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ABSTRACT: The Zero Average Dynamics (ZAD) strategy has been reported in the last decade as an alternative for controlling power converters. 
This technique has the advantage of guaranteeing fi xed frequency switching. However, the stability of the controller is highly dependent on the 
load value, and when the stability is lost, the fi xed frequency switching is lost too. In this paper we generalize ZAD strategy using the probabilities 
framework through the expectation operator. Thus, we recover classical sliding mode control classical ZAD strategy, and new control methods 
can be defi ned, which are more stable than the others previously used. For this reason, this technique is entitled Generalized Zero Average 
Dynamics (GZAD). We will show several simulations regarding an application to a DC-DC Buck converter within the generalized ZAD 
strategy, which cannot be deduced from the classical ZAD. Numerical simulations show good regulation features and a wide range of stability.

KEY WORDS: ZAD control, GZAD control, bifurcation analysis, power electronic circuits, power converters, control of power converters.

RESUMEN: En la última década se ha reportado la estrategia de control Zero Average Dynamics (ZAD) como una alternativa al control 
de los convertidores de potencia, garantizando frecuencia fi ja de conmutación y bajo error. Sin embargo la estabilidad del sistema depende 
fuertemente de la carga, por lo cual no es robusto. Cuando se pierde la estabilidad la frecuencia fi ja de conmutación se pierde también.  En 
este artículo se presenta la generalización de la técnica ZAD dentro del marco de la teoría de probabilidades. Usando este marco es posible 
recuperar el ZAD tal como ha sido analizado hasta ahora y se pueden generar nuevas estrategias de control, las cuales son más estables que 
las usadas en el ZAD. Por este motivo a esta técnica se le ha llamado  Generalized Zero Average Dynamics (GZAD). Presentamos algunas 
simulaciones del GZAD aplicado a un convertidor de potencia reductor. Esta nueva estrategia no puede ser obtenida con el ZAD clásico. 
Las simulaciones numéricas muestran buen desempeño del controlador con bajo error de regulación y robustez ante cambio en la carga.

PALABRAS CLAVE: Control ZAD, Control GZAD, Análisis de bifurcaciones, convertidores de potencia, control de convertidores.

1.   INTRODUCTION

This paper is devoted to the analysis of the regulation 
problem in ZAD controlled buck power converters. 
Power converters have a lot of applications in 
industrial and commercial environments, and in 
electrical household appliances (see, for example [1]). 
There are several basic confi gurations such as buck 
(or step down), boost (or step up), buck-boost, and 
so on. Besides, these confi gurations can be used for 
tracking or regulations tasks. A complete introduction 
to power converters can be found in [2] and a more 
concise overview including control, in [3]. Nonlinear 
phenomena in power electronics, bifurcations, chaos, 
and control of chaos are widely reported in [4], and 

more recently in [5-6]. Two-parameter bifurcation 
diagrams of DC/DC converter topologies have been 
recently reported in [7-10].  

In the last decade, a new control strategy, the so-called 
ZAD control, has been widely applied and analyzed for 
regulation problems in a step down power converter, 
that is, to keep the output voltage of a converter close 
to a desired reference voltage in buck converters. This 
control scheme (called classical ZAD strategy in this 
paper) proposed in [11], conjugates the advantages 
of fi xed frequency implementations and the inherent 
robustness of sliding control modes. It is based on an 
appropriate design of the duty cycle in such a way that, 
in each sampling period, the sliding surface average 
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is zero, and at the same time the output of the system 
tracks the reference value with a very low voltage error. 
Numerical [12,13], analytical [12-14], and experimental 
results [15-17] have shown the effectiveness of this 
technique. However, due to the switching control, the 
converter displays a plethora of nonlinear behavior 
after the system loses stability and fi xed frequency. In 
[13-14,18-21] a wide study of nonlinear phenomena has 
been reported. Other strategies with PWM and Sliding 
Mode can be found in [22].

The continuous version of the classical ZAD strategy 
is based on sliding modes, and it forces a dynamical 
error to be zero in each sampling time. With this 
technique there are two problems: the fi rst problem is 
manifested due to a kind of rigidity of the method. At 
each sampling interval, and when the control variable 
takes one of its values (+1), the strategy proposed in 
[11] gives the same weight all along the period. This 
will become clearer in the corresponding section. The 
second problem occurs from a practical point of view: 
the computation of the duty cycle may be slow. The 
simplifi ed version in [11-12] considers the dynamical 
expression in the error as a piece-wise linear function 
with the aim of simplifying the computations [12]. 
However, this simplifi ed new version (or discrete 
version) of the classical ZAD strategy gives also the 
same weight to the measured values for computing the 
duty cycle. Thus, we propose a generalization of this 
technique using the probabilities framework through 
the expectation operator.  Our main aim is to show 
that a simple idea like introducing the appropriate 
mathematical framework can lead to a generalization 
of the ZAD control strategy that can produce better 
results than classical ZAD. Through this method 
we can recover the known classical continuous and 
discrete ZAD techniques, and furthermore, we can 
state new ones which enhance some methods in the 
literature. Thus we will fi rst state the mathematical 
framework and, later, we will apply this set of 
techniques to a case of study: the regulation problem 
for a DC-DC Buck converter.

In this paper we consider different weights for the 
variables in the dynamical expression, which take 
discrete values, and we generalize the ZAD technique 
in such a way that we can recover the classical sliding 
mode control, the classical continuous ZAD and, the 
classical discrete ZAD strategies. Even though the 
probabilities mathematical framework looks a bit 
unusual in the analysis of DC-DC converters, we 
propose to use the expression of the duty cycle given 
by our methods instead of the already classical ZAD 

reported procedures. The new proposed controller 
is more stable than the classical ZAD controller and 
with it the fi xed frequency switching is not lost. On 
the other hand, the practical implementation requires 
the same technological development as the reported 
classical ZAD strategy.

This paper is organized as follows: In Section 2, 
we develop the generalization of ZAD strategy for 
continuous and discrete cases. In Section 3 we analyze 
the design of the control strategy for the continuous 
case. Section 4 is devoted to showing the design of 
the control strategy for the discrete case. Both sections 
3 and 4 are illustrated with a DC-DC Buck power 
converter. Section 5 includes a detailed design for 
controller based on GZAD technique, and fi nally, in 
Section 6 we state some conclusions and future work.  

2.  GENERALIZED ZERO AVERAGE      
      DYNAMICS (GZAD)

Zero Average Dynamics (ZAD) has been recently 
proposed in the literature [11-12,15-16,23], and it has 
been applied to several DC-DC converters [15,17,24]. 
In this section, we generalize this technique and 
several different control strategies are obtained as 
particular cases.

2.1 Probabilities mathematical framework

PWM methods are very much related to sliding mode 
control [25] and, concretely, the ZAD strategy is 
related to it as well, as follows. Given a control system 

 
= ( ) ( )
= ( )

x f x g x u
y h x


           (1)

where x is the vector of state variables, and u is the 
control signal, a sliding surface is defi ned as

 0=)(xs            (2)

and a general control strategy is to fi nd u in such a 
way that the system evolves on the surface. This is 
basically the so-called sliding-mode control. Generally 
speaking, the ZAD technique is a control strategy 
which is softer than the sliding mode control, in the  
sense that only 
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is imposed for every interval of fi xed length T.
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The main idea of the new GZAD is to assume that 
there is a density function defi ned on [0,T] (which is 
equivalent of saying that x(t) is a random variable with 
a certain distribution, or {x(t)}t≥0 a stochastic process), 
and forcing the expectation of s(x(t)) to be zero.

Let q(t) be a density on the real line. Then one can 
easily defi ne a density on [0,T] by 

 [0, ]
1( ) = ( ) ( )T Tq t q t I t
M

           (4)

 where I is the indicator function ( 1=)(tI  if ][0,Tt
, and 0=)(tI  otherwise) and 

 
0

= ( ) .
T

M q t dt               (5)

Then, the expectation of s(x(t)) is computed as 

 
0

:= ( ( ( ))) = ( ( )) ( )
T

T TE E s x t s x t q t dt   (6)

and  0=E                (7)

is imposed in the GZAD strategy. One can recover 
the classical ZAD strategy with a ][0,TUniform  
distribution. Considering different distributions, 
l ike a  ),(Normal or  )(lExponentia ,  one 
obtains different control strategies, depending on the 
importance given to some sets in the interval [0,T]. 
In the following section, we explain the continuous 
and discrete cases.

2.2  Continuous case: normal and exponential  
       strategies

The density of a Normal distribution with µ mean and 
2  variance is given by 
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In this case we should force 
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In practical cases, where x(t) contains exponential and 
trigonometric functions, it is clear that (9) can only 
be solved numerically and the computations can be 
heavy for experimental prototypes. Thus although this 
distribution can be thought of as an academic example, 
from a practical point of view this distribution function 
may not be good.

Instead, if we consider the Exponential distribution 
with parameter , whose density is 

[0, ]( ) = ( ) tq t I t e
             (10)

then we have to force

 
0

( ( )) = 0
T ts x t e dt           (11)

For several applications, this integral will not be solved 
analytically, but with a good selection of parameter  it 
is possible to reduce the complexity of the expression 
for the solution. In such a case, better stability results 
are obtained, as is shown in the bifurcation diagrams 
(Figs. 1 and 2). As the ZAD technique can be used in 
practical applications such as those reported in [15, 
17], the main idea is to fi nd a simple form to compute 
the duty cycle, which guarantees stability and does not 
require much computational effort. In this section, we 
relax the condition of zero value of the integral on the 
interval [0,T] through a selection of some points, and   
we  force  the sum  (instead of the integral)  to  be zero. 

2.3 The case of discrete random variables

When we have a discrete random variable, some 
interesting new strategies appear. Let us write the 
density as a fi nite combination of Delta functions,  

=1

( ) = ( )
n

i ti
i

q t t             (12)

where all ][0,Tti  , 1<<0 i , for ni 1,...,= , and 
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Then the expectation is 
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and it is zero when 

 
=1

( ) = 0.
n

i i
i

s t            (15)

When n = 1, this is reduced to s(t1) = 0 for a chosen 
][0,1 Tt  . This law is simpler than ZAD and, 

moreover, 1t  can be chosen in such a way that it 
minimizes some additional error function, improving 
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the control design. In the case n = 2, we have for some 
1<<0 1 , 

0=)()(1)( 2111 tsts            (16)

and thus 
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2
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ts
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and, in general, for ][0,,...,, 21 Tttt n   we have 
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for (0,1),,1 n , such that =1
= 1.

n

i
i
  If we 

choose nini 1,...,=1/=   (a discrete uniform 
distribution), we recover the discrete version of the 
classical ZAD technique. Also, in some cases, it 
can be useful to apply GZAD to several surfaces 

)(,),(1 xsxs k  if we need the system, for design 
purposes, to evolve close to the intersection of the 
surfaces. This will be studied in a further paper. In 
Sections 3, 4, and 5, we will use our knowledge of 
the classical ZAD strategy  and  we  will improve its 
performance.

3.   THE DESIGN OF THE CONTROL STRATEGY:         
UNIFORM (ZAD) AND EXPONENTIAL 
(GZAD) DISTRIBUTIONS.

With the aim of generalizing the ZAD technique, we 
consider a system defi ned by (19), with γ > 0, which 
corresponds to any two-order stable linear system 
with relative degree two and unitary gain (a complete 
procedure for this transformation can be found in [26]).
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1
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=
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The control variable is 1,1}{u . A centered PWM 
u is given by 

    
1  if  ( / 2)

= 1  if ( / 2) < < ( 1 / 2)  
1  if ( 1 / 2) ( 1)  

kT t k d T
u k d T t k d T

k d T t k T

  
   
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(20)

Where d is the normalized duty cycle. The objective 
is to fi nd a control law in such a way that the output 
variable (y) remains close to a fi xed desired value with 
low voltage error (regulation task) and the system is 
robust. To satisfy these requirements, and using the 
main ideas of sliding control, the following function 
is defi ned [27]: 

 11=)( xkxxxs sref                 (21)

where x1 is the variable to be controlled and ks is the 
time-constant associated with the error dynamics. 
Because of the similarity with sliding modes, s(x) is 
also called sliding surface.

The proposed ZAD strategy is based on computing a 
time instant d, such that in each period T, the following 
equation is satisfi ed 

 
( 1)

( ( )) = 0.
k T

kT
s x t dt



           (22)

Thus s(x(t)) is forced to have zero average in each 
period. As we stated previously, the reported ZAD 
strategy is based on a continuous uniform distribution, in 
such a way that (22) is satisfi ed in each period. Using an 
exponential distribution, we force the system to satisfy 

 
( 1)

( ( )) = 0.
k T t

kT
s x t e dt



          (23)

With the aim of testing our generalization of the ZAD 
strategy, we compute the duty cycle with continuous 
uniform (classical ZAD strategy) and exponential 
densities (GZAD) using  = 1. Figures 1 and 2 show 
the bifurcation diagram of both strategies for γ = 0.35. 
The fi xed point loses stability for ks » 2.8 with the 
classical ZAD strategy, while the point loses stability 
for ks » 0.743 with GZAD. Thus the generalized 
method shows that the stability range has been 
enlarged. The voltage error, shown at the sampling 
times ,,3,20, TTT  is  very    low   in   both   methods.

It is worth noting that quantitative agreement with the 
voltage error is hard to obtain in practical applications 
mainly due to problems related to the sensitivity of 
sensors, delays, and so on. Therefore, the advantage 
of GZAD strategy is the widening of the stability 
range. However, the main problem of this technique, 
as it is also in the case of the classical continuous 
ZAD strategy, is that it is still necessary to solve a 
transcendental equation for fi nding the duty  cycle in 
each   period.  For solving this situation, we proceeded 
to defi ne the  generalized  ZAD discrete version.
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4.     THE DESIGN OF THE CONTROL STRATEGY 
FOR DISCRETE RANDOM VARIABLES: 
DISCRETE ZAD AND DISCRETE GZAD

For the classical ZAD strategy a practical handicap 
for experimental validation is the heavy computation 
of the duty cycle at each sampling interval. This is 
due to the fact that, at each sampling time kT  , a 
transcendental equation must be solved. In order to 
avoid this problem, in [11, 12] a piece-wise linear 
function )(ts pwl  was introduced (which approximates 

quite well the original ))(( txs ), and instead of solving 
( 1)

( ( )) = 0,
k T

kT
s x t



   it was forced that 
( 1)

( ) = 0.
k T

pwlkT
s t



  

Function )(ts pwl  was defi ned by three linear pieces and 
the slopes of these pieces where s  was in the fi rst 
piece, s  in the second one, and s  again in the third 
one. So, s  is computed as the slope of the function 

))(( txs  at the beginning of the sampling interval 
assuming that u = +1, while s  is computed as the 
slope of the function ))(( txs  at the beginning of the 
sampling interval, assuming that 1= u . Concretely,

= , = 1 = , = 1
( ( )) ( ( ))= | ; = | .t kT u t kT u

ds x t ds x ts s
dt dt

 
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Then,  we a ssume  tha t  the  f i rs t  p iece  i s 
defined in [ , / 2],kT kT Td the second piece in 
[ / 2, ( 1) / 2]kT Td k T Td    and the third one in 
[( 1) / 2, ( 1) ].k T Td k T    Thus we compute the 
normalized duty cycle d  in such a way that the 
following equation is satisfi ed: 
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 
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  (24)

Then the duty cycle obtained is [12]: 

 2 (0)=
( )

s Tsd
T s s



 




          (25)

where (0)s  is the value of ))(( txs  in =t kT .

Since d must be in the interval [0,1] , we saturate the 
expression in (25) by 1 if it exceeds 1, or we saturate 
it to 0 if it is below 0. This is the simplest case, and it 
is called classical discrete ZAD.

In [12, 13] it was proven that considering ))(( txs  as a 
piece-wise linear function, for γ = 0.35 and 0.1767=T
, the system defi ned by (19), (20) and (25) has a stable 
T-periodic orbit for ks » > 3.25. For this value the 
system has a period-doubling bifurcation followed by a 
corner collision bifurcation (at ks » 3.24), followed by 
a second period-doubling bifurcation (for ks » 3) and 
a second corner collision (for ks » 2.999). After these 
bifurcations, chaotic bands appear and the process 
continues until the system enters in 1-band chaos (for 
ks » 0.5). Details of this bifurcation   process   can  be  
found  in [13, 18].

As far as we know, the system losses stability since it is 
unable to hold zero average, and many saturated duty 
cycles appear. This is basically because the control 
pulse u(t) is symmetric, and )(ts pwl  is not. We assume 

Figure  2. Bifurcation diagram of the voltage error using 
ks as bifurcation parameter. GZAD strategy: exponential 

density

Figure  1. Bifurcation diagram of the voltage error using 
ks as bifurcation parameter. Classical ZAD strategy: 

continuous uniform density
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that the fi rst and the third slopes of the piece-wise 
linear function )(ts pwl  have the same value ( s ) 
and they should be assumed to be different.

Now, we propose a new general version of discrete 
ZAD (called discrete GZAD) given by 

 
( 1)

( ( )) ( )
k T

TkT
s x t q t



              (26)

where )(tqT  corresponds to a density of a discrete 
distribution, and thus it involves Delta functions. 
Then, as the previous continuous case, we force the 
expectation of ))(( txs  to  be zero in each sampling 
period ][0,T . Thus the integral in (26) can be 
computed as 

 
=1

( ) = 0,
n

i i
i

s t            (27)

 with  
=1

= 1.
n

i
i
 Depending on the number n of points, 

we have different expressions for the normalized duty 
cycle d. Also, as in classical discrete ZAD, we will 
assume that the function ))(( txs  is close to a piece-
wise linear function )(tspwl  with 3 linear pieces in the 
sampling interval ][0,T  (1 piece if we have saturation 
in the duty cycle). We will show with detail the case 
for n = 2, being a good compromise between simplicity 
in control and good bounds for the voltage error, and 
also, because it completely exemplifi es our method.

We have 1 1 1 2( ) (1 ) ( ) = 0.pwl pwls t s t   After 
some algebra, it is easy to obtain the following 
equivalent expression 

 1 1 1

1 2 1

( (0) ) (1 )( (0)

( ) ) = 0.

s t s s
t s t t s



 

  

  
               (28)

We still have many choices for 1t  and 2t , and for α1; 
but there are several natural ways to choose them, 
according to the symmetry of the control variable u. 
One of the possible natural choices is t1 = d/2 and t2 
= 1-d/2. Then the normalized duty cycle is found as 

 1

1

2 (0) 2(1 )= .
(2(1 ) )

s Tsd
T s s



 

 
 

             (29)

Of course, we also saturate d to 0  or 1  to obtain a 
value in the admissible interval [0,1] . In particular, 
taking into account our knowledge of the ZAD 
strategy, we apply this new version for improving the 

performance of the controller and for    widening the 
stability range. It is worth noting   that    for  α1 = 1/2,  
we    reproduce   the classical  discrete  ZAD    strategy.   
However the duty cycle expression for the generalized 
ZAD (GZAD) is more powerful than the one for the 
classical ZAD strategy. This is because the system 
losses the stability mainly at the end of the sampling 
period. The system tries to preserve simultaneously 
zero average and the symmetry of the pulse, and both 
things together are hard to satisfy.

With the new expression for the duty cycle in (29) we 
can give more weight to the last part of the sampling 
interval and force the system to evolve better. In 
particular, we want to emphasize that even very small 
differences between duty cycles, produce completely 
different behaviors [14,19,20]. Figure 3 show the 
bifurcation diagram of the duty cycle using α1 as 
bifurcation parameter and fi xing ks = 4.5. Taking into 
account that α1 is the weight of the value of /2)(ds pwl
, at the sampling time, the minimum regulation error 
was obtained when α1 = 0.4967, which agrees with 

( / 2) (1 / 2) = 0pwl pwls d s d  .  This balances the 
difference between the real and expected values of 

))(( txs  at = / 2t d  and at = 1 / 2t d  and now the 
system has almost the same behavior as the classical 
ZAD strategy without approximation (but  with  less 
computation effort) (see Fig. 1).

Figure  3. Bifurcation diagram of the duty cycle using α1 
as bifurcation parameter. ks = 4.5

Figure 4 shows the bifurcation diagram for the 
maximum of the absolute value of the voltage error 
in each interval [ , ( 1) ]kT k T when α1 is varied (this 
is max | ( ) | [ , ( 1) ]e t for t kT k T   versus α1).
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Then, from the previous results we conclude that:  
• The value of α1 for which the minimum voltage error  

in steady state is  obtained is α1 = 0.4989. 
• Higher values of α1 imply higher values of ks. 

However, previous analysis have shown that ks 
cannot be very high since although the system is 
still stable, it losses the regulation capability [12]. 

• From Fig. 4 we can choose α1 so that the stability is 
improved and the maximum voltage error is lower 
with a certain threshold (say, for example, with 
regulation error lower than 1 % ).

Thus, this new technique can be used to design a PWM 
control technique in such a way that the compromise 
among accuracy, steady state voltage error, and 
the stability of the 1-periodic orbit can be properly 
handled. Taking this idea into account, we present    
the following section.

5.   DESIGN OF AN IMPROVED CONTROLLER

Taking into account that now the main parameters are 
ks and α1, we need to state an optimal link between 
them. Since analytical results are very diffi cult to 
obtain, we proceed to relate ks and α1   through  a 
two-dimensional numerical plot. Figure 5 shows the 
absolute value of the voltage error at the sampling    
time using α1 and ks as  variables.

It is worth noting that even though the bifurcation 
diagrams shown in Figs. 4 and 5 can induce one 
to think that the best strategy is to select values 
close to classical discrete ZAD, these values give 
too much weight to the derivative part of ))(( txs  (

)()(=)(( tektetxs s  ) and the system hardly follows 
the ZAD strategy (that is, it has many saturated cycles 
which do not fi t the ZAD strategy). Using the diagram 
shown in Fig. 5, we can observe that as we decrease 
the value of α1 it is possible to reduce the value of ks 
for obtaining a regulated 1-periodic orbit. Analyzing 
the same fi gure, we conclude that the weight (1- α1) 
applied to the second point of the discrete ZAD strategy 
has a signifi cant effect on the stability. Even more, 
for α1 > 0.52, the system is unstable for ks  < 5, and the 
technique cannot be applied. In fact, ks < 5 is required 
for regulation purposes. Specifi cally for our case, 
previous works have reported that the classical ZAD 
strategy is not robust enough to load changes. In [12] it 
was proven that for ks = 4.5 and varying γ, the system lost 
the stability of the one-periodic orbit close to γ = 0.26.

On the other hand, using the proposed GZAD 
technique in this work and, taking ks = 0.3 and α1  = 
0.3, the system preserves the stability of the 1-periodic 
orbit even if γ is very low ( = 1/ / )R L C . The 
comparison between both strategies is presented in 
Figs. 6-7. The fi gures are devoted to showing the 
behavior of the regulation error. Although both have 
very similar values for the regulation error, the ZAD 
strategy has a lower voltage error than the GZAD 
strategy for γ > 0.1. However, very low voltage error 
is diffi cult to obtain in practical implementations due 
to problems related to the sensitivity of the sensors, 
noise, delays, etc. So, from a practical point of view, 
the global performance of the GZAD strategy is better 
than the classical ZAD strategy due to the fact that 
GZAD is more robust and shows no bifurcations (see 
Figs. 6 and 7).

Figure  4. Bifurcation diagram of the maximum absolute 
voltage error in each period, using α1 as bifurcation 

parameter and fi xing ks = 4.5

Figure  5. Plot of the absolute voltage error at the 
sampling time using α1 and ks as variables (the right part 
of the surface is unstable, while the left part is stable).
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Figure 7. ZAD: Bifurcation diagram of the voltage error, 
using γ as bifurcation parameter (ks = 4.5)

Figure 6. GZAD: bifurcation diagram of the voltage 
error, using γ as bifurcation parameter (ks = 0.3, α1 =0.3)

Therefore we conclude that, for practical purposes, 
this new GZAD strategy with the improved method 
can have more applications than the classical ZAD 
strategy previously reported in the literature.

6.  CONCLUSIONS AND FUTURE WORK

We can summarize our main results about the GZAD 
strategy as follows:  

The main advantage of the GZAD strategy is related to 
the stability of the 1-periodic orbit. Taking into account 
the idea behind the ZAD strategy (fi xed frequency 
switching), this new and generalized technique solves 
a lot of problems related to chaos, period doubling 
and, of course, the loss of fi xed frequency switching.

GZAD strategy can be used in a wide range of situations 
and purposes. One of them is fi xing ks and fi nding 
the best value of α1 assuming steady state conditions. 
Conversely, another purpose is fi xing α1 and fi nding 
the best value for ks. However, results have shown that 
probably the best use is to keep ks and α1 in low values, 
as we did in Section 5 (ks = 0.3 and α1 = 0.3), using Fig. 
5. The ks value must be low because, as the parameter 
ks increases, the regulation ability of the system is lost 
and the voltage error increases (see Fig. 5). 

Despite the fact that the probabilities framework 
may look a bit unusual when dealing with DC-DC 
converters, we propose using the expression of the 
duty cycle given by (29), replacing α1 with 0.3 with  ks 
= 0.3, instead of the duty cycle given by (25) which has 
two main disadvantages: on the one hand, it is more 

unstable than our proposed technique and, on the other 
hand, it exhibits a lot of nonlinear behavior, which 
makes that allows for the fi xed frequency switching 
to be easily lost.

With our proposed procedure we are able to reproduce 
continuous and discrete classical ZAD strategies.

Our future work will be devoted to testing this 
technique on a prototype developed in our laboratory. 
Finally, we want to emphasize that the system with 
classical ZAD is highly sensitive to the duty cycle 
computation, as it has been previously observed and 
reported [14, 19]. This is why the experimental results 
for the classical ZAD strategy alone do not totally fi t 
with the obtained numerical results. However, using 
the ideas of this GZAD strategy and, adding other 
control techniques such as the FPIC, we have obtained 
very good performance [28] and very good agreement 
between experimental and numerical results [29].
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