1993) 
(Aït-Sahalia & Kimmel, 2007; Jones, 2003; Wu, Zhou, & Wang, 2018). It has been used as 

a good model for adjusting financial option data (Chourdakis & Dotsis, 2011; Christoffersen 

et al., 2010; Kaeck & Alexander, 2012; Wu et al., 2012).

The most recent research on this model is considered to be empirical, and it has been 

used successfully in applications to different contexts; for example, Figà-Talamanca (2009) 
used multiple stock market indexes to compare the theoretical and empirical autocovariances, 

concluding that this model captures autocovariance observed in the data. At the same time, 

Plienpanich et al. (2009) integrated a disturbance through fractional noise into the diffusion 

model; their results showed that a better estimation of the stock price of a commercial bank 

was attained using this model rather than the traditional Black–Scholes model. Similar con-

clusions were obtained by Wu et al. (2012), who analyzed the Hang Seng index (HSI) and 

concluded that the GARCH-diffusion model offers better predictions of the price of warrants 

than the classical model. Years later, Wu et al. (2014) studied the Hong Kong stock market 

through American options and found the same advantage. Finally, Wu and Zhou (2016) used 

the Chinese volatility index (iVIX); their main findings indicated that the risk of volatility 
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market values and the risk premium volatility were negative, which implied that investors in 

the Shanghai stock exchange are risk averse.

In general terms, this type of model is usually characterized by not having a closed solution 

and belongs to the class of non-affine models; in addition, solutions must be achieved through 

numerical methods, simulation, or the use of integrals in stochastic differential equations 

(Barone-Adesi et al., 2005). The system equations presented by this model have the following 

functional structure (Wu et al., 2012):

 			 

			    			            (1.3)

                                  			           (1.4)

where the parameters  and are constant and equivalent to the mean-reversion 

speed, the mean long-term volatility or tendency, and the volatility of volatility, respective-

ly. For its part, 
 
and 

 
correspond Independent One-Dimensional Standard Wiener 

Motion processes.

Equivalence between conditional variance process of GARCH (1,1) and variance of 
GARCH-diffusion stochastic volatility model 

Proposition 1. The functional structure GARCH (1,1) type presented in section 2.1, Equa-

tion (1.2) is equivalent to the differential equation proposed in (1.4), i.e.  is equivalent 

to , with , 

			 

		

Proof.

As , its moment generating function is given by   

and,  .

It is easy to see that   It can 

also be established that, 
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(1.5)                       

Consider the variable . Using the characteristic function of 

the normal distribution on  it follows that, 

	

		   

 

  	          

	

where,  that is  as  they conserve the same two first moments 

conditioned to .

From Equation (1.2) then,

  (1.6)

Thus, the limit process of (1.6) is given by the stochastic differential equation 

  it is a One-Dimensional Standard Wiener Motion.

Figure 1 below shows a numerical experiment, graphically demonstrating the equivalence 

between the variance of these two processes.
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Figure 1. Equivalence between the conditional variance of the GARCH (1,1) process with estimated parameters 

 and the stochastic variance of the GARCH-Diffusion model with , 

with  initial volatility for two processes,  and 

 .Source: Prepared by the authors with simulated data using MATLAB

As shown in Figure 1, the dynamics of the conditional and stochastic volatility generated 

for each are apparently the same, equivalent values being found among these processes.

Multiplicative quadrinomial tree model from the GARCH-diffusion model

Once the parameters have been estimated by the GARCH (1,1) model and its equivalents 

defined by the GARCH-diffusion model, the numerical method is derived using the multipli-

cative quadrinomial tree to describe the discrete behavior of the price of the underlying asset. 

The dynamic factors and transition probabilities are presented below.

Considering the proposed differential equation system given by (1.3) and (1.4), over the time 

interval , where , and  are constant, while  and  

 are Independent One-Dimensional Standard Brownian Motions, supposing further 
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that  and , the probabilities of the transition and growth factors for the 

processes  and , respectively, are defined as (Pareja-Vasseur & Marin-Sánchez, 2019): 

	

To consider the recombination of two binomial trees  and 

, which possess the same number of nodes along their time axes, that 

is,  for all  ,  denotes the transition probabilities of  with increases and 

decreases defined by  and , and for  they are , and , respectively 

(Marín Sánchez, 2010). The direct product  is defined by a tree  with a node 

described by  at the time . In the next step,  generates four nodes – 

, and  

– the respective probabilities of which are , 

 and , respectively (Lari-Lavassani, Simchi, & Ware, 2001; 

Pareja-Vasseur & Marin-Sánchez, 2019). 

Figure 2a. The first step of the proposed multiplicative quadrinomial  
tree model of the stochastic asset price and volatility.

Source: Prepared by the authors using Photoshop
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Figure 2b. Recombination of the second step of the proposed multiplicative quadrinomial tree model.

Source: Prepared by the authors using Photoshop

After all the corresponding parameters have been defined for  and for , it is possible 

to construct a quadrinomial tree that emulates the behavior of price , which, in each discrete 

step, has a value of branches equal to , where  corresponds to the number of steps, but, 

when the respective recombination is performed, the number of branches decreases to , as 

can be seen in Figure 2b. Below we show the value of each position for the first step of the 

tree, as shown in Figure 2a (Pareja-Vasseur & Marin-Sánchez, 2019). 

Real option valuation 

One of the techniques used to value the recent development of capital assets is known as 

ROA. This method, which is complementary to the DCF, seeks to introduce the volatility 

present in cash flows as well as the occurrence of contingent events. This methodology emer-

ged from the theory of financial options but is applied when the valuation is performed for 

capital assets in real markets. This theoretical definition was coined by Stewart Myers, who 

indicated that many corporate assets could be seen as call options (Myers, 1977). This type 

of options, such as financial options, can be assessed using different techniques, of which 

the most appropriate corresponds to the numerical method with multiplicative binomial 

tree (Cox, Ross, & Rubinstein, 1979), because of its intuitive and simple handling. In this 

technique, the price in continuous time of an underlying asset approximates the Geometric 

Brownian Motion emulated through discrete time in the form of a tree, in which it is possible 

to analyze, graphically and numerically, the anticipated execution or otherwise of the option.
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The ROA technique estimates the strategic net present value (NPV) and this value is com-

pared with the static NPV, which is estimated in the traditional way using the DCF method, 

finding the real option value (Maya Ochoa & Pareja Vasseur, 2014; Mun, 2002; Trigeorgis, 

1996). According to this theory, it is common for use options to differ, contract, expand, or 

abandon, among others; for American call and put options modified or adapted to that context.

Algebraic expression 

Assume that the life of an option (real or financial) over an asset that does not pay dividends, 

with an initial price   and exercise price , is divided into  sub-intervals, each with 

duration . Define  as the value of the option in the node . Based on Marín 

Sánchez (2010), the price of the asset has quadrinomial recombination in the node , 

which can be represented by the following expression:

    	                  	                          (1.7) 

with , and . Keep in mind that, 

in this case, both  and  are constant, so Equation (1.7) is summarized as follows: 

. Below there is a well-known algebraic approach 

based on the proposed methodology to assess the basic real options:

•	 In the case of an option to wait, the evaluation is performed in a similar way to an 

American financial call option; that is, the value on its maturity date is given by 

; thus,

, 

for  and , while its discounted value is defined as,
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•	 In the case of an expansion option, in which the expansion factor is defined by 

EF and K represents the additional investment for expansion, it is considered as a 

modified American call option, the value of which on its maturity date is given by 

 ; therefore, 

  

, 

•	 for  and . In addition, its discounted value is defined as, 

 	    			      

 	  

•	 In the case of a contraction option, in which the contraction factor is defined by CF 
and, in this case, K represents the disinvestment or release of funds by contraction, it 

is considered as a modified American put option, the value of which on its maturity 

date is given by ; hence,

	

,  

for  and  . In addition, its discounted value is defined as, 

	

•	 In the case of an abandonment option, in which the salvage value corresponds to K 

in this case, it is considered as a modified American put option, the value of which 

on its maturity date is given by max (Tt , K) ; thus, 

	 , 
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for  and . In addition, its discounted value is defined as 

follows,

	

     

Application example
Methodology

The methodology used in this paper is based on deductive logic and it is classified as quan-

titative, descriptive and non-experimental, besides as longitudinal respect time series (Her-

nández, Fernández, & Baptista, 2010). The methodology here presented rest on the use of 

a deductive logic and it is possible to classified as theorical, quantitative, non-experimental 

and longitudinal through time series analysis. It is formalized via econometric, mathematic 

and computational tools. We built a quadrinomial recombination in a non-constant volatility 

environment, that implied for its construction a rigorous mathematic deduction, which one 

was applied to value the real option of an oil sector project. Accordingly, the whole investi-

gation could be considerate as an illustrative case, based on Hayes, Kyer and Weber (2015) 

from a quantitative point of view.

Data collection

The data series was extracted from the Bloomberg platform and its WTI (West Texas In-

termediate) oil futures quoted prices with ticket CL1, with an operating contract for 1 000 

barrels. The commodity has been listed on Bloomberg since March 30, 1983, but the sample 

used was obtained from January 1, 2013 to August 14, 2018, resulting in a total of 1 466 

observations. Due to the liquidity of this type of contract, it is common to use it as a point of 

reference for the most of crude international prices. Figure 3 shows the commodity prices. 
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Figure 3. WTI oil commodity prices series used as the sample.
Source: Taken from the Bloomberg platform (2018).

Data analysis 

Table 1 presents some of the most relevant news that affected the commodity price in the 

market, which suggested important variations in the behavior of this variable.

 
Table 1 
Main events that influenced the WTI oil price variation in the sample

Date Event
Price 

(USD)

April 18, 2013
The price was the lowest for that year, due to low gasoline production and low 

oil demand
86.68

September 5, 2013
The price was the maximum for that year, because President Barack Obama 

spoke about possible military intervention in Syria
108.37

January 9, 2014
The price fell and broke the USD 100 barrier, due to a rebound effect that 

resulted from high speculation
91.66

March 17, 2015

The market showed a downward trend since 2014, and the price reached the 

USD 40 level. The explanation was related to the weakness of the dollar value 

and the expectation of the policy report of the Federal Reserve

43.46

August 24, 2015
After a brief rise in the oil price since April of that year, it collapsed because 

investors were waiting for information about stockpiles in the US
38.24

file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/312_2018_ENG/numbering.xml


J. A. Pareja Vasseur, et al. /  Contaduría y Administración 66(2), 2021, 1-30
http://dx.doi.org/10.22201/fca.24488410e.2021.2331 

16

February 11, 2016

This was the lowest price for the entire data series, mainly due to oversupply 

in the market and the level of the barrel inventory in Cushing, Oklahoma (the 

largest stockpile place in the US)

26.21

June 8, 2016
The price increased due to political conflicts in Nigeria that affected supply 

and reduced oil reserves in the US
51.23

August 2, 2016
The price fell below USD 40 again, due to excessive supply of crude oil and 

low dollar price
39.51

June 21, 2017

This was the lowest price in 2017; again, a direct effect of oversupply, due to 

high levels of stockpiles in the US, and from this moment, the price showed 

relative growth until the date on which the data were extracted

42.53

Source: Prepared by the authors with information taken and adapted from the Bloomberg platform (2018).

Results 
Price series results 

Figures 4a and 4b (see Appendix) offer the descriptive statistics and a correlogram (Box, 

Jenkins, Reinsel, & Ljung, 2015) for the selected commodity price series; as it can be seen, 

there seems to be the first-lag autocorrelation, meaning that the price on one day is correlated 

with that on the next. As a complement, Table 2 presents the finding formalized with the 

Breush–Godfrey test (Breusch, 1978; Godfrey, 1978), In this case, we detect autocorrelation 

of order 1 in the price residuals.

 
Table 2 
Breusch–Godfrey serial correlation LM test

Variable Coefficient Std error t-statistic Prob.

C -7.76And-05 0.034304 -0.002262 0.9982

RESID(-1) 0.963292 0.026130 36.86560 0.0000

RESID(-2) 0.035201 0.026130 1.347177 0.1781

Note: Two lags are included 
Source: Prepared by the authors using EViews.

The result shows that the alternative hypothesis is not rejected and that there is a serial 

correlation of some order, in this case, for the first lag. Based on this, we can define, analyze, 

and model the variable using a system of stochastic differential equations of the GARCH-di-

ffusion type. Once the equation for the price has been defined, the yields are estimated as 

an alternative to detect conditional volatility, as stated in the following Equation, which is 
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derived from (1.3): , where  is the price in period  

, is the price in period ;  is the risk-free rate;  is the time in period ;  is the 

stochastic volatility process in period ; and  is a random number with  (0,1) in 

period ; in addition,

	             

 	                              			           (1.8)

									          

									                Thus,

                          

                                        			           (1.9)

Yield series results 

In this section, we present the analysis of the WTI oil yield series estimated from Equation 

(1.9). We present the descriptive statistics (Figure 5a), and graphically check stationarity (Figure 

5b), autocorrelation (Figure 6a), and heteroskedasticity (Figure 6b); suggesting conditional 

volatility, it should be estimated through ARCH models. As a complement, some tests are 

presented below, to verify the previous characteristics. The following statistical tests were 

performed: the Kwiatkowski–Phillips–Schmidt–Shin test (Kwiatkowski, Phillips, Schmidt, 

& Shin, 1992), to detect if the series was stationary on average; the Breush–Godfrey test, 

to detect presence of serial autocorrelation; and the Ljung–Box Q test (Ljung & Box, 1978) 

and Engle ARCH test (Engle, 1982), to check for heteroskedasticity in the series. The results 

are as follows:

Table 3  
Kwiatkowski–Phillips–Schmidt–Shin test

LM stat.

Kwiatkowski–Phillips–Schmidt–Shin test statistic 0.088610

Asymptotic critical values: 1% level 0.216000

5% level 0.463000

10% level 0.347000

Note: The trend and intercept are included. 

Source: Prepared by the authors using EViews
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Table 4 
Breusch–Godfrey serial correlation LM test

Variable Coefficient Std error t-statistic Prob.

C 6.69And-06 0.008658 0.000773 0.9994

RESID(-1) -0.067052 0.026155 -2.563647 0.0105

RESID(-2) -0.003275 0.026156 -0.125199 0.9004
Note: Two lags are included. 

Source: Prepared by the authors using EViews

 
Table 5 
Ljung–Box test

Stat. p-value c-value

127.8451 0 3.8415
Note: One lag is included. 

Source: Prepared by the authors using MATLAB.

 
Table 6 
Engle ARCH test

Variable Coefficient Std error t-statistic Prob.

C 0.077605 0.007062 10.98838 0.0000

RESID^2(-1) 0.295272 0.024988 11.81659 0.0000
Note: One lag is included. 

Source: Prepared by the authors using EViews.

The results were evaluated with an Alpha value of 10%. Thus, the series is apparently 

stationary on average, since the null hypothesis should not be rejected for any of the critical 

values (Table 3); the series also apparently has autocorrelation of order 1, because the one 

residual lag is significant (Table 4); and, finally, there is heteroskedasticity as indicated by 

the two tests (Ljung–Box and Engle ARCH). We have satisfactory evidence to reject the null 

hypothesis that the series does not have significant ARCH effects (Tables 5 and 6).
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Findings 
Parameter estimation corresponding to the GARCH (1,1) process

Once the statistical tests had been applied to the yield series, we move on to estimate the 

value of each of the parameters using a GARCH (1,1) model as presented in Equation (1.2) 

to find their equivalents in the GARCH-diffusion model, as presented later.

 

Table 7

GARCH (1,1) estimation process for the WTI oil yield series

Variable Coefficient Std error z-statistic Prob.

Variance Equation

C 0.000496 0.000224 2.219792 0.0264

RESID(-1)^2 0.061478 0.008451 7.274757 0.0000

GARCH(-1) 0.935966 0.008894 105.2315 0.0000

Note: With unconditional prevariance. 

Source: Prepared by the authors using EViews.

Table 7 shows the results and indicates that the coefficients are significant with an Alpha 

value of 10%; thus, the estimation has the following structural form:

	  

Figure 7a exhibits the WTI oil yield conditional volatility for the established dates; in 

addition, the yield residual squared correlogram was estimated to verify that there was white 

noise (Figure 7b).

It can be seen in Figure 7a, that there are three volatility clusters defined: The first has low 

volatility from 2013 to mid-2014, the second has high volatility until the end of 2016, and 

the third shows some lower volatility until the end. On the right side, Figure 7b presents the 

residuals squared correlogram, in which the series contains white noise, which is completely 

random. To conclude this section, the estimation of the WTI oil price versus the real prices 

for the given range is presented below. The forecast was constructed from the information 

offered by the GARCH (1,1) conditional volatility process and then a random number series 

was generated to estimate the respective residuals, as shown in Equations (1.8) and (1.9), the 

forecast is presented in Figure 8. 
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Figure 8. WTI oil real prices versus estimated prices using the conditional volatility of  GARCH (1,1) model.

Source: Prepared by the authors using Matlab.

As it can be observed in Figure 8, the estimated prices and the real ones were close to each 

other, and to verify this result, the mean square error was used. The result of 1.61 indicates 

that the estimation was robust and followed the dynamics of the process. The estimated prices 

were built using Equations (1.8) and (1.9), as follows: .

Equivalence between the values of the parameters of the GARCH (1,1) model and those of 
the GARCH-diffusion model

From the equivalence between the variance of processes detailed in section 3, Table 8 offers 

the values of the parameters between the GARCH (1,1) model and the GARCH-diffusion 

model using Equations: ,  and  . The values in last 

column (Table 8), will be utilized to model non-constant volatility in the ROA case presented 

in the following section.
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Table 8 
Equivalent values of the parameters for the GARCH (1,1) and GARCH-diffusion processes

Method

Parameters

GARCH (1,1) GARCH-diffusion

0.000496 0.002556

0.061478 0.194127

0.935966 0.086942

Source: Prepared by the authors using EViews and MATLAB.

Real option valuation: a counterfactual case

As a counterfactual case, in this section we discuss a real option valuation using the algebraic 

expression of an option of abandonment, as described in section 5.1. To find the value of the 

strategic NPV, the numerical method was employed by means of quadrinomial trees with the 

stochastic volatility model presented in section 4 and considering the values estimated for the 

GARCH-diffusion model exhibited in Table 8, which are the parameters of Equation (1.4). 

Finally, the solution was compared with the estimated results of the traditional multiplicative 

binomial method.

Suppose the oil company “X” based its efforts exclusively to upstream process. This firm 

signed an exploration and production contract (E&P), where a determinate area was assigned 

to them, which one is used to exploration, evaluation and oil extraction. The development of 

contract E&P counts with a geological and geophysical analysis and wanted to know the stra-

tegic NPV value of a project according to the ROA methodology and that its cash flows can be 

modeled using Equations (1.3) and (1.4). Assume the WTI oil prices used to estimate the cash 

flows are perfectly correlated with the project and volatility is the same that project without 

administrative flexibility has (Brandão, Dyer, & Hahn, 2012). The estimated static NPV of the 

project is affected by the technical probability and corresponds to , which 

was calculated according to the traditional DCF methodology with an appropriate risk-adjusted 

rate. Besides that, is estimated the technical probability or the geological success depends on 

the occurrence probability of these factors, as basement, caprock, reservoir rock, and its own 

dynamics. The previous information allowed to find the technical probability as the probability 

product sequence mentioned before.

The firm also determined that it has an opportunity to assign the rights and property of the 
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project to a third party at the value of   K = 66 when the market conditions are unfavorable. That 
is, this value corresponds to the salvage value and remains constant over the evaluation horizon 
of the firm’s abandonment option (Pareja Vasseur & Cadavid Pérez, 2016). Assume, in addition, 
the following values that were obtained from the GARCH (1,1) estimation process of the WTI 
oil price yields between January 2013 and August 2018 and their equivalents for the GARCH-di-
ffusion model (see Table 8): , 
and , as well as  was obtained with the standard deviation of the 
aforementioned yield series for the traditional multiplicative binomial methodology. 

Table 9 
Comparison of the value of the strategic NPV through the quadrinomial method and the binomial 
method

Method/time 1 2 3 4 5

(1) Quadrinomial tree 95.59 100.09 102.37 104.57 106.31

(2) Binomial tree 91.88 96.93 96.96 99.99 100.01

(3) Difference in percentage 4.04% 3.26% 5.58% 4.58% 6.30%
Source: Prepared by the authors using MATLAB and Excel.

The results of the strategic NPV for the periods from year one to year five, with annual 

steps, are summarized in Table 9. It can be seen in all the cases that value estimated by our 

proposed method is higher than the traditional one. This would indicate an undervaluation of 

the strategic NPV at estimating lower volatility than the one actually presented in the series. 

Specifically, the first row shows the values for our methodology; for example, for the fourth 

year, a strategic NPV is estimated at 104.57, with an abandonment option of 12.75, whereas 

using the traditional method with multiplicative binomial trees, that is, the second row, the 

results are 99.99  and 8.17, respectively. The last row of Table 9 shows the percentage diffe-

rences between the NPV values of the two methods, concluding that there is an approximate 

average of 5% for all the years of the real option evaluation. It is important to state that, if 

constant volatility 44.06% had been used in the traditional methodology, which comes from 

 in the proposed method, the results between the two methodologies would be very 

close. This means that the real option value of the traditional method would be undervalued 

due to poorly estimation of volatility because such value is greater than estimated using the 

standard deviation of the yields. 
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Conclusions

The findings can be summarized as follows. First, the price analysis helps to detect first-lag 

autocorrelation, which suggested that there was evidence of conditional heteroskedasticity 

in the time series chosen as the sample. Second, with the price we detected three different 

volatility clusters for the WTI oil, two with moderate volatilities, the first between 2013 

and 2014 and the second between 2017 and 2018, and one with high volatility for 2015 and 

2016. This implies that volatility is not constant but dynamic and for that reason, it should 

be modeled in the latter form. Third, once price yields were estimated, it was possible to use 

a statistical test at the 10% significance Alpha level to look for stationarity, autocorrelation, 

and heteroskedasticity, suggesting that the price variations of WTI oil  have conditional vo-

latility depending on the time. Fourth, it was possible to estimate a GARCH process for the 

WTI oil commodity and model its variance using a GARCH (1,1) model. We found out that 

the residuals after the estimation were white noise, that is, completely random. Fifth, using 

mathematical and statistical development, it was possible to find an equivalence between 

the GARCH (1,1) conditional volatility and the stochastic variance of the GARCH-diffusion 

model. The latter provided elements to build and develop the numerical method by trees to 

assess options that are derived from the behavior of this commodity type. Sixth, it was possible 

to use an algebraic expression to depict the evolution of the price of an asset in presence of 

both dynamic and constant volatility in such a way that its effect is captured in an appropriate 

manner, to model the evolution or behavior of the underlying asset in the market. Seventh, it 

was concluded that the real option value is higher in our method than the binomial method, 

because “real” volatility is greater than that estimated by traditional simple standard yields 

deviation. It was also indicated that, when the traditional binomial method uses  as 

volatility, the values of the strategic NPV are similar. 

Future research aims to analyze how it changes the quadrinomial method when there is 

a correlation between Brownian Motions. At the same time, using different commodities as 

real options applications with the proposed methodology is also necessary. The appropriate 

analysis is advocated to determine the initial volatility value for proposed method, since 

changes in this variable produces significant variations in real option assess. 

Finally, this research connects the areas of econometrics and stochastic processes, verifying 

that there is existence of a relationship between variances of the GARCH (1,1) model and the 

GARCH-diffusion model; therefore, in this line of research, future research could demons-

trate the equivalences that could exist between the different models of the ARCH family and 

file:///Users/ctoapp108/Desktop/pendientes%20%20de%20marzo/cya%2066(2)/312_2018_ENG/numbering.xml


J. A. Pareja Vasseur, et al. /  Contaduría y Administración 66(2), 2021, 1-30
http://dx.doi.org/10.22201/fca.24488410e.2021.2331 

24

their equivalents in the stochastic differential equations system to obtain better estimates of 

derivatives’ prices and accordingly to facilitate a deeper, developed, and efficient market. 
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Annex

Figure 4a. WTI oil price descriptive statistics.

Source: Prepared by the authors using EViews.
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Figure 4b. WTI oil price residuals autocorrelation and partial autocorrelation correlogram.
Source: Prepared by the authors using EViews.

Figure 5a. Descriptive statistics. 

Source: Prepared by the authors using EViews.
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Figure 5b. Yield graph. 

Source: Prepared by the authors using EViews.

                                       
Figure 6a. WTI oil yield residuals autocorrelation and partial autocorrelation correlogram. 

Source: Prepared by the authors using EViews.
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Figure 6b. WTI oil yield residuals squared autocorrelation and partial autocorrelation correlogram. 

Source: Prepared by the authors using EViews.
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