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ABSTRACT: A mathematical model that describes and simulates the thermal behavior of a solar stove was developed based on an electric 
resistances analogy. The mathematical model includes the three different heat transfer mechanisms between different surfaces of the solar 
stove and its environment. The mathematical model was used to predict the solar stove entropy generation and its effi ciency; also, it was 
used to evaluate the design parameters of a solar box stove. Experimental and theoretical data were compared and found to be satisfactory. 
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RESUMEN: Un modelo matemático que describe y simula el comportamiento térmico de una estufa solar fue desarrollado en base en 
la analogía de resistencias aléctricas. El modelo matemático incluye los tres diferentes mecanismos de transferencia de calor entre las 
diferentes superfi cies de la cocina solar y su entorno. El modelo matemático se utilizó para predecir la generación de entropía y de su 
efi ciencia; tambien, fue utilizado para evaluar los parametros de diseño de una estufa solar tipo caja. Los datos experimentales y teóricos 
fueron comparados satisfactoriamente.

PALABRAS CLAVE: Cocina solar, radiación, analogía eléctrica .

1.  INTRODUCTION

The solar stove is a perfect example of appropriate 
technology that provides alternatives to improve the 
quality of life of hundreds of people  in  Colombia [1,2].  
The   non-uniform distribution of energy resources in 
many Colombian regions [3], together with the lack 
of appropriate public utilities (light, water, sewer 
system, and telephone), necessitates the study of this   
type  of alternative technology  [4,5].Passamai and co-
workers made an updated bibliographical survey of the 
development of solar box-type stoves. Additionally, 
they developed a mathematical model that predicts the 
thermal behaviour of such devices [6]; Mohamad and 
Kader analyzed the effects of several designs of solar 
stove [7-9]. Johnson and Edwards developed a method 

based on fi nite difference to simulate a solar stove with 
sensitive storage materials [10,11]; Winston developed 
a constructive principle of ideal concentrators based 
on the marginal rays method [12,13].

2.  DESCRIPTION OF THE SOLAR COOKER

Figure 1 shows a schematic of a box-type solar cooker 
with a cooking container made in the Universidad 
Nacional de Colombia (Medellín).

The cooker consists of a stainless steel tray (30 cm · 40 
cm at bottom, 49 cm · 49 cm at top, and 26 cm height) 
made of a 0.3 mm thick sheet. The conventional 
container (B 20 cm) was loaded with a fi xed mass of 
thermal fl uid (1L). The sides and bottom of the tray 
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are encased in a box made of wood. The gap between 
the tray and the casing is fi lled with polyurethane to 
provide thermal insulation. The tray is provided with 
a movable glass cover, hinged to one side of the casing 
at the top. A plane glass mirror, encased in a sheet metal 
shell, is fi tted to serve as a refl ector. This serves as a cover 
for the glass glazing when the cooker is not in use. The 
cooking container is conventional and has a fl at base. The 
container is provided with tight fi tting covers. The outer 
sides of the vessels are painted with dull black paint.

3.  MATHEMATIC MODELLING

The development of a mathematical model is presented 
for a solar box-type stove. The model is based on the 
case of a box with a container inside.

1.1 Box-Stove

The mathematical model developed here is a radiation 
heat transfer model for a box-type stove with a 
container inside (See Fig. 2), which would receive 
solar energy. It is assumed that all the surfaces are grey 

Figure 2.  Schematic for illustrating the position of each 
node where the respective energy balance is made

and fuzzy, that absorptivity and emissivity are constant 
with temperature, the emitted and refl ected radiation 
are distributed fuzzily, the fl ux of the outgoing energy 
is distributed uniformly on the entire surface, the 
fl oor is considered an adiabatic surface, the insulation 
is considered as a volumetric configuration with 
uniform distribution of temperature in all directions, 
the inner refl ective walls of the stove are considered 
to be just one surface, the absorber plate temperature 
(T1) is considered uniform during the process, and 
the container interchanges heat by conduction, 
convection, and radiation. 

Figure 3. Electric circuit analogy built for box solar stove.

The electric circuit analogy for the system that 
composes the container can be seen in Figure 2. In 
Figure 3, different node or energy exchanger surfaces, 
which are interconnected one to another   by   thermal   
resistance, can be seen. 

Each resistance corresponds to a different type of heat 
exchanger, e.g., radiation, convection, or conduction 
between the different surfaces. The expressions 
obtained for the energy balance according to the 
thermal system are:

Figure 1. Schematic illustration of a typical box solar 
stove
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Energy balance at absorber plate (node 1): 

Each resistance corresponds to a different type of heat 
exchanger, e.g., radiation, convection, or conduction 
between the different surfaces. The expressions 
obtained for the energy balance according to the 
thermal system are:

Energy balance at absorber plate (node 1): 
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Energy balance at walls (node 2):
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Energy balance at cover (node 3):
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Energy balance at container (node 4):
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Energy balance at node 5:
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Energy balance at node 6:
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Energy balance at node 7:
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Energy balance at inner air (node 8):

         18 1 8 28 2 8 83 8 3 84 8 4 ,8 88 c

air air

h T T h T T h T T h T T U T TdT
dt m Cp

         


        
(8)

Energy balance at water (node 9):
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The heat loss through the vertical walls of the 
stove is given by the following expression:

conduction c,2 2 2Q   U A (T )T


        (10)

Taking into account that the thermal resistance of 
the air surrounding the stove is small compared to 
the isolating layer resistance, the fi rst is neglected 
and therefore the reflective walls just lose heat 
by conduction through the isolating material. The 
mechanisms of heat transfer by which the energy is 
lost through the cover are convection and radiation:

cover eq,3 3 3 eq,3 r,3 3Q   U A (T )   ;   U   h  hT

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The amount of energy that reaches each surface 
is infl uenced by properties such as transmissivity, 
refl ectivity, as well as the direction of the incident 
radiation. Therefore, in these models bi factor has 
been introduced to take into account these facts, whose 
value depends on the operating conditions.

To estimate the heat transfer coefficient due to 
convection in the enclosure, a maximum difference 
in temperature between the plate and the   cover  of  
60°C  is considered. Accordingly:
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and the Rayleigh number is given by:
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[13], so Nusselt is established by Nu = 30.4 and the 
estimated transfer coeffi cient is h = 3.3 W/m2K. This 
would be the maximum value of the heat transfer 
coeffi cient due to convection in an enclosure that is 
being heated in the bottom part.

Two cases are treated to analyze the energy loss 
through the stove cover: Simple cover and double 
cover. Therefore, Ua1 @ 2.6W/m2K and Ua2 @ 1.75W/
m2K are the heat transfer coeffi cients for simple and 
double cover, respectively.
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To establish the heat transfer coefficient due to 
conduction between the receiver plate and the 
container, the following model is considered. An 
isothermal receiver plate is assumed during the process.

conduction c,14 recipient_floor 1 4Q   U A (T )T


      (13)  

SOLUTION METHOD

The model of each of the elements that physically 
constitutes the stove system through the energy 
balances has been stated to establish a set of equations 
that allows for the study of the temperature evolution 
in time, i.e., a set of ordinary differential equations. In 
addition, constitutive equations have been generated 
regarding optical and spatial surfaces properties and 
their confi gurations that have an algebraic form. This 
characteristic of mixing differential and algebraic 
equations is known as differential-algebraic equations 
(DAE), as follows: 

x' = f(x, z, t)     (14)

g(x,z,t)=0     (15)

Where x is the differential variable and z is the 
algebraic variable. The stated group of equations is 
known as a semi-explicit DAE system. The fact that 
this system is soluble by common methods depends 
on the system index that is related to the Jacobian 
singularity (if it exists). Because the Jacobian of 
these equations with respect to the algebraic variables 
(radiosities J) is non-singular, it is common to call this 
kind an index one system. Basically, there are two 
methods for solving these types of problems:

• Using the algebraic equations set to solve the 
algebraic variables (radiosities) in terms of the 
other variables, then putting in the differential 
equations to fi nally obtain an Ordinary Differential 
Equation (ODE) system.

• Using numerical methods developed to solve 
systems with these characteristics.

Matlab software contains pre-designed functions for 
index one DAE’s, this is the main reason to use   it   to  
simulate  the solar stove heating [14].

5.  EXPERIMENT 

The solar radiation intensity was measured by using a 
pyranometer and a pyrheliometer during the test. On 
the other hand, to measure the temperature of different 
stove elements, thermocouples Type K for surface and 
immersion, a temperature tester for thermocouples, 
a thermometer, and a data acquisition system were 
also used. 

Due to the operation conditions that affect the solar 
stove, the wind speed was one of the important 
variables registered using an anemometer. This process 
was carried out in order to evaluate the environment 
energy losses and it can be noted that the stove reached 
a temperature of over 60°C in less than 30 minutes. 
It can be seen that the water boiling temperature is 
reached by the box stove (1 hour and 20 minutes).

6. RESULTS AND DISCUSSION

6.1  Instantaneous effi ciency

In this case, the system effi ciency is defi ned as the 
ratio of the energy gained by the water mass to the 
total energy supplied to the system. This is expressed 
as follows:

 p f i

r

mC (T T ) /
  

A
m sat vt h P P A

G
  


        

(16) 

       
The instantaneous effi ciency is defi ned with the main 
purpose of observing how the variation occurs during 
the heating process.
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The instantaneous effi ciencies time evolution for 
different stove volumes is presented in Figure 4. In 
this fi gure, we can see how instantaneous effi ciencies 
increase until they reach a maximum value, and then 
go down during the heating process with constant 
solar radiation (700 W/m2) and   with   the   parameter    
shown   in  Table 1.

 We also can see that the instantaneous effi ciencies are 
higher as the stove volume becomes higher too. These 
could be less if the stove were smaller, so it is possible 
to take more advantage of solar energy in a smaller 
cooker.  In general terms, greater effi ciencies do not 
mean (in this type of system) higher temperatures, 
but they imply the maximum extractable energy in a 
particular system.
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6.2  Entropy Generation

Entropy generation will be evaluated in the stove system. 
To do this, an entropy balance at steady state is made:
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To know how this entropy generation varies through 
the process, data obtained in the solution of systems 
in the transient state are used, and then this equation 
is solved at each time step by considering every one 
of these as quasi-steady states. 

From Figures 5, it can be concluded that there is an 
inverse relationship between entropy generation and 
instant effi ciency.

It was observed that for a box stove, as the box volume 
increases, efficiency decreases and there is more 
entropy generation. 

Figure 4. Instantaneous effi ciencies for identical 
operating conditions: 700W/m2, 1Kg. water Figure 5. Instantaneous effi ciency and entropy generation, 

evaluates different values in volume in a box stove

Figure 6.  Experimental and theoretical temperatures 
evolution for box stove

a. With refl ector.

b. Without refl ector

Table 1. Value of the parameter used for the simulation
Element a e Cp(J/Kg K) m(Kg)

Plate (Al) 0.9 0.8 880 -
Glass 0.15 0.8 745 -
Refl ective Surface 
(INOX 430)

0.2 0.2 460 -

Internal Ar - - 1000 -
Box 0.9 0.8 880 0.5
Water - - 4180 1.0
Light Factor b1: 0.7; b2= 0.8

6.3 Model validation

In order to validate theoretical results, a comparison 
was done between experimental and simulation 
temperature data, over the same operation conditions 
that were kept on this test, (See Figures 6a and 6b). 
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We can say that theoretical and experimental 
temperatures behaviour is similar in both experiment 
with and without a refl ector, and then a mathematical 
model is recommended for the use of anyone who 
wishes to make a design for this type of stove.  

7.   CONCLUSIONS

The system was designed to prepare food for human 
consumption using solar energy as the power source.  
Using the theoretical model and the simulation of 
performance, it was possible to study several solar 
stove configurations with different materials apt 
for application, and their thermal behaviour for 
many operation conditions.  Making a comparison 
between the theoretical and experimental results, it 
was found that the simulation provides a closer and 
right prediction of the real thermal behaviour, for that 
reason, the mathematical-structured modelling is a 
reliable   and precise tool   for   designing  a solar stove.
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NOMENCLATURE

Ai:  i system area
Cpm: m material specifi c heat
fij: Shape factor between surface i and surface j
G: Insolation (W/m2)
hij: Convective heat transfer coeffi cient between i 
system and j system
hm: Mass transfer coeffi cient
hfg: Vaporization heat value
Jn: Radiosity of the surface n
k1,2: Receptor and container thermal conductivity, 
respectively
k: Insulating material thermal conductivity
Lma: Insulating material layer thickness
Lglass: Cover thickness
La: Air layer thickness between covers
mi: i system mass
Pr = Prandtl Number
Rc, Rh: Conductive and convective resistances, 

respectively
Tj: j node’s temperature
Too: Surrounding temperature
T1: Absorber Plate temperature
T2: Container temperature
t: Time interval while ArG power is supplied
Ucontainer: Conduction heat transfer coeffi cient between 
plate and container
Uc,ij: Conduction heat transfer coeffi cient between i 
system and j system
Ueq,ij: Combine heat transfer coeffi cient between i 
system and j system

i
:  Absortivity

i
: Tramitance

i
: Emissivity

b = 1/Tm = 0.0029K-1

σ = Stefan-Boltzmann constant (5.6704 x 10-8 (W/
m2K4))
n = Kinetic viscosity = 18.37 x 10-6 (m2/s)
d = 0.25 m distance between plate and cover
g = gravity 9.8 (m/s2)
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