
Dyna, year 79, Nro. 173, pp. 15-24. Medellin, june, 2012. ISSN 0012-7353

FORMAL METHOD TO IMPLEMENT FUZZY REQUIREMENTS

MÉTODO FORMAL PARA IMPLEMENTAR REQUERIMIENTOS
DIFUSOS

MARLENE GONCALVES
Ph.D, Universidad Simón Bolívar, Caracas, Venezuela, mgoncalves@usb.ve

ROSSELINE RODRÍGUEZ
Ph.D, Universidad Simón Bolívar, Caracas, Venezuela, crodrig@usb.ve

LEONID TINEO
Ph.D, Universidad Simón Bolívar, Caracas, Venezuela, leonid@usb.ve

Recibido para revisar 15 de abril de 2011, aceptado Diciembre 21 de 2011, versión final 15 de Enero de 2012

ABSTRACT: Many user requirements may involve preference criteria linguistically expressed by fuzzy terms in natural language; these
requirements are called fuzzy requirements. Database query languages have been extended incorporating fuzzy logic to handle user-
preference criteria. To the best of our knowledge, very few of the software development methods consider fuzzy queries. In this work,
we propose a database application method which includes conversion rules that translate formal specifications to implementations in the
structured query language (SQL) enhanced with fuzzy logic (SQLf). The novelty of our method is the tuple calculus extension in order
to express fuzzy queries with formal specification. Also, our method includes conversion rules that translate formal specifications into
implementations in SQLf, a fuzzy query language on crisp databases. Additionally, we illustrate how our method was successfully applied
in a real case study.

KEYWORDS: formal specifications, fuzzy queries, fuzzy terms, relational calculus, software development methodology, SQLf.

RESUMEN: Muchos requerimientos de usuario pueden involucrar criterios de preferencia expresados en el lenguaje natural por medio de
términos difusos; éstos son llamados requerimientos difusos. Por otro lado, los lenguajes de consulta a bases de datos han sido extendidos
incorporando la lógica difusa para manejar las preferencias de usuarios. Pocas de las metodologías conocidas para el desarrollo de
aplicaciones sobre base de datos consideran las consultas difusas. En este trabajo, se propone un método para aplicaciones a bases de datos
cuyo objetivo es desarrollar sistemas de software con soporte de consultas difusas. Lo novedoso de éste es la extensión al cálculo de tuplas
para la especificación formal de consultas difusas. Además, el método incluye reglas de traducción de una especificación formal a una
consulta en SQLf (structured query language + fuzzy logic), un lenguaje de consultas difusas sobre bases de datos precisas. Se ilustra su
utilidad con la aplicación a un caso de estudio real.

PALABRAS CLAVE: especificaciones formales, consultas difusas, términos difusos, cálculo relacional, metodología de desarrollo de
software, SQLf.

1. INTRODUCTION

Traditional applications retrieve data from database
systems applying Boolean condition filters.
Nevertheless, user requirements may involve fuzzy
terms that represent user’s preferences over data.
Fuzzy terms correspond to concepts whose boundaries
are not defined clearly and/or whose semantics are
susceptible to domain and/or user preferences. These
concepts may be modeled using fuzzy sets [1] that
allow for the gradual membership of elements. In this
paper, requirements comprised of these concepts are
named fuzzy requirements. For example, let us suppose

someone is interested in knowing how easy the courses
are. The easy adjective is a fuzzy term. Easiness
depends on user-preferences. For example, someone
can define an easy course if all students receive an
A-grade, but another person can be more flexible
defining it as most of students get a grade greater or
equal than B. In addition, someone may define an easy
course as one in which all students have a high grade.
Notice that high is also a fuzzy term.

In order to provide fuzzy requirement support, several
extensions of structured query language (SQL) have
been proposed, such as SQLf [2], FSQL [3], and

Apellidos & Apellidos et al 16

SoftSQL [4]. Among these proposals, SQLf is the
most complete because it is updated with SQL2003
features [5]; therefore, we would like our research to
be compatible with SQLf.

Despite advances in software engineering and the
existence of sophisticated computer-aided software
engineering (CASE) tools, automatic code generation
from models is still something hoped for [6]. Our final
goal is to provide automated software engineering tools
for developing applications with fuzzy requirements. In
this sense, the main activities of software development
models have been extended in order to support fuzzy
requirements [7]. The authors in [8] proposed a method
based on object constraint language (OCL) and fuzzy
logic for the development of applications with fuzzy
requirements. We need to include fuzzy features in
a formal language such as tuple [9] or domain [10]
relational calculus. Thus, since natural language may
be ambiguous, requirements must be specified in a
formal language for guaranteeing system correctness.

In [11], Galindo et al., have presented a definition
of fuzzy domain relational calculus framed in the
GEFRED model. In [12] a domain calculus was
proposed for Buckles-Petry’s fuzzy relational database
model that, according to Galindo et al. [11], is
much more restrictive. Their research has restricted
logic expressions to the use of classic universal and
existential quantifiers without considering more
general fuzzy ones. The fact that they have been based
on domain calculus is not compatible with SQLf.
The use of domain calculus results in satisfaction
degrees for fuzzy conditions on attribute values, but
SQLf computes degrees of satisfaction for the whole
tuple. The domain calculus extension is suitable
for handling fuzzy attribute values as is FSQL. In
[13] the authors proposed a fuzzy query language in
terms of relational calculus, but their work is based
on domain calculus [10]. Quantified propositions
in [13] satisfy Zadeh’s interpretation that has some
disadvantages and is not adequate for data base queries
[14]. Authors in [15] extend tuple calculus with fuzzy
logic. Their work focuses on a language for preference
expressions in route planning. Nevertheless, we need
a generic language for the formal expression of fuzzy
requirements with the possibility of formal proofs
and a mechanism to translate requirements to an
implementation language (SQLf).

We propose a method based on a formal specification
which allows for developing applications with the
fuzzy requirement. Formal specifications are done with
an extension of tuple calculus that incorporates fuzzy
conditions as the novel contribution of this work. Since
formal specifications in tuple calculus are symbolic
logic expressions, they allow for one to perform
formal tests in order to verify the correctness of the
requirements. We do not address all methodological
aspects of the system such as user interfaces or
correctness of requirements for data insertion, reports,
interaction with other systems, etc. We just focus on
fuzzy requirements.

The paper is comprised of five sections including
the introduction. In Section 2, we briefly describe
background on fuzzy sets and SQLf. In Section 3,
we explain our development method for database
applications which are characterized by fuzzy
requirements. This method includes an extension of
tuple calculus to formally specify fuzzy queries, and
translation rules to implement those fuzzy queries like
SQLf statements. In Section 4, we apply our method in
a real case study. Lastly, in Section 5, the concluding
remarks and suggestions for future work are given.

2. BACKGROUND

Fuzzy sets [1] are defined by means of membership
functions from a base universe or domain to the real
interval [0,1]. The set of elements whose membership
degree is greater than zero is the support. The core
is the set of elements whose membership degree is
equal to one. The border is the set of elements whose
membership degree is neither zero nor one. Fuzzy set
theory is the basis of fuzzy logic, where truth values are
in [0,1]; the zero value represents “completely false”,
and one value is “completely true”. The truth value of a
proposition “s” is denoted by m(s). Fuzzy logic may be
used to specify searching conditions in query, according
to an SQL extension named SQLf [2][5].

A query can be expressed as follows:

SELECT <columns>
FROM <tables>
WHERE <fuzzy conditions>
WITH CALIBRATION [k|a|k,a]

The SELECT clause projects columns that are retrieved

Dyna 173, 2012 17

from the tables specified in the FROM clause, and the
WHERE clause specifies a fuzzy condition that must be
satisfied by retrieved rows. The WITH CALIBRATION
clause is optional and allows retrieving: a) the k best
answers, and/or b) rows whose membership degree is
greater or equal than a value.

Tineo [17] introduced SQLf-DDL, a data definition
language for fuzzy terms, according to the Zadeh [16]
classification. It allows for the specification of fuzzy
predicates, modifiers, comparators, connectors, and
quantifiers. The definition syntax varies depending on
the kind of term, but generally it follows the structure:

CREATE FUZZY <kind>

<name> [ON <dom>] AS <def>

Where: <kind> is one of the keywords PREDICATE,
MODIFIER, COMPARATOR, CONNECTOR or
QUANTIFIER; <name> is an identifier denoting
the fuzzy term; and <def> is a complex expression
defining the operational semantics of the fuzzy term.
The ON <dom> clause is only for predicates. It is
intended to specify the base universe or domain of the
fuzzy set.

3. OUR METHOD

SQLf has been used for some developments [18].
Based on these experiences, we propose a method
for developing applications that support fuzzy
requirements. Firstly, the analysis produces a list of
fuzzy requirements in natural language, where fuzzy
terms are normally used. Linguistic terms of a vague
nature are identified and represented using fuzzy theory.
Analysts determine which fuzzy terms are necessary,
their types, and their definitions. Secondly, each fuzzy
requirement is written in tuple calculus using user-
defined fuzzy terms. Thirdly, the software system may
be built using SQLf. In this step, fuzzy requirement
specifications in tuple calculus are translated into SQLf.

3.1. Fuzzy requirement analysis

From a user’s requirements in natural language, we may
determine grammatical elements such as adjectives and
adverbs which are indicators of vagueness. Qualifying
adjectives refer to quality and have several levels of
intensity: The positive level corresponds to an adjective
in its original form such as: good, bad, cheap, and

expensive. Usually, they are represented as fuzzy
predicates. The comparative level of an adjective is
expressed in English by “–er” or “more” (e.g., cheaper
and more expensive). Also, there are pure adjectives
such as better or worse which are fuzzy comparators.
The superlative form of an adjective is expressed in
English by “–est”; e.g., “most” or “least”, as in the
most efficient or the youngest. Other superlatives are
the following words: optimal, supreme, or extreme. A
“superlative” degree indicates a comparison between
elements of the same set. Superlative representation
may require fuzzy modifiers, fuzzy predicates, fuzzy
comparators, and/or fuzzy quantifiers. There are also
determinative adjectives that are related to quantities,
such as few, many, much, and several. These correspond
to fuzzy quantifiers. Adverbs, such as very and
extremely are words that modify a verb or adjective.
They may be modeled as fuzzy modifiers.

3.2. Formal specification of fuzzy queries

A formal specification describes behavior and properties
of a system written in a formal language. Formal
models allow for verification if system descriptions are
consistent. Tuple calculus is a formal language used to
represent users’ requirements over relational databases.
A tuple calculus query is an expression in first order
logic that identifies its resulting tuples set. We extend
tuple calculus with fuzzy logic with a notation for
expressions similar to that of [19].

A query in tuple fuzzy calculus is an expression of
form: C = {t1.a1,…,tn.an | R(t1,…,tn) : P(t1,…,tn)}. Here
t1,…,tn are free variables that represent tuples; each ai
is a valid attribute of tuple ti, or the special attribute
specification symbol * whose meaning is the list of all
attributes forming the tuple ti; R(t1,…,tn) is a conjunction
of expressions with form ti Î Ti establishing the valid
range of tuples. Each Ti is a database table; P(t1,…,tn)
is a valid formula that states a fuzzy condition to
be satisfied by returned tuples. The result of C is
a fuzzy set of tuples. There is one tuple for each
possible assignation of variables t1,…,tn satisfying the
range restriction R(t1,…,tn) and the fuzzy condition
P(t1,…,tn). The membership degree of resulting tuples
is given by the effective truth value of P(t1,…,tn) for
the corresponding assignation of variables t1,…,tn.. We
denote the effective truth value of a valid formula F
as m(F).

Apellidos & Apellidos et al 18

For convenience, we also allow for a query in tuple
fuzzy calculus be an expression of form: C = {t1.a1,…,tn.
an | R(t1,…,tn)Ù F(t1,…,tn) : P(t1,…,tn)} that is defined
as equivalent to {t1.a1,…,tn.an | R(t1,…,tn): P(t1,…,tn) Ù
F(t1,…,tn)}, where F(t1,…,tn) is a valid formula.

3.2.1. Atomic valid formulas

Valid formulas are built on atoms. Classic (crisp)
atoms are expressions of form: tÎT, with t as a tuple
variable and T a database table; or, e q e’, being e and
e’, arithmetic expressions built on tuple’s attributes and
constants, and q a comparison operator qÎ{=, ¹, <, £,
>, ³}. The effective truth value of a crisp atom would
be 1 for true or 0 for false. Fuzzy atoms contain fuzzy
terms: predicates, modifiers, or comparators.

The expression t.a is fp is an atom where t is a tuple
variable, a is an attribute of t, fp is a fuzzy predicate,
and the “is” keyword is an operator for fuzzy predicates
on linguistic variables. For example, a fuzzy expression
for a high grade point average (gpa) could be “t.gpa is
high”, where high is a linguistic label that corresponds
to a fuzzy predicate. An interpretation for a predicate
fp is a fuzzy set whose membership function is denoted
as mfp. Thus, given an assignation where the attribute
t.a takes the value v, the logical expressions “t.a is fp”
effective truth value would be m(t.a is fp) = mfp(v).

Fuzzy comparators are expressed as binary operators
between crisp values: e1 fc e2 where fc is a linguistic
label for the fuzzy comparator, e1 and e2 are arithmetic
expressions built on tuple’s attributes and constants. For
instance, “t1.gpa worseThan t2.gpa” is an expression
using the comparator “worseThan”. An interpretation
for a fuzzy comparator fc is a fuzzy set of pairs whose
membership function is denoted as mfc. Thus, given
an assignation where the expressions e1 and e2 take
the value v1 and v2, respectively; m(e1 fc e2), would be
mfc(<v1,v2>).

The expression t.a is fm fp is an atomic valid formula
where fm is a fuzzy modifier, fp is a fuzzy predicate,
t is a tuple variable, and a is an attribute of t. For
example, t.gpa is very high. An interpretation for
the fuzzy modifier fm is a transformation over fuzzy
sets’ membership functions. Given mfp, a membership
function, the fuzzy modifier fm produces a transformed
membership function mfm(fp). Thus, given an assignation

where the attribute t.a takes the value v, m(t.a is fm fp)
= mfm(fp) (v).

3.2.2. Combined valid formulas

Valid formulas allow parenthesis use; e.g., (F) is
equivalent to F. If F is a valid formula, then ØF is
a valid formula with m(ØF) = 1-m(F). If F1 and F2
are valid formulas then F1ÙF2, F1ÚF2 and F1ÞF2
are valid formulas, with semantics: m(F1ÙF2) =
min(m(F1),m(F2)), m(F1ÚF2) = max(m(F1),m(F2)) and
m(F1ÞF2) = max(m(ØF1), m(F2)). Valid formulas may
be also combined using fuzzy connectors. Let “fn” be a
fuzzy connector: We will use prefix notation for unary
connectors as “fn F”. For binary connectors the notation
would be infixed as “F1 fn F2”. For example, suppose
“fimp” is a linguistic label for a fuzzy implication,
we may use this connector in the expression (t.gpa is
highest) fimp (t.gpa is high). An interpretation for the
unary fuzzy connector fn is a unary closed operator
sfn on the real interval [0,1]. Thus, m(fn F) would be
sfn(m(F)). In the same way, for a binary fuzzy connector
fn, an interpretation would be a binary closed operator
sfn in [0,1]. Thus, m(F1 fn F2) would be sfn(m(F1),m(F2)).

3.2.3. Quantified valid formulas

Fuzzy quantifiers represent imprecise quantities as
an extension of existential and universal quantifiers.
They allow for the building of valid formulas with the
following notation based on [19]: (fq x: R(x): P(x))
where fq is a linguistic label for a fuzzy quantifier, x
is a variable linked to quantifier, R(x) is the variable
range and P(x) is a valid formula. R(x) may be either
of the form xÎX or the form xÎXÙF(x), being F(x) a
valid formula. For example, the statement “most of the
students have high gpa” may be expressed as (mostOf
e : e Î Student: e.gpa is high).

Interpretation of a fuzzy quantifier fq may be given
by fuzzy sets of numbers with a non-empty core and
a convex membership function mfq. Several measures
have been proposed for the effective truth value of a
fuzzy quantified formula; we assume Tineo’s [20].

3.3. Formal specification translation

Requirements may be implemented in SQLf. Each
fuzzy term is defined using SQLf-DDL [17]. In

Dyna 173, 2012 19

addition, queries expressed in tuple calculus are
translated into SQLf. The following translation rules
are an extension of those for classic queries presented
in [21].

Translation of an C = {t1.a1,…,tn.an | R(t1,…,tn) : P(t1,…
,tn)} expression is as follows:

•	 The attributes t1.a1,…, tn.an are included in the
SELECT clause.

•	 Tables Ti in range of membership R(t1,… , tn) are
specified in the FROM clause incorporating in the
AS clause the corresponding range variable as
follows: “FROM T1 AS t1,…, Tn AS tn”.

•	 Condition P(t1,… , tn) is expressed into the WHERE
clause. It is necessary to normalize the formula of
P in order to translate this condition. Since SQLf is
an extension of SQL, it does not have a universal
quantifier but an existential one (EXISTS).
However, this extension allows for representing
any fuzzy quantifier. The normalization procedure
consists of four steps [21]: First, eliminate
all implications by applying the implication
equivalence: (F1ÞF2) º (¬F1Ú F2); second,
eliminate all universal quantifiers by applying the
universal quantification equivalence: ( t:R(t):F(t))
º ¬($t:R(t):¬F(t)); third, eliminate double negation
by applying the double negation equivalence: ¬¬F
º F; fourth, eliminate sandwiched negation by
applying De Morgan’s equivalence: ¬(F1ÙF2)
º (¬F1Ú¬F2) and ¬(F1ÚF2) º (¬F1Ù¬F2).
The highlighted negation in the formula ¬($t:
R(t):¬(F(t))) is referred by a sandwiched negation.
For example, the expression (t: R(t): t>0 Ù t<100)
º ¬($t: R(t): ¬(t>0Ùt<100)) applying universal
quantification equivalence where ¬(t>0Ù t<100) is
a sandwiched negation; the expression ¬($t: R(t):
¬(t>0 Ù t<100)) º ¬($t: R(t): ¬(t>0) Ú¬(t<100))
applying De Morgan’s equivalence.

If all formulas of a query C = {t1.a1,…, tn.an | R(t1,…. tn)
: P(t1,… tn)} are normalized, we define the translation
function (Trans) as:

Trans(F) = F if F is an atom different from ti Î Ti,

Trans(F1 Ù F2) = Trans(F1) AND Trans(F2)

Trans(F1 Ú F2) = Trans(F1) OR Trans(F2)

Trans(F1 fn F2) = Trans(F1) fn Trans(F2)

Trans((F)) = Trans(F)

Trans(ØF) = NOT Trans(F)

Trans(fn F) = fn Trans(F)

Trans($t1,…, tn : R(t1,…, tn): F(t1,…, tn)) = EXIST
(SELECT t1,…, tn FROM T1 AS t1,…,Tn AS tn WHERE
Trans(F(t1,…, tn)))

A query C = {t1.a1,…, tn.an | R(t1,…. tn) : P(t1,… tn)}
without fuzzy quantifiers, is translated as: Trans(C) =
SELECT t1.a1,…, tn.an FROM T1 AS t1,…,Tn AS tn WHERE
Trans(P(t1,…, tn)) ;

A query C = {t1.a1,…, tn.an | R(t1,…,tn) Ù F1(t1,…,tn) : (fq
s : sÎS ÙF2(s) : F3(t1,…,tn, s))} where F1, F2, and F3 do
not contain fuzzy quantifiers, is translated as: Trans(C)
= SELECT t1.a1,…,tn.an FROM T1 AS t1, … ,Tn AS tn, S
AS s WHERE Trans(F1(t1,…,tn)) GROUP BY t1.k1,…,tn.kn
HAVING fq Trans(F2(s)) ARE Trans(F3(t1,…,tn,s)); Where
k1,…,kn are key attributes of T1,…,Tn. When F1(t1,…,tn)
is absent in query C, we omit WHERE Trans(F1(t1,…,tn))
in translation. When F2(s) is absent in query C, we omit
Trans(F2(s)).

4. OUR CASE STUDY

To illustrate the application of our method, we
developed a database application for managing a
student opinion survey (SOS) at the Simon Bolivar
University (in Spanish, Universidad Simón Bolívar,
USB). The SOS instrument consisted of 31 items and
their answers were integers between 1 and 5. The
items corresponded to “Opinion about Professor’s
performance”, “General Opinion”, “Student Self-
Evaluation”, and “Opinion about the course”. The
Simon Bolivar University has an SOS database that
stores student opinions about courses and professors
for several trimesters. SOS database size is about
4,000,000 tuples. All this information may be useful
for decision making and teaching quality improvement.
The objective is to support decision making in our
university community.

Apellidos & Apellidos et al 20

4.1. Fuzzy requirement analysis

We identify different actors for the SOS system with
different privileges and requirements. The Office of
Information Engineering at USB controls privileges.
Our focus in this paper is only in fuzzy requirements.
Using natural language, we specify some of the
identified user’s requirements in Table 1. We identify
fuzzy terms in the user’s requirements and we
emphasize them in italics, bold, and in parentheses.

Table 1. Some requirements in natural language

ID Requirement description

C1 For a department d and a period p, in which courses most of
students might obtain a (low, regular, or high) grade?

C2 For a professor o and a period p, which are o’s (weak or
outstanding) issues according most students’ opinion?

C3

For a department d and a period p, how (easy, regular, or
difficult) are the courses, in terms of difficulty level, available
resources, correspondence to number of credits, and grade
expected for course c?

The following step is for defining each identified
fuzzy term. These terms will be used in the formal
specifications of the fuzzy requirements. Terms low,
regular, and high are positive adjectives and they
are modeled as fuzzy predicates. Figure 1 shows
trapezoidal representations for them.

We will model outstanding by means of the linguistic
expression very high where very is a fuzzy modifier that
translates the membership function of fuzzy predicate by 1
unit in the abscissas axis. If the high predicate was defined as
in Fig. 1, the very modifier will be represented as in Fig. 2.

Figure 1. Membership function for low, regular, and high
predicates in the 1–5 range

The weak predicate will be modeled as the negation
of the outstanding predicate. Since negation is a fuzzy
connector whose definition may be interpreted as a
complement, we represent it using the membership
function of Fig. 2.

Figure 2. Membership functions representing the terms
outstanding (defined as very high) and weak (defined not

outstanding), being very and not fuzzy modifiers

The terms easy, regular, and difficult are positive
adjectives. When we analyzed SOS, we observed
that a set of items determines how easy, regular, or
difficult the courses are. Therefore, we need a composed
predicate. For example, a course is easy when it
satisfies three criteria: student’s previous preparation
is high, the dedication required to pass it is low, and
the availability of support materials is high. According
to user preferences, the predicates easy, regular, and
difficult are defined in Table 2.

Table 2. Definitions of the linguistic terms easy, regular,
and difficult

Term Definition (fuzzy condition)
easy Previous Preparation = high Ù Required

Dedication = low Ù Material Availability = high
regular Previous Preparation = regular Ù Required

Dedication = regular Ù Material Availability =
regular

difficult Previous Preparation = high Ù Required
Dedication = high Ù Material Availability = low

Three requirements contain the term most of. This
term corresponds to a determinative adjective that
may be defined as a proportional quantifier because it
describes a relative quantity of elements. In Figure 3
its representation is given.

Dyna 173, 2012 21

4.2. Formal specification of fuzzy queries

The Office of Information Engineering at USB carried out
SOS database design and it comprises previous research
to our development. Figure 4 contains a simplification of
relational SOS schema. Some tables and attributes have been
omitted because they are irrelevant in our requirements. All
fuzzy terms have been defined.

Figure 3. Membership function of fuzzy set defining the
linguistic quantifier mostOf

Thus, we may specify natural language requirements in
relational calculus. To illustrate specification in relational
calculus, we only consider some fuzzy requirements.

Figure 4. SOS database relational schema. Primary
keys are underlined. Foreign keys coincide in name with
corresponding referenced keys in the sense of the arrow.

Irrelevant attributes are omitted (…).

Suppose the requirement C1: “For a department d and
a period p, which are the courses where most students
may obtain a high grade?” In relational calculus,
a query result is represented as a set of tuples that
satisfy a condition given by the user. Thus, the user is

interested in those courses (c Î Course) where most
student opinions (o Î Opinion) have a high value for
linguistic variable “Expected Grade” corresponding
to item 25 of the survey. Its formal specification is
as follows: {c.* | c Î Course Ù c.departmentId = d :
(mostOf o: o Î Opinion Ù o.code = c.code Ù o.period
= p : (r: r Î Response: r.serial=o.serial Ù r.number
= 25 Ù r.value is high))}.

Let us consider the C2requirement: “For a professor
d and a period p, which are d’s weak issues according
most student opinions?” For this requirement, the
items from 1 to 19 of the survey corresponding to
professor performance are necessary. Also, there is
a precondition for professor d: (d Î Professor). A
description of each issue is represented as an attribute
“issue” in table “Question” of Figure 4; e.g., item
1 of SOS has a value of attribute “number” equal 1
and the “issue” attribute value is “clarity of course
program”. Range of the fuzzy quantifier mostOf just
involves opinions about professor d (o Î Opinion Ù
o.professorId = d.professorId). The “Opinion” table
contains information on several surveys filled out by
the students and each answer of the survey is in the
“Response” table. In consequence, use of the existential
quantifier and/or the universal one is equivalent to the
specification of this requirement. We use the universal
quantifier, and we represent the fuzzy term weak by the
compound predicate not very high. We may formally
specify C2 as:

{q.issue | q Î Question Ù q.numberÎ{1,..,19} : (mostOf
o: o Î Opinion Ù o.professorId = d.professorId Ù
o.period = p : (r : r Î Response : r.serial = o.serial
Ù r.number = q.number Ù r.value is not very high))}.
The requirement C3 states: “For a department d
and a period p, how easy are the courses?” This is a
potentiality example of fuzzy quantifiers over classical
ones. In this requirement, the user wants to know a
satisfaction degree, which may be directly modeled
using the fuzzy quantifier mostOf. The result of this
quantifier produces an answer in the closed interval
[0,1] according to its definition in Figure 3. In quantifier
range, we must verify opinions belong to department d
($m:mÎCourse:o.code = m.codeÙm.departmentId =
d). Notice that if there are no opinions about courses
of a department, the result should be 1 because the
existential result is false and the range of the fuzzy
quantifier is empty or false.

Apellidos & Apellidos et al 22

Remember that the easy predicate is a predicate
combined by previous preparation, required dedication,
and material availability according to

Table 2. This is survey items 22, 23, and 24, respectively.
This corresponds to attribute “number” of “Response”
table; i.e., (r.numberÎ{22,23,24}). Similarly, we
have a precondition: d is a department code. Finally,
we express this requirement as: {c.* | cÎ Course Ù
c.departmentId = d : (mostOf o : o Î Opinion Ù ($m:
m Î Course : o.code = m.code Ù m.departmentId
= d) Ù o.period = p : (r: r Î Response : r.serial =
o.serial Ù r.number Î {22,23,24} Ù (r.number = 22 Þ
r.value is high) Ù (r.number = 23 Þ r.value is low) Ù
(r.number=24 Þ r.value is high)))}. Notice that each
answer of a student opinion corresponds to a different
tuple in the “Response” table. In consequence, a
condition conjunction over the items 22, 23, and 24
requires a universal quantifier.

4.3. Formal specification translation

In this phase, fuzzy terms and relational calculus
queries are translated into SQLf statements. We define
the following fuzzy terms in SQLf as:

CREATE FUZZY PREDICATE low ON 1..5 AS
(INFINITE,INFINITE,2,4);

CREATE FUZZY PREDICATE regular ON 1..5 AS
(1,3,3,5);

CREATE FUZZY PREDICATE high ON 1..5 AS
(2,4,INFINITE,INFINITE);

CREATE FUZZY MODIFIER very

AS TRANSLATION 1;

C R E AT E F U Z Z Y Q U A N T I F I E R m o s t O f
AS(0.3333,0.8333,1.0,INFINITE);

Note that terms such as low, regular, and high are defined
in terms of the problem context. For simplicity, we
use several labels for different contexts. Terms weak,
outstanding, easy, regular, and difficult are represented
based on previous user-defined terms. Since there are a
high number of courses and professors, all queries assume
just one selected department. If the user is a professor,
the department selected corresponds to his department.
In queries that require a specific professor or a specific
course, the user must select from a list specific to his
department. In those queries containing a comparison,

the user must previously choose an academic period.

We will describe implementation of fuzzy queries
specified formally in the previous section. We assume
the user has selected a department, which is in the
variable $sel1. Also, the professor and period selected
correspond to variables $sel2 and $sel3. Threshold is
specified by the user in the variable $sel4. It would be
used in the calibration clause.

The formal specification of requirement C1 must be
normalized. First, we apply the universal quantification
equivalence; and second, we apply De Morgan’s
equivalence:

C1 = {c.* | c Î Course Ù c.departmentId = $sel1 :
(mostOf o: o Î Opinion Ù o.code = c.code Ù o.period
= $sel3 : Ø($r: r Î Response: r.serial ¹ o.serial Ú
r.number¹25 Ú r.value is not high))}.

Using the normalized formula of C1, we may apply the
function Trans(C1) in order to specify the corresponding
SQLf query: SELECT c.* FROM Course AS c,
Opinión AS o WHERE c.departmentId =
$sel1 GROUP BY c.code HAVING mostOf
o.code = c.code AND o.period = $sel3
ARE NOT EXIST (SELECT r FROM Response
AS r WHERE r.serial <> o.serial OR
r.number <> 25 OR r.value is not high)
WITH CALIBRATION $sel4;

GROUP BY clause partitionates surveys by courses.
The mostOf quantifier indicates proportion of
tuples in each partition satisfying the fuzzy condition
“r.value is high”; i.e., most surveys say that a
high grade is expected.

The normalized requirement C2 is

C2 = {q.issue | q  Question  q.number  {1,..,19}
: (mostOf o: o  Opinion  o.professorId = $sel2 
o.period=$sel3 : ($r: r  Response : (r.serialo.serial
 r.numberq.number  r.value is very high)))}.

Based on the function Trans(C2), the SQLf query is
as follows: SELECT q.issue FROM Question
AS q, Opinión AS o WHERE q.number
BETWEEN 01 AND 19 GROUP BY q.issue
HAVING mostOf o.professorId = $sel2

Dyna 173, 2012 23

AND o.period = $sel3 ARE NOT EXIST
(SELECT r FROM Response AS r WHERE
r.serial <> o.serial OR r.number
<> 25 OR r.value is not high) WITH
CALIBRATION $sel4;

Additionally, the formal specification of requirement
C3 is normalized using the implication equivalence as:

C3 = { c.* | cÎ Course Ù c.departmentId = $sel1 :
(mostOf o: o Î Opinion Ù o.period = $sel3 : Ø($r: r Î
Response : r.serial¹o.serial Ú r.number Ï {22,23,24}
Ú (r.number = 22 Ù Ø(r.value is high)) Ú (r.number =
23 Ù Ø(r.value is low)) Ú (r.number = 24 Ù Ø(r.value
is high))))}.

Trans(C3) is SELECT c.* FROM Course AS c,
Opinión AS o WHERE c.departmentId =
$sel1 GROUP BY c.code HAVING mostOf
o.period = $sel3 ARE NOT EXIST
(SELECT r FROM Response AS r WHERE
r.serial <> o.serial OR NOT r.number
IN {22,23,24} OR (r.number = 22 AND
r.value is not high) OR (r.number = 23
AND r.value is not low) OR (r.number
= 24 AND r.value is not high)) WITH
CALIBRATION $sel4;

5. CONCLUSIONS

Currently, many methodologies exist for software
development. These methodologies adequately regard
several issues of database applications, such as user
interfaces, communication with other systems, data
insertion, and so on. However, existing methodologies
have not been thought to build database applications
that involve fuzzy terms. Thus, we have focused on
incorporating these kinds of requirements.

Information requirements for decision-making systems
may include terms whose nature is vague. These terms
represent user’s preferences. The fuzzy set theory
allows for the logical-mathematical representation
of fuzzy terms. This allows for one to handle
them computationally. To satisfy those information
requirements with vague linguistic terms, the standard
database query language SQL has been extended by
using the fuzzy logic developed in previous works.
In this sense, SQLf has emerged as one of these

extensions.

On the other hand, the fuzzy query language SQLf has
been used in the development of several applications.
Based on these experiences, in this paper we have
proposed a method to develop database applications
that support fuzzy requirements. We presented a
methodological way for incorporating fuzzy queries
in software development in order to support user
requirements involving linguistic terms expressing
preferences. Firstly, the analysis produces a list of
fuzzy requirements in a natural language. Secondly,
each fuzzy requirement is formally specified by means
of a fuzzy logic extension of tuple calculus. Thirdly,
formal specified fuzzy requirements are translated into
SQLf for their implementation in a real DBMS. The
proposed translation is this paper’s main contribution.
We have restricted the use of fuzzy quantifiers in
tuple fuzzy calculus to those expressions that may be
translated into SQLf.

To the best of our knowledge, none of the previous
existing database application development methods
consider fuzzy queries formal specification. That is our
contribution. The use of formal specification techniques
in our method avoids the ambiguity of natural language.
Even when user requirements involve vague nature
linguistic terms, thanks to the use of fuzzy logic,
ambiguity is avoided.

We have developed a case study. The application
consists of querying the Student Opinion Survey of
Simon Bolivar University solving user requirements
involving linguistic terms. In this way, we have shown
the boundaries of our proposed method.

Since our method involves formal specifications of
fuzzy queries and includes translation rules from the
formal specification of fuzzy queries to SQLf language,
it is feasible to develop a computer-aided tool in order
to formally specify fuzzy queries and generate an SQLf
code. Thus, development of applications with fuzzy
requirements may be automated and the ambiguity
problem may be eliminated or minimized. As a future
work, we plan to automate the translation from natural
language into tuple calculus. This work opens a way for
a new generation of information systems with support
on SQLf fuzzy querying language.

Apellidos & Apellidos et al 24

ACKNOWLEDGEMENTS

The authors would like to acknowledge the help of
our friend and colleague Graciela Perera for this work
revision. Also we give thanks for the wisdom given
to us by our best friend Jesus Christ, the Lord. “If any
of you lacks wisdom, you should ask God, who gives
generously to all without finding fault, and it will be
given to you.” (Jas. 1:5, New International Version).

REFERENCES

[1] Zadeh, L. A., Fuzzy Sets, Information and Control, 8(3),
pp.338-353, 1965.

[2] Bosc, P., and Pivert, O., SQLf: A Relational Database
Language for Fuzzy Querying, IEEE Transactions on
FuzzySystems, 3, pp.1-17, 1995.

[3] Galindo, J., Urrutia, A., and Piattini, M., Fuzzy Database
Modeling, Design and Implementation, Idea Group
Publishing, 2006.

[4] Bordogna, G., and Psaila, G., Customizable Flexible Querying
Classic Relational Databases. En: Handbook of Research on Fuzzy
Information Processing in Databases (Eds. J. Galindo J), Hershey,
PA, USA: Information Science, pp.189-215, 2008.

[5] González, C., Goncalves, M., and Tineo, L., A New
Upgrade to SQLf: Towards a Standard in Fuzzy Databases.
20th Proceeding of International Workshop on Database and
Expert Systems Application. pp.442-446. 2009.

[6] Muñetón, A., Zapata, C. M., and Arango, F., Reglas
para la Generación Automática de Código definidas sobre
Metamodelos Simplificados de los Diagramas de Clases,
Secuencias y Máquina de Estados de Uml 2.0, DYNA, Año
74, pp.153, 267-283, 2007.

[7] Goncalves, M., Rodríguez, R., and Tineo L., Incorporando
Consultas Difusas en el Desarrollo de Software, Revista
Avances en Sistemas e Informática, 6 (2), pp.87-101, 2009.

[8] Rodríguez, R., and Goncalves M., Implementación de
requisitos difusos en sistemas orientados a datos utilizando el
lenguaje OCL y lógica difusa, Enl@ce: Revista Venezolana de
Información, Tecnología y Conocimiento, 8 (1), pp.31-54, 2011.

[9] Codd, E., Relational Completeness of Data Base
Sublanguages; Data Base Systems, Courant Computer Science
Symposia Series; Prentice-Hall: Englewood Cliffs, NJ, 6, 1972.

[10] Lacroix, M., Pirotte, A. Domain-Oriented Relational
Languages, Proceeding of VLDB, pp.370-378, 1977.

[11] Galindo, J., Medina, J.M. and Aranda, M.C., Querying
Fuzzy Relational Databases Through Fuzzy Domain
Calculus, International Journal of Intelligent Systems, 14
(4), pp.375-411, 1999.

[12] Buckles, B.P., Petry, F.E., and Sachar, H.S., A Domain
Calculus for Fuzzy Relational Databases, Fuzzy Sets and
Systems, 29, pp.327-340, 1989.

[13] Takahashi, Y., A Fuzzy Query Language for Relational
Databases. Fuzziness in Database Management Systems
(Eds. P. Bosc, J. Kacprzyk), Physica Publisher, Heidelberg,
pp.365-384, 1995.

[14] Liétard, L., Contribution à l’Interrogation Flexible de
Bases de Données: Étude des Propositions Quantifiées Floues
[Thèse de Doctoract]. Université de Rennes I, France,1995.

[15] Mokhtari, A., Pivert, O., Hadjali, A., and Bosc, P.,
Towards a route planner capable of dealing with complex
bipolar preferences. Proceeding of the 12th IEEE Conf. on
Intelligent Transportation Systems, USA, pp.556–561, 2009.

[16] Zadeh, L. A., PRUF – A Language for the Representation
of Meaning in Natural Languages. Proceeding of the 5th
IJCAI, Cambridge, MA, pp.395-460, 1977.

[17] Tineo, L., Interrogaciones Flexibles en Bases de Datos
Relacionales, Trabajo de Ascenso, Universidad Simón
Bolívar, Caracas, Venezuela, 1998.

[18] Goncalves, M., and Tineo, L., SQLfi y Sus Aplicaciones,
Revista Avances en Sistemas e Informática, 5 (2), pp.33-40, 2008.

[19] Gries, D., and Schneider, F. B., A Logical Approach to
Discrete Math. Texts and Monographs in Computer Science.
Springer-Verlag, 1994.

[20] Tineo, L., A fuzzy quantifiers’ interpretation for
database querying, Proceedings of FIP, 423-428, 2003.

[21] Kawash, J., Complex quantification in Structured Query
Language (SQL): a tutorial using relational calculus, Journal
of Computer in Mathematics and Science Teaching, 2004.

