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ABSTRACT: This paper presents a technique for interpreting the behavior of pressure and pressure derivative for a Bingham-
type fl uid in a homogeneous reservoir drained by a vertical well using the TDS technique, by observing the infl uence of the 
minimum pressure gradient which characterizes this behavior, and characteristic points which are used for estimating formation 
permeability, drainage area, and skin factor. The pressure derivative for Bingham Non-Newtonian fl uids is presented in the literature 
for the fi rst time. The higher the minimum pressure gradient, the more asymmetrically concave the pressure derivative becomes. 
Also, it was observed in closed systems that the late unit-slope pressure derivative coincides with the same one for Newtonian fl uids. 

KEY WORDS: Bingham fl uid, pressure gradient, yield stress, shear stress, shear rate

RESUMEN: Este trabajo presenta una técnica de interpretación del comportamiento de la presión y derivada de presión para un fl uido 
tipo Bingham en un yacimiento homogéneo drenado por un  pozo vertical, aplicando la técnica TDS observando la infl uencia del gradiente 
mínimo de presión que caracteriza este comportamiento y puntos característicos con el propósito de calcular la permeabilidad, el área de 
drenaje y el factor de daño de la formación. Es la primera vez que se presenta en la literatura la derivada de presión para estos fl uidos. Entre 
mayor se hace el mínimo gradiente de presión la derivada se hace asimétricamente más cóncava hacia arriba. También se observó que en 
sistemas cerrados la pendiente unitaria tardía que se desarrolla en la derivada de presión coincide con la misma de fl uidos Newtonianos. 

PALABRAS CLAVES: Fluido Bingham, gradiente de presión, esfuerzo de cedencia, esfuerzo de corte, rata de corte.

1.  INTRODUCTION

Flow of non-Newtonian fl uids through porous media 
is encountered in many subsurface systems involving 
underground natural resource recovery or storage     
projects. Laboratory experiments and field tests 
indicate that certain fl uids exhibit a Bingham-type 
non-Newtonian behavior in porous media. In these 
cases, fl ow only takes place once the applied pressure 
gradient exceeds a certain minimum value called the 
threshold pressure gradient. The fl ow of oil in many 
heavy oil reservoirs does not follow Darcy’s law but 
may be approximated by a Bingham Fluid.

A few studies of well pressure behavior in vertical 
wells have been recently conducted on the behavior of 
the non-Newtonian fl uid approaching the power law 
model in vertical wells using both the TDS technique [1] 
and type-curve matching [2] and similarly for horizontal 
wells   with non-Newtonian  Bingham fl uids [3].

In this work, the model governing the behavior of 
the fl ow of a non-Newtonian Bingham fl uid in a 
closed porous media drained by a vertical well, [4], 
was numerically solved, see Appendix A. Once the 
pressure and pressure derivative was generated, the 
interpretation methodology was obtained by following 
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the TDS philosophy to determine reservoir permeability, 
skin factor and drainage area, and tested through synthetic 
examples previously employed by [4].

2.  BINGHAM FLUID AND RHEOLOGICAL          
     MODEL

As a special kind of non-Newtonian fl uid, Bingham 
fl uids (or Bingham plastics) exhibit a fi nite yield stress 
at zero shear rates. There is no gross movement of  
fl uids until the yield stress, y, is exceeded. Once this 
is accomplished, it is also required to cut efforts to 
increase the shear rate, i.e. they behave  as Newtonian  
fl uids. 

These fl uids behave as a straight line crosses the 
y axis in  = y, when the shear stress,   is plotted 
against the shear rate,   in Cartesian coordinates. 
The characteristics of these fl uids are defi ned by two 
constants: the yield, y, which is the stress that must 
be exceeded for fl ow to begin, and the Bingham 
plastic coeffi cient, B. The rheological equation for a 
Bingham plastic is, [5]:

y B              (1)

The Bingham plastic concept has been found to closely 
approximate many real fl uids existing in porous media, 
such as paraffi nic oils, heavy oils, drilling muds and 
fracturing fl uids, which are suspensions of fi nely 
divided solids in liquids. Laboratory investigations 
have indicated that the fl ow of heavy-oil in some 
fi elds has non-Newtonian behavior and approaches 
the Bingham type.

Figure 1. Graphic Representation of Bingham fl uid, [5]

For a phenomenological description of fl ow in porous 
media, some equivalent or apparent viscosities for non-
Newtonian fl uid fl ow are needed in Darcy’s equation. 
Therefore, many experimental and theoretical studies 
have investigated rheological models or correlations 
of apparent viscosities and fl ow properties for a given 
non-Newtonian fl uid and porous material. For fl ow 
problems in porous media involving non-Newtonian 
Bingham fl uids, the formulation of Darcy’s law has 
been modifi ed to:

1 for  
B

k Gu p P G
P

 
        


            (2a)

and,

0 for  u P G  


        (2b)

Where, G is the pressure gradient corresponding to the 
yield stress in a porous medium.  The above conditions 
show that in this type of fl uid, there is no fl ow until 
│ P│ exceeds the minimum pressure gradient, G. 
The two Bingham-fl uid parameters, G and B, should 
be determined by laboratory experiments or by a well 
test for a porous medium fl ow problem.  For heavy 
oils, a reasonable value of G is in the order of 104 
Pa/m (0.44 psi/ft).

[4] presented the governing equation for the problem 
we are dealing with. [4] also provided a complex 
analytical integral solution which requires numerical 
integration. [4] interpreted the pressure tests by 
numerical solutions and regression analysis, which 
means matching the well pressure response to the 
simulator response.

3.   MATHEMATICAL FORMULATION

The problem considered here, presented by [4], 
involves the production of a Bingham fl uid from a 
fully penetrating vertical well in a horizontal reservoir 
of constant thickness; the formation is saturated only 
with the Bingham fl uid. The basic assumptions are:
1. Isothermal, isotropic, and homogeneous formation.
2. Single-phase horizontal flow without gravity 

effects.
3. Darcy’s law applies (Eq. 2)
4. Constant fluid properties and formation 

permeability. 
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The governing flow equation can be derived by 
combining the modified Darcy’s law with the 
continuity equation and is expressed in a radial 
coordinate system as:

     
B

P
P P

k Pr G
r r r t

                        (3)

The density of the Bingham fluid, (P), and the 
porosity of the formation, i = (P), are functions of 
pressure only, so the solution of the Eq. 3 is:

1 B tcP Pr G
r r r k t
            

            (4)

The initial condition is:

 0 i wP r,t P , r r  

At the wellbore inner boundary, r = rw, the fl uid is 
produced at a given production rate, q, then the inner 
boundary condition is:

2
wr rB

k Pq rh G
r 

    
               (5)

4.   FUNDAMENTAL EQUATIONS

The dimensionless pressure PD, the dimensionless time 
tD, the dimensionless radius, rD and the dimensionless 
pressure gradient, GD (conveniently introduced here) 
are expressed as:
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5.    INTERPRETATION METHODOLOGY

The way the interpretation equations are formulated 
follows the philosophy of the Tiab´s Direct Synthesis, 
TDS, Technique, introduced by [6].

1) For radial flow and Newtonian fluid, the 
dimensionless pressure derivative is:

   
0 5

141 2
r

D D r
B

kh t* P'
t * P ' .

. q B


          (10)

For a Bingham-type non-Newtonian fluid, this 
behavior changes by observing that there is a point 
where the dimensionless pressure derivative is high 
and this increases with an increase of GD and the 
reservoir radius, Figs. 2 and 3. Fig. 4 shows the 
trend between the dimensionless outer radius and 
the dimensionless derivative pressure maximum for 
various GD. The slope of each line is the product
0 20536 D. G . So by grouping all the straight lines in 
one, we obtain the following relationship:

  0 5 0 20536D D D eDr ,maxt * P ' . . G r         (11)

  0 20536 0 5D D D eDr ,max
t * P ' . G r .                        (12)

Alter plugging the dimensionless quantities in the 
above expressions, it yields, respectively:

  0 20536 0 5
141 2 er ,max

kh t* P' . Gr .
. q B

    
  

then,

  
70 6

0 20536
B

er ,max

. q Bk
h t* P' . Gr


           (13)

Figure 2. Dimensionless pressure and derivative pressure 
for reD = 9375
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2) The behavior of the dimensionless pressure is added 
to the equation for radial fl ow and Newtonian fl uid to 
produce an additional quantity we call “Bingham effect” 
which does not depend upon reservoir size, Fig. 5.

 0 5 0 80907 2Dr D effP . ln t . s B           (14)

where:
0 503041 69602 .

eff D DB . G t          (15)

3) The skin factor, s, can be obtained by dividing Eq. 
14 with Eq. 12:

Figure 5. Correlation for the “Bingham effect”

Figure 3. Dimensionless pressure and derivative pressure 
for GD = 1.333x10-3

Figure 4. Relationship between the dimensionless radius 
and the dimensionless derivative pressure at its peak

  2

1 7 43
2 0 20536

r ,max r ,max
eff

e B t wr ,max

P kt
s ln . B

t* P' . Gr c r

   
             

          (16)

In G = 0 the fl uid is Newtonian which leads to the 
normal equations for obtaining permeability and    skin     
factor as presented by [6].

4) As observed in Fig. 2, the late pressure derivative 
coincides with that of a Newtonian fluid. Then, 
according to [7], the reservoir drainage area can be 
estimated from any convenient point during the late 
pseudosteady state derivative.  

 
0 234 pss

t pss

. qBt
A

c h t* P'



          (17)

Which can be applied for t = 1 hr, extrapolating if 
necessary, so Eq. 17.a becomes:

  1

0 234

t p

. qBA
c h t* P'




          (18)

Permeability can also be determined by relating 
the dimensionless outer radius with the maximum 
dimensionless time. This relationship works for any 
GD as shown in Fig. 6. The resulting equation is:

2 0278 3817710 .
e B t

r ,max

. r ck
t

           (19)

5) Eqs. 13 and 19 are functions of the external reservoir 
radius. When the late pseudosteady-state fl ow is not 
developed, then permeability is obtained by equating 
Eqs. 14 and 19. This yields:
 

     

1 5 0 5

0 5

0 20536 70 6
278 3817710

r ,max
. .

.
r ,maxB tr ,max

. k t G . q Bk
h t* P't* P' . c

 


 
                                       

 (20)

Figure 6. Relationship between the dimensionless outer 
radius and the maximum dimensionless time



Dyna 166, 2011 25

Figure 7. Relationship between Cartesian slope from the pressure 
derivative during radial fl ow and dimensionless pressure gradient

Eq. 20 is solved iteratively using the Newton-Raphson 
method (or any other) by choosing an initial value of 
permeability, until the difference between the new and 
previous  value is less than 0.001.

 
     

1 5 0 5

0 5

0 20536 70 6
278 3817710

r ,max
. .

.
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. k t G . q Bf k - k
h t* P't * P' . c

 


                 
                  (21)
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

                              

                                                        (22)

 
 1n n

f k
k k

f ' k             (23)

6) Fig. 7 shows a relation between the dimensionless 
minimum pressure gradient and the   Cartesian   slope   
of  the pressure derivative values during the radial fl ow 
regime. If there is no peak in the derivative pressure, 
obtaining the Cartesian slope of the derivative pressure 
against time, we can obtain the permeability.

  6 5 0 9996726141 2 7 9146325 10 8 3684407 10 .

w

. q Bk . . m
Gr h

    
 

                     (24)

Figure 8. Pressure and pressure derivative for example 1

Figure 9. Semilog plot of pressure vs. time for example 1

6. EXAMPLES

6.1. Synthetic example 1

With the information taken from [9] obtain the 
formation permeability and the skin factor from a 
reservoir that produces a Bingham-type fl uid with a 
G = 0.0044 psi/ft (100 Pa/m)

Pi = 1450 psi    q = 272 STB/D     h = 3.2 ft

 = 20 %             k = 1000 md        B = 1 cp

rw = 0.32 ft    B = 1 rb/STB         ct = 4.52x10-6 psi-1

SOLUTION

From Fig. 8, the following information is read:

Pr, máx. = 110.5 psi (t*P’) r, máx.= 9.7 psi

(t*P’) p1 = 0.43 psi tr,máx = 4.01 hr

The drainage area is obtained from Eq. 18 using 
information from the late pseudosteady-state regime:

2
6

0 234 272 1 51167925 8 ft
0 2 4 52 10 3 2 0 43

. * *A .
. * . * . * .

 


Assuming a circular reservoir shape, the reservoir 
radius, re, is 4035.75 ft.

Formation permeability is estimated from Eq. 14:

 
70 6 272 1 1

3 2 9 7 0 20536 0 0044 4035 75
991 35 md

. * * *k
. * . . * . * .

k .





The dimensionless minimum pressure gradient, Eq. 
9, is:
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40 0044 0 32 991 35 3 2 1 163 10
141 2 272 1 1D

. * . * . * .G .
. * * *

  

Now, skin factor can be estimated from Eq. 16:

6 2

0 50304
5

6 2

110 5
9 7 0 205 0 0044 4035 751

991 35 4 012 7 43
0 2 1 4 52 10 0 32

0 0002637 991 35 4 011 7 3 634 10
0 2 1 4 52 10 0 32

0 097

.

.
. . * . * .s

. * .ln .
. * * . * .

. * . * .. * . *

. * * . * .
s .






   
      

     
 

Eq. 19 is employed to estimate formation permeability 
as follows:

2 0 6278 4 4035 75 0 2 1 4 52 10 1022 15 md
4 01

.. * . * . * * .k .
.


 

Since GD is small enough for the application of the 
semilog (conventional) straight-line method, the  
semilog   slope is obtained from Fig. 9, then:

162 6 162 6 272 1 1 987 2 md
14 0 3 2

. q B . * * *k .
mh . * .

  

1
21.1513 log 3.23hr i

t w

P P ks
m c r

  
    

   

6 2

1352 1450 987.21.1513 log 3.23
14 0.2(1)(4.52 10 )0.32

0.24

s

s



  
       


These last two equations were presented in a monograph 
published by [8]. However, the conventional method 
or straight –line method is diffi cult to apply in this 
type of systems, especially when GD > 5.33x10-4, 
since no straight line is formed during radial fl ow, as 
seen in Fig. 10. 

Figure 10. Dimensionless semilog plot

6.2. Synthetic example 2

A drawdown test for a well centered in a closed circular 
reservoir with a G = 0.44 psi/ft was generated with the 
information given below. Use the   TDS   technique    
to     interpret    this  test.

Pi = 3000 psi     q = 300 STB/D      h = 50 ft

k = 300 md    B = 3 cp          rw = 0.35 ft

B = 1.25 rb/STB    = 20 %     ct = 2x10-6 psi-1

SOLUTION

From Fig. 10, the information below was read:

Pr, máx. = 1128 psi (t*P’) r, máx.= 456 psi

tr,máx = 25.0 hr

As seen in Fig. 10, the late pseudosteady-state regime 
was not developed for this test, so a trial-and-error 
procedure has to be used with Eqs. 20-22 starting with 
a permeability value of 400 md:

  1 50 05714 3 4836.f k . k . k  

  0 50 08571 1.f ' k . k 

Figure 11. Pressure and pressure derivative for example 2

A summary of the following computations is shown 
below:

N kn F(k) F’(k) -F(k)/F’(k)
0 400 60.603 0.7142 -84.855
1 315.1447 8.0114 0.5215 -15.360
2 299.7838 0.2870 0.4840 -0.593
3 299.1907 0.0004 0.4825 -0.0009
4 299.1898 0.0000 0.4825 0.00000
5 299.1898 0 0.4825 0
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k  299.2 md. Reservoir size is needed for the 
estimation of skin factor. Then, solving for re from 
Eq. 19:

6

299 2 25 4987 82ft
278 4 0 18 3 2 10e

. *r .
. * . * *  



The minimum dimensionless pressure gradient is 
obtained by means of Eq. 9. Afterwards, skin factor 
is calculated from Eq. 16,

0 44 0 35 299 2 50 0 0145
141 2 300 3 1 25D
. * . * . *G .

. * * * .
 

6 2

0 50304

6 2

1128
456 0 205 0 44 4987 821

299 2 252 7 43
0 18 3 2 10 0 35

0 0002637 299 2 251 7 0 0145
0 18 3 2 10 0 35

.

. * . * .s
. *ln .

. * * * .

. * . *. * . *
. * * * .





   
      

    
s = -2.27

7.  COMMENTS ON THE RESULTS

The two synthetic examples presented have shown 
that the proposed methodology and developed 
equations/correlations work very well. In the fi rst 
example, permeability was estimated with an absolute 
deviation error less than 2.2 %. In the other example 
the deviation was 0.26 %. Although, for the fi rst 
example, a good permeability value was obtained 
from the conventional technique since the value of the 
minimum pressure gradient was small. This means that 
the semilog straight line is still seen and representative. 
For the fi rst example, the skin factors agree well. There 
is no comparison point for the second example.

CONCLUSIONS

1. A new formulation for estimating permeability and 
skin factor in non Newtonian fl uids in vertical wells 
using the TDS technique is presented. Although, 
some correlations are involved, their correlation 
coeffi cient is practically one in all the cases.

2. A “Bingham effect” was introduced here on the 
dimensionless pressure variation. To maintain the 
same fl ow rate, the wellbore pressure decrease 
more rapidly as the minimum pressure gradient 
increases.

3. As the minimum pressure gradient increases, the 
pressure derivative becomes asymmetrically more 
concave, displaying a maximum or “peak” point 

which is taken as a characteristic feature which is 
used for well test interpretation. The shape of the 
pressure derivative is also a function of reservoir 
size. As the reservoir size increases the time 
position of the peak increases. The time at which 
the pressure derivative is maximum is the same for 
any GD value and the same size of the reservoir.

4. All the pressure derivative curves for the same 
reservoir radius tend to display the same 
pseudosteady state, which is employed for 
estimating      the     reservoir       drainage   area.

NOMENCLATURE

A     Area, ft2

B Oil formation factor, rb/STB
ct

Total system compressibility, 1/psi
G Minimum pressure gradient, psi/ft
GD

Dimensionless pressure gradient
h Thickness formation, ft
k Permeability, md
M Cartesian slope of the pressure derivative 

trend during radial fl ow regime
P Pressure, psi
PD

Dimensionless pressure
Pi    Initial reservoir pressure, psi
Pwf

Well fl owing pressure, psi
q     Oil Rate, bbl/D
qw

Well fl ow rate, positive means injection, 
positive means production

rD
Dimensionless radius

re
Reservoir radius, ft

rw
Wellbore radius, ft

s Skin factor
t Time, hr
tD*PD’ Dimensionless logarithmic pressure 

derivative
t*P’ Pressure derivative, psi
tD

Dimensionless time

SUFFIXES

D Dimensionless
pss Any point during late pseudosteady state 

regime
p1 Pressure derivative on the pseudosteady 

state line read at 1 hr
r, max Maximum during radial fl ow regime
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GREEK SYMBOLS

 Change, drop
t Flow time, hr
r Cell spacing in the radial direction, ft
 Density, lbm/ft3

Porosity, fraction

B
Bingham plastic Coeffi cient, cp
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APPENDIX A.  NUMERICAL SOLUTION

A logarithmic grid was used to solve the problem. The 
numerical solution was successfully tested for cases of 
G = 0 and, also, compared to the graphical solutions 
presented by Wu et al. (1992). The discretization 
process of Eq. 4 follows:
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Solving for the transmissibilities, it yields:
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Where   2 2
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It should be clarifi ed that for the fi rst grid point, ri-

1/2=rw and for the last grid point (boundary), ri+1/2=re. 
Assuming constant petrophysical properties, the 
transmissibilities are:
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Using the above relationships, the final equation 
applied to each gridpoint is:
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Where, a c T  , 2b T F   , and 
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Application of  Eq. A.4 to the fi rst and last gridpoint, 
respectively, it will result: 
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The fi nal tri-diagonal matrix system is solved by the 
Thomas algorithm.


