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ABSTRACT: The  processes of modelling and reconstruction of holograms are based on the    calculation    of the diffraction integral either 
on its kirchhoff-fresnel or rayleight-sommerfeld formulation. Numerically, such an integral can be evaluated via different approaches: the 
convolution theorem, angular spectrum, and fresnel transform, among others. In this paper, the modelling of gabor-type in-line holograms of 
opaque particles of different diameters is presented. Those holograms are thereafter reconstructed by the numerical evaluation of the diffraction 
process that a spherical wavefront undergoes when it illuminates the hologram. The modelling-reconstruction process is employed for 
studying the performance of digital in-line holographic microscopy while the concentration of a simulated monodispersed monolayer is varied.

KEYWORDS: Digital in-line holographic microscopy, diffraction, hologram reconstruction, microscopy.

RESUMEN: Los procesos de modelación y reconstrucción de hologramas se soportan en el cálculo de la integral de difracción en su formulación 
de kirchhoff-fresnel o rayleight-sommerfeld. Dicha integral puede ser evaluada numéricamente por medio de diferentes formalismos: 
teorema de convolución, espectro angular y transformada de fresnel, entre otras. En este trabajo se presenta la modelación de hologramas en 
línea tipo gabor de partículas opacas de diferentes diámetros. Estos hologramas son reconstruidos por el cálculo numérico de la difracción 
que sufre una onda esférica cuando ilumina el holograma. El proceso de modelación-reconstrucción se utiliza para estudiar el desempeño 
de la microscopia holográfi ca digital en línea en función del cambio en la concentración de monocapas mono-dispersadas de esferas opacas.

PALABRAS CLAVES: Holografía digital en línea, difracción, reconstrucción de hologramas, microscopía.

1. INTRODUCTION

The possibility of having 3D representation objects 
that only exist in a designer’s mind, the ability of 
measuring cellular phenomena occurring at nanometre 
scales, among many other fascinating technological 
developments, partially rely on the fast growth of 
computing systems. Particularly, the two examples 
presented above are a reality, because it is now 
possible to compute light propagation in very effi cient 
ways, i.e. it is now feasible to numerically compute 
diffraction processes via very effi cient and robust 
algorithms. Today transmittance functions that after 
being correctly illuminated reproduce 3D images can 
be computed   with such   realism that the brain cannot   
distinguish   them from a real object [1]. 

This technique is known as computer generated 
holography (CGH) and it was born with the work 
developed by Lohmann [2]. In another different 
but related application, from an apparently messy 
intensity recording it is possible to decode nanometre 
information that helps one to get a better understanding 
of cellular behaviour and that drives the development 
of new medicines; this technological development is 
named digital holography (DH) and it has its origin 
in Goodman’s work [3]. By this breakthrough, the 
feasibility of retrieving the complex wavefi eld from 
a digitally recorded interferogram was shown for the 
fi rst time.

Both CGH as well DH have extensive fields of 
application in technology and science. Perhaps CGH 
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The newest approach to DHM is named digital in 
line holographic microscopy (DIHM) [4] and is 
highlighted for its simplicity and robustness. Figure 
1 illustrates a typical DIHM setup. In DIHM, a point 
source illuminates a sample located at the plane 
denoted by  vector. The interference pattern produced 
by the portions of the spherical wave disturbed and 
not disturbed by the sample is digitally registered in 
a CCD or CMOS camera. This record, called a digital 
hologram, is stored in the memory of a computer for 

Figure 1. DIHM general schematic diagram

will lead to holographic cinema in the near future, 
while the most fascinating application of DH is   digital  
holographic  microscopy (DHM).

DHM is a microscopy technique that cleverly merges 
the already amazing properties of holography with the 
power and versatility of the digital world. In DHM, 
it is possible to recover information from phenomena 
happening at scale ranges even below the illumination 
wavelength. Information coming from those ranges it 
is only recorded on the phase of a propagating wave. 
DHM, as the fi rst microscopy technique that allows 
for quantitative retrieving of phase information, has 
brought this new possibility into play.

Mainly two different approaches to DHM are 
recognized, one that uses lenses and regularly plane 
waves, and the other which uses spherical waves and 
no lenses. Due to the limited spatial resolution of the 
commercially available digital cameras, to record 
enough information from the holograms one needs 
to enlarge them before their recording. While it is the 
role of the lenses in plane wave DHM, in DHM with 
spherical waves, the simple propagation of the wave 
enlarges the hologram before its recoding. 

its further analysis. The step that leads to a digital 
hologram is known as the recording process.

Once in the memory of a computer, the digital 
hologram passes through minimum image processing 
and a further process that leads to recovering the object 
information. This latter process is known as the digital 
hologram reconstruction and is totally numerically 
performed. In DIHM, the reconstruction stage of 
the hologram is carried out through the numerical 
calculation of the diffraction process that a spherical 
wave suffers as it illuminates the digital hologram. In 
the same way that it happens in optical holography, 
two reconstructed images are obtained, virtual and 
real images, which constitute what are called twin 
images [4,5]. Although it has simplicity in hardware 
and software, DIHM can achieve lateral resolution of 
the order of the illumination wavelength [4].

In order to study the features and possibilities of 
DIHM, it becomes very useful to model the recording 
and reconstruction processes, in a wholly numerical 
approach. Both steps involved in DIHM are described 
by the diffraction that a spherical wavefront undergoes 
as it illuminates a sample/digital hologram in the 
recording/reconstruction process. Therefore, in order 
to fully and numerically model the DIHM, one needs 
to effi ciently compute the diffraction phenomena in 
either Kirchhoff-Fresnel or Rayleight-Sommerfeld 
formalism [5]. In turn, the development of discrete 
tools for fully numerical modelling of DIHM is 
presented in this work. By definition, the digital 
hologram is numerically reconstructed. However it 
is necessary to develop appropriated algorithms for 
computing the diffraction process that the spherical 
wave undergoes on the sample, which gives rise to 
the digital hologram. The numerical model of DIHM 
is applied to a fi rst endeavour for studying the limits 
on the sample concentration that can be analysed with 
DIHM.

2.  CALCULATION OF THE DIFFRACTION  
      INTEGRAL IN DIHM

The diffraction phenomena that take place in DIHM, 
for recording as well for hologram reconstruction, 
are correctly described by the scalar approximation 
to the diffraction theory [5, 6]. In this approximation, 
the polarization effects of electromagnetic waves 
are neglected and the wave equation becomes the 
Helmholtz equation. Its solution for free space 
expresses the optical fi eld on an observation point P 
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through the Fresnel–Kirchhoff diffraction integral  [5,6]

( , , ) ( , ,0) (1 cos )
2

ikz ikre eU z U x y dxdy
i r

 

 

      (1)

In equation (1)  is the wavelength, 2k   is the 
wave number, ( , ,0)U x y  is the optical fi eld amplitude at 
the 0z   plane,   and cos z r  , 
as illustrated in Figure 2. Equation (1) has an analytical 
solution in very restrictive cases, mainly with just 
academic interest. For most of the practical situations, 
the optical fi eld on the observation plane is found via 
numerical and/or approximated forms. For modelling 
DIHM, the evaluation of the diffraction phenomena 
in both of its stages, recording and reconstruction, 
should be carried out through numerical methods 
compatible with the typical experimental setups. Some 
experimental conditions of DIHM which constitute a 
challenge for numerical evaluation of equation (1) are: 
i) numerical apertures higher than 0.3 in connection 
with the specifi cations of the devices available in the 
market for digital recording, and ii) point source-
sample distance of the order of 1500µm.  The need 
for evaluating systems with numerical apertures higher 
than 0.3 resides in the fact that lateral resolution of 
DIHM, i.e., the minimum distance r  to which the 
system differentiates two objects, is controlled by:

2
r

NA
       (2)

with NA numerical aperture of system. Therefore, 
with NA = 0.3 the maximum feasible resolution is 
of the order of 900nm for a typical 550 nm. To 
achieve this resolution with the cameras available in 
the market of 1024x1024 square pixels of 6µm each 
side, indicates a maximum distance of 9.8mm from 
the point source to the camera [7]. The maximum 
distance point source-sample in order to achieve such 
a resolution is 1 mm [7].

In summary, this set of conditions imposes challenges 
in the modelling processes since, as it will be shown, 
many algorithms simply do not work or the involved 
phases in the process are not correctly sampled. Three 
of the different methods that are found in the literature 
for the numerical calculation of the diffraction 
equation (1) are briefl y discussed in the following: 
angular spectrum, convolution theorem, and Fresnel 
approximation.

Figure 2. Coordinate system used to evaluate the 
equation (1)

2.1. Angular spectrum

As the optical fi eld is considered to be composed by 
plane waves propagating in all directions, the fi eld 
can be written as [5]:

     2, , , , x yi f x f y
x y x yU z A f f z e df df     (3)

with  , ,x yA f f z  the angular spectrum of the optical 
fi eld at z  plane.  , ,x yA f f z  is given by the angular 
spectrum on entrance plane 0z   once a z  distance 
is propagated: 

     2 2 2 24
, , , ,0 x yiz k f f

x y x yA f f z A f f e
 

 .   (4)

In equations (3) and (4) ,x yf f  are the spatial 
frequencies along the ,x y  coordinates, respectively. 
Any combination of spatial frequencies that lay outside 
of the circle defi ned by 2 2 2 4x yf f k   gives rise to 
evanescent waves; for DIHM such a regime is avoided. 
The decomposition of the entrance optical fi eld in 
terms of plane waves indicates that the angular spectra 
correspond to the Fourier transforms of the fi elds. In 
this way the angular spectrum in the entrance plane 

0z   is: 

   2, ,0 ( , , 0) x yi f x f y
x yA f f U x y e dxdy   .   (5)

Because the Fourier transform operator     has a 
simple and optimized computational implementation, 
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of Fourier operators, the optical fi eld at z  plane is 
given by: 

   2 2 2 2

2 2( , , ) ( , , 0)
ik ikikz x y

z zeU z e U x y e
i z

  
  

 
   (10)

The optical fi eld on the z  plane can be calculated as 
the FFT of the optical fi eld on 0z   plane, ( , , 0)U x y
, modifi ed by the Fresnel phase  2 2exp 2ik z x y  
. The result from this transform is multiplied by the 
phase terms in front the operand    , as is shown in 
equation (10).

2.4.  Validity range of the numerical methods for  
        calculating the diffraction integral in DIHM

In order to evaluate the diffraction integral through 
FFT, the fulfillment of the sampling theorem is 
imposed [5]. As the geometrical conditions that 
make DIHM a useful tool are added to the sampling 
theorem, the selection of the right methodology for 
a wholly numerical DIHM  modelling  becomes  a  
challenging  task.

Table 1. Application range of the methods for calculating 
the diffraction integral

Method Range

Angular spectrum
2z M 

Convolution
2z M 

Fresnel Transform
2z M 

The application ranges for the three methodologies 
here exposed are summarized in Table 1 [8]; without 
lack of generality, only one dimension has been 
accounted for. In Table 1, it is considered that the 
optical fi eld is sampled by M pixels, each one of   
width. In these terms, the   numerical  aperture  of  
system  is given by:

 2 22 2

MNA
M z




      (11)

therefore, if a camera with M = 1024 and    = 6um is 
considered, to obtain NA = 0.3, the z distance, the point 
source-camera distance should be equal or smaller 
than 9.8mm.  According to Table 1, for a typical λ 
of 500nm the Fresnel approximation imposes z > 
73.7mm,  which excludes this approach for calculating 
in DIHM. The utilization of the angular spectrum or 
the convolution approximation is identical in terms of 
the minimum distance imposed by the conditions of 

it is convenient to write down the amplitude of the 
optical fi eld in a plane z  away from the aperture as: 

   2 2 2 241( , , ) , ,0 x yiz k f f
U z U x y e

     
 

     
 

.   (6)

The Fourier Transform operator     is implemented 
through fast Fourier transform (FFT), which   permits   
the   rapid  calculation of     the     amplitude    of     the    
optical    fi eld.

2.2. Convolution

The diffraction phenomenon can be cast into a linear 
process [5] if in equation (1), cos 1   and it is 
rewritten as: 

 ( , , ) ( , , 0) ,
ikzeU z U x y h x y dxdy

i

 

 

    .   (7)

In equation (7)  ,h x y   is the transfer function 
for the free space, and it is defi ned  as:

 
   

   

2 22

2 22
,

ik z x n y
ikze eh x y

i z x n y

     
 

  
   

.   (8)

Equation (7) is recognized to be a convolution between 
( , ,0)U x y  and  ,h x , therefore it can be calculated 

through the convolution theorem [5]:

   1( , , ) , , , 0U z h x y U x y             .    (9)

Because of its representation in terms of    operator, 
equation (9) can also be evaluated through FFT. As 
much the angular spectrum as well as the convolution 
method allow for computing the diffraction integral 
without dramatic approximations. This fact makes 
these methodologies quite attractive for modelling 
DIHM experiments.

2.3. Fresnel approximation

The simplest method for numerical calculation of 
the diffraction integral is the Fresnel approximation. 
This scheme can be employed when the considered 
distances in the experiment are correctly expressed 
through a parabolic approximation. It has validity 

when    
22 23 4
MAX

z x y     
, since for this 

regime the distance   is 
well represented by the two fi rst terms of its series 
expansion [5]. Once such terms are introduced  in 
the diffraction integral (1) and it is rewritten in terms 
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Table 1; according to this Table z ≤ 73.7 mm, which 
enables both approaches for calculating in DIHM. 
From this point of view, the results reached with one 
or another methodology are completely equivalent. 
For validating   this analysis in Figure 3, a modelling 
example    of   DIHM     holograms    is   shown.

Figure 3 shows the results of in-line holograms 
DIHM-type modelling. In panel a, the transmittance 
function of the sample is shown; it is generated by 
considering 13 identical particles of a 20µm radius; the 
transmittance is placed on a plane 3mm away from the 
point source. The specifi cations of the hologram plane 
equal those of the camera CCD: 1024 pixels along each 
direction with individual pixels of 6x6um2. In panel 
b the modelled in-line hologram is presented through 
the Fresnel approximation. Due to the limited area of 

Figure 3. In-line hologram DIHM-type modelling. a 
Transmittance function located at a distance of 3mm from 
the point source. Results of the diffraction evaluation as the 
transmittance function is illuminated by a spherical wave, b 

Fresnel approximation, c spectrum angular, and d Convolution

the hologram plane that is used, from this recording it 
is not possible to recover the transmittance function. 
Furthermore, this recording does not resemble the sort 
of holograms that are recorded in a DIHM experiment. 
Panels c and d show the DIHM holograms modelled 
with angular spectrum and convolution approaches, 
respectively. In both of the cases, the full fi eld of view 
of the hologram is employed and from these kinds of 
intensities it is possible to retrieve the information of 
the transmittance function. These modelled holograms 
resemble the intensity that is recorded in an equivalent 
DIHM experiment. Because of the similitude of the 

modelled in-line holograms with these two approaches, 
it is valid to employ any of them. If the contrary is not 
stated, the convolution methodology is employed for 
modelling the in-line holograms shown below.

3.  DIHM NUMERICAL MODELLING 

As is done in DIHM experiments, the modelling 
process is carried out in two stages: the recording and 
the reconstruction steps.

In the recording stage, a spherical wavefront 
illuminates a sample located at a distance SZ  from the 
point source; numerically this process is carried out by 
means of considering the exact analytical expression 
of the spherical wavefront on the sample plane. For 
the whole modelling process the point source is 
accounted as being the coordinate origin. The sample 
is generated by randomly placing opaque particles of 
a chosen radius; a hexagonal layout on the sample 
plane guarantees that neighbour particles are packed 
following hexagonal packing as is shown in Figure 4. 
On the sample plane, a pixel-wise product between the 
spherical wavefront and the transmittance function 
leads to the complex amplitude being propagated 
towards the CCD plane. Such a complex amplitude 
constitutes the  , ,0U x y  input for equation (9). Via 
this same equation  , ,0U x y  a SL Z  distance is 
propagated for reaching the hologram plane, where 
the CCD camera is located. The recorded hologram  
corresponds  to  the square modulus of the    complex      
output    from   equation (9).

Figure 4. Hexagonal packed monolayer of opaque 
microspheres used as transmittance function. The red 

hexagons show the pack type
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Figure 5. Complete DIHM modelling process. Panel 
a shows the sample transmittance function. Panel b 

presents the Gabor-type hologram. The contrast hologram 
and its reconstruction are shown in panel c and d, 

respectively. All the images are 6x6mm2

In the reconstruction stage, the intensity distribution 
produced by a point source placed at an L  distance 
from the hologram plane, is pixel-wise subtracted 
from the modelled hologram. This new intensity 
distribution is known as the contrast hologram [4]. 
Because the information of the spherical wavefront 
without any perturbation from the object is subtracted 
from the hologram, this operation gets rid of any 
noise or oddness of the illumination. The contrast 
hologram is then propagated an SL Z  distance to get 
an intensity distribution that represents the sample. In 
order to attempt this reconstruction process, different 
approaches can be found in the literature. The most 
widely used is the Kirchhoff-Helmholtz transform 
which is implemented via a scalable convolution [4].

Replicas of the original Gabor’s holograms have 
been reconstructed by using a different version of 
the convolution approach [9]. Molony et al. [10] 
have proposed a reconstruction method based on 
Fresnel’s transform of the recorded or modelled  
hologram; angular spectrum and direct calculation of 
Fresnel’s integral are evaluated in order  to test their   
applicability in DIHM.

In Figure 5, the whole modelling process is shown. 
Panel a shows the sample transmittance function; 
500 particles of 20m radius have been randomly 
placed on the sample plane. The modelled Gabor-type 
hologram is presented in panel b, and the contrast 
hologram and the corresponding reconstruction are 
shown in panels c and d, respectively. Both stages of the 
DIHM modelling, recording and reconstruction, have 
been carried out by using the convolution methodology.

Modelling tools are of great utility for studying the 
limit performance of a technique under well controlled 
situations. Particularly in the case of DIHM, it is 
quite interesting to fi nd out the limit of the sample 
concentration that can be evaluated through this 
microscopy methodology; this point is addressed in 
the following section.

3.1. Effect of particle density on the DIHM 
performance

As illustrated in Figure 1, the recorded intensity of the 
CCD or CMOS camera on the hologram plane   of   a  
DIHM  experiment,  is given by the 

square modulus of the amplitude superposition of the 
portion of the spherical wave that is scattered by the 
object  scat

A r  and that portion that does not  ref
A r :

     
2

ref scat
I A A r r r .   (12)

This equation represents the Gabor-type hologram 
and the contrast hologram is then obtained by the 
pixel-wise subtraction between equation (12) and 
the intensity provided by the point source over the 
hologram plane      

2

ref
I I A r r r ,  explicitly 

leading to: 

         

 

* *

2

[ ]
ref scat ref scat

scat

I A A A A

A

 



r r r r r

r


  (13)

In equation (13), the terms between the square brackets 
represent the twin images of holography [4,5]. The 
remaining term signifi es the intensity scattered by the 
object. Since the original proposal of holography by 
D. Gabor, this term has been recognized as negligible 
with respect to the others that constitute the hologram 
[11]. This affi rmation is valid when transparent objects 
are considered or when the number of the opaque 
objects that scatter the incoming spherical wave is very 
"low" per area unit. Through modelling the complete 
DIHM of Gabor-type holograms of monodispersed 
monolayers of microspheres, it is possible to establish 
a quantitative limit that dictates the number of particles 
per area unit that makes Gabor’s approximation valid. 
Since DIHM is based on Gabor’s approximation, 
this limit allows for establishing the ranges of the 
applicability of this microscopy methodology.

The performance of DIHM, can be evaluated by 
comparing the sample transmittance function and the 
reconstructed hologram. The procedure adopted for 
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this evaluation has been to considering the point-wise 
subtraction between the reconstructed intensity and the 
sample transmittance function. Then the sum over all 
the pixels of this subtraction is accounted as being the 

In panel a, the behaviour of the criterion control for a 
number of particles between 1 and 25,000 is present; 
the same it is shown in panel b, between 1 and 
5,000 particles. From the behaviour of these curves, 
it can be concluded that for a number of particles 
lower than 500, there is great similarity between the 
sample transmittance function and the corresponding 
reconstructed intensity; the meaning of this result is 
that DIHM performs quite well in this range. From 
that number of 500 particles, the value of the control 
criterion increases and reaches a maximum value of 
about 2,400 particles, indicated by the arrow in panel 
b. As the reconstructed intensities and the sample 
transmittance functions are visually compared for the 
number of particles below and above that limit number, 
it is found that for this particular DIHM modelled 
experiment, 2,400 is the order of the maximum number 
of particles that can be correctly imaged with this 
microscopy methodology

To generalize the former result of the number of 
particles that can be correctly imaged with DIHM, the 
number of particles per area unit has been computed. 
The sample plane has been placed at 3.5mmSZ  , 
and the hologram recorded on a camera of 6.1x6.1 
mm2 that subtends 0.3NA  ; therefore Gabor’s 
approximation is valid for an order of 500particles/

Figure 6. Criterion for the comparison of the sample transmittance function and the reconstructed intensity as the number 
of particles varies, see the text for details. Panel a for the range from 1 to 25000 particles and panel b for the range from 1 to 

5000 particles

control criterion. The value of this criterion has been 
plotted versus the number of particles of the sample, 
with the results shown in Figure 6.

mm2 for individual particles with a 20m radius; this   
result  is  equivalent to saying that 62% of the incoming 
illumination is blocked out by the sample. Therefore, 
it can be proposed that Gabor’s approximation about 
the negligibility of the amplitude of the scattered 
wavefront is valid if at least 38% of the incoming 
spherical wavefront passes through the sample without 
being perturbed.

4. CONCLUSIONS

In summary, algorithms for modelling in-line 
holograms, of the digital in-line holographic 
microscopy (DIHM)-type, have been developed. Due 
to the operation conditions of DIHM, it has been found 
that the Fresnel approximation does not correctly 
describe the diffraction processes that take place 
in DIHM. Because of this reason, the convolution 
formalism has been utilized for modelling the in-line 
Gabor-type holograms and for their reconstruction.

The tools developed here have been utilized to validate 
the range of operation of DIHM in terms of particle 
concentration. It has been found that at least 38% of the 
incoming spherical wave must travel directly towards 
the detector for DIMH to work.
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The similarities between the sample transmittance 
function and the reconstructed intensity have been 
accounted for a proposed control criterion. This 
criterion takes the sum of the input pixels of the 
resulting matrix from the pixel-wise subtraction 
between the sample transmittance function and the 
reconstructed image. Different merit functions that 
could make an estimate of the differences between the 
proposed sample and the reconstructed image from the 
modelled hologram should be looked for.
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