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Abstract
Disease mapping seeks to represent the risk of a disease. This paper focuses on the spatial analysis 
of risk for pandemic COVID-19 in Europe and the Mediterranean. Morbidity and mortality data 
for 54 countries in ratio format were used. Two hypotheses were considered, the first one is that 
the data are homogeneous and the second one is that the ratios are defined in a heterogeneous 
manner requiring the stratification on the basis of covariables and the methodology of Jenks’ 
intervals. Spatial risk models were applied as well as methods for the representation of clusters. 
The results show that the best representation is obtained with the Poisson-Gamma Model under 
stratification. The variations in the ratios are due to the individual policies of each country for the 
management of the pandemic. The cluster analysis shows that there is a high mortality process in 
Eastern Europe. The behavior of the pandemic should be evaluated in the space-time process as 
well as in other heterogeneous and highly unequal regions. 

Keywords: COVID-19; disease spatial risk; Europe; Mediterranean; disease clusters; morbidity; 
mortality

Resumen

Análisis espacial de riesgo de morbilidad y mortalidad por COVID-19 en Europa y 
el Mediterráneo en el año 2020
El mapeo de enfermedades busca representar el riesgo de una enfermedad. El objetivo de este tra-
bajo es hacer un análisis del riesgo para la pandemia de COVID-19 en Europa y el Mediterráneo. 
Se utilizaron los datos de morbilidad y mortalidad en formato de tasas de 54 países. Se aplicaron 
dos hipótesis, la primera es que los datos son homogéneos y la segunda es que las tasas son defi-
nidas de forma heterogénea por lo que se estratificó en base a covariables y la metodología de los 
intervalos de Jenks. Se aplicaron modelos espaciales de riesgos así como métodos de represen-
tación de clústers. Los resultados muestran que el modelo Poisson-Gamma bajo estratificación 
es el que mejor representa el proceso. Las variaciones de las tasas se deben a la heterogeneidad 
en las políticas individuales de cada país para el manejo de la pandemia. Los análisis clusters 
muestran que existe un fuerte proceso de mortalidad ubicado en Europa del Este. Debe evaluarse 
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el comportamiento del proceso de la pandemia en el espacio-tiempo así como en otras regiones 
heterogéneas y altamente desiguales.

Palabras clave: COVID-19; riesgo espacial para enfermedades; Europa; Mediterráneo; clústers de 
enfermedades; morbilidad y mortalidad

1. Introduction
The mapping of disease incidence and prevalence has long been a part of public health, epidemi-
ology and the study of disease in human populations (Koch, 2005). The aim of disease mapping 
is to provide a representation of the spatial distribution of the risk of a disease in the study area, 
which we will assume is divided into several non-overlapping smaller regions, the risk may reflect 
actual deaths due to the disease (mortality) or, if it is not fatal, it may reflect the number of people 
who suffer from the disease (morbidity) in a certain period of time for the population at risk (Bi-
vand, Pebesma, & Gomez-Rubio, 2013). COVID-19 is a pandemic infection caused by the virus 
SARS-CoV-2.9 which was first detected as an epidemic disease of Wuhan 2019 causing pneumo-
nia by coronavirus with high morbidity and mortality (Hui, Azhar, Madani, & et al, 2020). In this 
article we use the concept of the first law of geography which expresses that everything is related 
to everything else, but near things are more related than distant things (Tobler, 1970), and we 
focus on the challenge of obtaining reliable statistical estimates of COVID-19 disease risk based 
on counts of observed cases in countries in Europe and in the Mediterranean.

The spatial issue of COVID-19 was approached using Moran’s Index as a statistics tool (Huang, 
Liu, & Ding, 2020), applying it to the spatial panel and showing that the infection by COVID-19 
is space dependent and propagates mainly from the Province of Hubei in central China to the 
neighboring regions. Additionally, other authors (Chen et al., 2020) found that there is a high 
impact of the mobility of people on the propagation of the disease. In Europe it has been observed 
that differences in mortality by COVID-19 are due to unequal population structures in reference 
to age and age and sex (Kashnitsky & Aburto, 2020). The analysis of the decomposition of the 
general wage inequality in Europe shows that the quarantine measures and social distancing pro-
mote a double process of divergence: they increase the inequalities within the countries as well as 
among them (Palomino, Rodríguez, & Sebastian, 2020).

2. Methods
Figure 1 shows the general diagram of the methods as they were applied. The classical design-
based solutions are often not viable for this type of problem because the sample sizes within each 
region required for desired levels of statistical precision, are often unavailable or inaccessible, in 
contrast, model-based approaches offer a mechanism to “borrow strength” across small areas in 
order to improve local estimates, resulting in the smoothing of extreme rates based on small local 
sample sizes. Such approaches are often expressed as mixed effects models (Gelfand et al., 2010). 
This explains why the observed number of cases alone gives no information on the risk of the dis-
ease, given that the cases are mainly distributed according to the underlying population. In order 
to obtain an estimate of the risk, the observed number of cases must be compared to an expected 
number of cases, thus we will denote by Pij and Oij the population and observed number of cases 
in region i and stratum j (Bivand, Pebesma, & Gomez-Rubio, 2013).
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Figure 1. Diagram of the methods used in this work. 

Summing over all strata we can get the total population and number of cases per area, which we 
will denote by Pi and Oi . Summing again over all the regions will give the totals which will be 
denoted by P+ and O+ . If Pi and Oi are already available, which is the simplest case, the expected 
number of cases in region can be calculated as Ei = Pir+ where r+ is the overall incidence ratio 
equal to O+/P+ . Because the data are grouped in strata, we computed the ratio for each population 
stratum as rj = ∑iOij  / ∑iPij , this is called Standardized Mortality Ratio (SMR) and Standardized 
Incidence Ratio (SIR) in the case of morbidity, both considered as SMR/SIR. Thus, the expected 
number of cases in region is given by Ei = ∑iPij rj , this standardisation is also called internal stand-
ardization (Waller & Gotway, 2004).

54 countries were selected from Europe, North of Africa and the Near East. European micro-
states were excluded because the SMR/SIR may cause distortions in the analysis. The mortality 
and morbidity data was obtained from the plugin HCMGIS from Qgis (QGIS.org, 2020) from the 
John Hopkins Institute of April 29, 2020 (John Hopkins Institute, 2020) and the R libraries ctv 
(Zeileis & Hornik, 2018), maptools (Bivand & Lewin-Koh, 2020), rgdal (Bivand, Keitt, & Rowl-
ingson, 2020), spdep (Bivand R., 2020), ncf (Bjornstad, 2020), pgirmess (Giraudoux, 2018), ape 
(Paradis et al, 2020), spatialeco (Hothorn, Zeileis, Farebrother, & Cummins, 2020), lmtest (Zeileis 
& Hothorn, 2002), regeos (Bivand & Rundel, 2020), splm (Millo & Piras, 2018), spgwr (Bivand & 
Yu, RogerBivand , Danlin Yu. 2020), epitools (Aragon, 2020), DCluster (Gómez-Rubio, Ferrándiz-
Ferragud, & López-Quílez, 2015), raster (Hijmans, 2020) y fitdistrplus (Delignette-Muller, Du-
tang, & Siberchicot, 2020) and classInt (Bivand, Ono, Dunlap, Stigler, Denney, & Gómez, 2020). 
However, it is important to point out that the available COVID-19 data may be underestimated 
or overestimated due to the high number of asymptomatic cases and also due to the number of 
tests performed per day in each country; all this causes differences in the quality of the reports of 
the data by country (Modig, Ahlbom, & Matthews, 2020). For the modeling of the COVID-19 the 
basic data must include the population at risk and number of cases of mortality and morbidity in 
each area. Two hypotheses were considered. The first one is that the country’s risk factor is homo-
geneous, which implies that there is no available variable that controls SMR/SIR and this index is 
the same for each country. In this case the estimation of SMR/SIR was r = ∑O  / ∑P .

The second hypothesis is that SMR/SIR have spatial heterogeneity. In this case, in addition to the 
statistical phenomenon of spatial autocorrelation, another equally important statistical concept 
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must be included, spatial heterogeneity (HE), which refers to the variation in the relationships 
between variables in space (LeSage, 1999), that is, it is a phenomenon that is due to a real and 
substantive variation that evidences the existence and validity of the geographical context in the 
definition of social behavior (O’Loughlin & Anselin, 1992). The variables that may affect the risk 
of COVID-19 which were used in this work were obtained from data of the World Bank (The 
World Bank, 2020), American Cancer Society (American Cancer Society) and John Hopkins In-
stitute (John Hopkins Institute, 2020), and are the following: 1) Population over 65 years (%) by 
country; 2) The Global Health Security Index by country; 3) Daily passenger dispatch by air and 
water; 4) Poverty (%) and 5) Cigarette consumption per capita per year and by country (Zhou 
et al., 2020); (Aitken et al., 2020); (Patel et al., 2020); (Correa-Martínez et al., 2020); (Zhao et al., 
2020), see Table 1. This process was performed as a method to incorporate the effect of socioeco-
nomic variables on morbidity and mortality of COVID-19. 

Table 1. Variables that may affect risk of COVID-19

Variables Risk aspects Protective aspects

Population over 65 
years

Higher mortality reported from the first series of cases. 
Health conditions such as COPD*, diabetes, and 
coronary heart disease are frequent in this population 
(Zhou et al., 2020)

Older adults without these diseases 
may not be at increased risk.

Global Health Security 
Index**

Index summarizes existing policies and procedures in 
case of pandemic

Poor prediction of preparedness. 
Global Health Security Index (GHSI)** 
is predictive of COVID-19 burden, but 
in the opposite direction (Aitken et al., 
2020)

Air and marine traffic Easy spread of contagion by tourism and travelling 
(Correa-Martínez et al, 2020)

Better surveillance of imported cases

Poverty Overcrowded housing, occupations without opportunities 
to work from house, public transport use and heightened 
stress by the economic situation could be risk factors. 
Health services, personal protection items and test 
availability differs (Patel et al., 2020)

Reduced travelling and tourism before 
the pandemic

Cigarette consumption 
per capita

Ongoing smoking history is attributed to the worse 
progression and outcome of COVID-19 (Zhao et al., 
2020)

The cellular receptor for the virus has 
been reported to be decreased in 
smokers.

*COPD: Chronic Obstructive Pulmonary Disease, **GHSI, The Global Health Security Index is an evaluation across six items 
about the responsiveness of countries in the event of a pandemic, developed by the Johns Hopkins Center for Health Security, 
the Nuclear Threat Initiative (NTI) and the Economist Intelligence Unit (EIU) (Nuclear Threat Initiative, Johns Hopkins Center 

for Health Security). Besides the criticisms pointed out in the Table, we must mention the ecological bias or fallacy that can be 
considered a case within the problem of small area estimation in which the measurement scale of a phenomenon does not 

correspond to the scale where the real interactions occur between the variables. We assumed within-area variability is sufficiently 
small in order to ignore it until we have data at an appropriate scale (Wakefield, 2010).

Jenks’ interval technique (Jenks, 1967) was used as a method of univariant stratification which 
seeks to minimize each class’s average deviation from the class mean, while maximizing each 
class’s deviation from the means of the other groups. The optimization method is also known as 
the goodness-of-variance-fit (GVF) method and can be used as acceptance criteria. The other 
criterion that is frequently used is the Tabular Accuracy Index (TAI). The acceptance criteria for 
the methodology included natural intervals, minimum number of classes obtained with a GVF 
and a TAI which is higher than 0.90. Then for the analysis of the natural intervals, the classes were 
assigned for each variable/country according to the established criteria of the natural intervals. 
Finally, the strata for each variable was added so that  S = Ev1 + Ev2+ … +Evn , then SMR/SIR were 
estimated by strata. 
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It is mandatory to use a probability distribution model to analyze risk. Therefore, in order to select 
the most suitable model, the first step was the identification and adjustment of the frequency dis-
tribution for mortality and morbidity, SMR/SIR, in both hypothesis (homogeneity and heteroge-
neity). Cullen and Frey’s diagrams, (Cullen & Frey, 1999) were used for this purpose as a method 
for the identification of the closest distribution function and the method suggested by Venables 
and Ripley (Venables & Ripley, 2002) for the adjustment of the probability distribution model. 
Then the following Bayesian risk models were adjusted: Poisson-Gamma Model, Log-Normal 
Model, (Clayton & Kaldor, 1987) Marshall’s Global EB Estimator (Marshall, 1991) and Marshall’s 
Local EB Estimator (Bivand, Pebesma, & Gomez-Rubio, 2013). The graphic method suggested by 
Bivand et al (Bivand, Pebesma, & Gomez-Rubio, 2013) was used as a selection method, generat-
ing box-and-whisker plots for each model and for the real data as well as for an analysis of the 
performance of the models in terms of Root-Mean-Square Deviation (RMSE).

After performing the analysis of the presence of groups, the heterogeneity of the relative risks 
must be evaluated. Three global risk tests were performed on the expected values. The first one 
is a Chi squared because for each area we have the observed number of cases and the expected 
number has been calculated, the idea is to assess significant (global) differences among these two 
quantities, the statistical test is defined by (Bivand, Pebesma, & Gomez-Rubio, 2013):

where θ is global SMR/SIR, and, asymptotically, it follows a chi-square distribution with degrees 
of freedom. The second test is the one suggested by Potthoff and Whittinghill. (Potthoff & Whit-
tinghill, 1966). This author proposed another test of homogeneity of the means of different Pois-
son distributed variables which can be used to test the homogeneity of the relative risks. The test 
statistic is given by:

The alternative hypothesis of this test is that the Oi are distributed following a Negative Binomial 
distribution. Finally, the Moran test (Moran, 1950) which corresponds with a linear test was ap-
plied and also the Pearson coefficient correlation was applied to quantify the existence of spatial 
autocorrelation:

Here we apply Moran’s I statistic to the SMR/SIR to account for the spatial distribution of the 
population. If we computed Moran’s statistic for the Oi we could find spatial autocorrelation only 
due to the spatial distribution of the underlying population, because it is well known that the 
higher the population, the higher the number of cases (Bivand, Pebesma, & Gomez-Rubio, 2013). 
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However, the execution of this test requires the exploration of the spatial autocorrelation for the 
distance. Autocorrelation was explored with this method because the nature of global exchange 
as a result of long distance terrestrial, maritime and air travelling is very efficient especially in 
Europe. Furthermore, by allowing free circulation (especially in the countries of the European 
Union) the terrestrial distance is the main determinant in the mobility among countries rather 
than the number of terrestrial borders. For that purpose the spatial correlogram was estimated 
and the point where spatial autocorrelation is maximized was evaluated. In these terms, the spa-
tial weighing matrix was selected. The exploration is presented in Figure 2 which shows that the 
autocorrelation is maximized at a distance of 20 degrees and at 3 spatial lags in the case of Mor-
bidity SMR and at 20 degrees and 2 spatial lags in the case of Mortality SMR. With this, a Queen 
type second order matrix was used for the estimation of Moran’s I.

Figure 2. Spatial Correlograms of SMR Mortality and SIR Morbidity for COVID-19. 

So far we have considered methods that only assess the presence of heterogeneity of risks in the 
study area and give a general evaluation of the presence of clusters. In order to detect the ac-
tual location of the clusters present in the area, a different approach must be followed (Bivand, 
Pebesma, & Gomez-Rubio, 2013). A useful family of methods that can help in this purpose are 
scan statistics, Kulldorff and Nagarwalla (Kulldorff & Nagarwalla, 1995) developed a new test for 
the detection of clusters based on a window of variable size that only considers the most likely 
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cluster around a given region. Kulldorf ’s statistic works with the regions within a given circular 
window and the overall relative risk in the regions inside the window is compared to that of the 
regions outside the window. The null hypothesis, of no clustering, is that the two relative risks are 
equal while the alternative hypothesis (clustering) is that the relative risk inside the window is 
higher. This is resolved by means of a likelihood ratio test, which has two main advantages. First, 
the most likely cluster can be detected as the window with the highest value of the likelihood ratio 
and, second, there is no need to correct the p-value because the simulations for different centers 
are independent (Waller and Gotway, 2004, p. 220). Two variants of the test were applied, first an 
approximation where the strata do not have much weight (Binomial) and second, an approxima-
tion of a Poisson distribution was used where the strata possess a significant weight (Kulldorff & 
Nagarwalla, 1995).

3. Results and Discussion
The results of the strata obtained with Jenks covariable intervals show that Poverty has 7 strata, 
Population over 65 years (%) by country has 8 strata, Mortality has 11 strata, Daily passenger 
dispatch by air and water has 7 strata, Cigarette consumption per capita per year has 10 strata and 
The Global Health Security Index has 11 strata. It should be noted that in order to meet the pre-
viously established criteria for GVF and TAI, the number of classes is relatively high, indicating 
that the data is highly variable. 

Table 2 shows the descriptive statistics for the estimated SMR/SIR and the Goodness of Fit Sta-
tistics of the distribution models. The goodness-of-fit statistics aims to measure the distance 
between the fitted parametric distribution and the empirical distribution (Delignette-Muller & 
Dutang, 2015), with the purpose of orienting the selection of either the homogeneity or hetero-
geneity model according with the least statistical value. The statistics favor the selection of the 
homogeneity model for SIR and a model with strata for SMR. 

Table 2. Descriptive statistics and Goodness of Fit Statistics for SMR/SIR

Method
SIR SMR

Homogeneity Heterogeneity Homogeneity Heterogeneity

Mean 0.95 1.38 0.66 0.065

St. Dev. 1.12 1.44 1.18 0.09

Skw. 1.71 2.23 2.44 3.83

Kurt. 5.51 8.18 8.62 22.16

K-S 0.11 0.15 0.07 0.08

C-vM 0.09 0.29 0.04 0.04

A-D 0.65 1.57 0.35 0.28

AIC 111.9 153.75 25.7 -189.67

BIC 115.88 157.73 29.68 -185.69

Kolgomorov-Smirnov (K-S); Cramer-von Mises; Anderson-Darling (A-D); Akaike Information Criterion (AIC);  
Bayesian Information Criterion (BIC). 

Figure 3 shows the results of the identification of the probability distribution and the adjusted 
model, with a type Log-Normal adjusted distribution for all cases. It should be noted that in the 
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process of adjustment of the probability of the Log-Normal distribution, the statistics suggested 
by Delignette-Muller y Dutang (Delignette-Muller & Dutang, 2015) for the analysis of the good-
ness of fit of the model indicate a better adjustment when the heterogeneity is defined by the 
strata because in general, the adjusted models have less entropy (AIC and BIC).

Figure 3. Cullen and Frey Graph, Histogram and theoretical densities, Empirical and theoretical CDFs

a) Morbidity with Homogeneity; b) Mortality with Homogeneity; c) Morbidity with Heterogeneity; d) Mortality with Heterogeneity. 

Figure 4 shows the box diagrams of the adjusted and observed models. The models Poisson-Gam-
ma, Marshall’s Global EB Estimator and Marshall’s Local EB, have a similar performance and the 
smaller RMSE was obtained with the Poisson-Gamma Model both in Morbidity (0.01180) and in 
Mortality (0.00134).
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Figure 4. Risk Box Plot Models adjusted for CoViD-19

(a)

(b)

a) Morbidity Risk; b) Mortality Risk. 

This model implies that one key issue is that for this distribution the mean and the variance of Oi  
are supposed to be the same. It is often the case that data are “over-dispersed”, meaning that the 
variance of the data is higher than their mean and the statistical model needs to be expanded. 
This formulation is known as the Poisson-Gamma (PG) model and is structured following a two-
level model (Bivand, Pebesma, & Gomez-Rubio, 2013):



288

Creative Commons Reconocimiento-No Comercial 3.0 e-ISSN 2340-0129

DOI: http://dx.doi.org/10.30827/cuadgeo.v60i1.15492
Andrades-Grassi, J.E. et al. (2021). Spatial analysis of risk of morbidity and mortality by COVID-19… 
Cuadernos Geográficos 60(1), 279-294

In this model, we also consider the relative risk θi as a random variable which is drawn from 
a Gamma distribution with mean v/α and variance v/α2 . Note that now the distribution of Oi  
is conditioned on the value of θi . The posterior expectation of θi is: E[Oi |θi ,Ei] = v + Oi /α + Ei. 
Which can also be expressed as a compromise between the prior mean of the relative risks and  
SMRi or SIRi, so that this is a shrinkage estimator (Bivand, Pebesma, & Gomez-Rubio, 2013):

Two issues should be noted from this estimator. First of all, when Ei is small, as often happens in 
low population areas, a small variation in Oi can produce dramatic changes in the value of SMRi. 
For this reason, according to the previous expectation, the SMRi will have a low weight, as com-
pared to that of the prior mean. Secondly, information is borrowed from all the areas in order to 
construct the posterior estimates given that ν and α are the same for every region. This concept of 
borrowing strength can be modified and extended to take into account a different set of areas or 
neighbours (Bivand, Pebesma, & Gomez-Rubio, 2013). 

Probability maps are a convenient way of representing the significance of the observed values 
(Figure 5), these maps show the probability of a value being higher than the observed data ac-
cording to the assumption we have made about the model. We noted that the Poisson-Gamma 
model was more appropriate in this case due to over-dispersion, and we should try to make infer-
ences based on this model. As expected, the p-values for the Poisson-Gamma model are higher 
because more variability is permitted. Nevertheless, there are still countries of high risk in the 
case of mortality and morbidity such as Libya and Montenegro. It should be considered that this 
model represents the study area except these two countries that had a decreased response of their 
health care system due to war conflicts or due to a lack of effectivity in the stratification of these 
spatial units.

It is important to point out that it seems that the problem pointed by Bivand et al. (Bivand, Pebes-
ma, & Gomez-Rubio, 2013) is not present in this case because the data of the population under 
study does not include areas of low population such as micro-states, indicating that a small vari-
ation in Oi may produce dramatic changes in the value of SMRi. The risk predictions estimated 
from this model are shown in Figure 6 with significantly high rates of morbidity and mortality 
in countries such as Iceland, Ireland, Portugal, Belgium, Israel and Estonia. Due to this vari-
ability it is important to consider the state policies that each country has for pandemic control, 
especially in countries of the European Union which have relatively homogeneous standards in 
their health care systems. Thus each country’s individual state policies during the pandemic must 
generate subtle changes in SMR/SIR. The rapid increase in the cases of COVID-19 has threatened 
the health care systems in many countries. As a result, the affected countries had to consider 
public health strategies achieved through non-pharmaceutical strategies. In general, these strat-
egies have been classified in two categories: i) “mitigation” with the purpose of obtaining herd 
immunity allowing the propagation of virus SARS-CoV-2 among the population and mitigating 
the load of the disease, and ii) “suppression” with the purpose of reducing drastically the rate of 
endogenous transmission within the population (Brett & Rohani, 2020). 
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Figure 5. Poisson-Gamma model response for Morbidity and Mortality of Covid-19. 

 

United Kingdom and countries such as Sweden are promoting “herd immunity” as opposed to 
other European countries. Sweden has avoided “suppression” measures. For Sweden the first con-
cern was if the population or the economy would be able to bear a long shut down or cycles of 
opening and shutting down. The second concern was the impact on the no-COVID cases in a 
scenario in which the population was locked down while the health care systems had to consider 
COVID-19 cases as the priority. This stands out in places such as United Kingdom where health 
specialties such as cancer, heart and organ transplant have reached a difficult situation (Orlowski 
& Goldsmith, 2020). 

These examples show how the country’s individual state policies play a role in the variations of 
risk assessment for morbidity and mortality for COVID-19 in spite of the fact that the health 
care systems of the European countries are relatively homogeneous, possess high standards and 
have an important ability to respond to situations such as this pandemic. Based on these ideas, 
it is important to analyze the state policies in the short, medium and long term in regions where 
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the ability to respond to a pandemic is extremely heterogeneous. An example would be the Latin 
American countries which comprise the most unequal region of the world (CEPAL, 2016) and 
where each country’s ability to respond is extremely heterogeneous. It could be expected that a 
small number of COVID-19 cases could cause a collapse of the health care system which may not 
be appropriate enough for the management of the disease. 

However, these results have to be analyzed with caution because it is possible that not all the cases 
are reported as it is explained in the following: 1) There is a great deal of asymptomatic cases 
which are not diagnosed; 2) The number of tests carried out by country by day are not the same; 
3) The interpretation of the data by country may be highly heterogeneous which would explain 
the results obtained for Libya and Montenegro; 4) The pandemic has not reached an end up to 
the time of the presentation of this paper. Therefore, in this research we must assume that the data 
presented by country is only approximately real and that the Standardized Ratio for Mortality as 
well as for Morbidity may be underestimated and invariant in time. Therefore it is not possible 
to distinguish if the statistical model is effectively estimating the data for SIR and SMR or the 
fluctuations of the quality of the data from each country. There are differences on how the cause 
of death is determined, on the strategies for the tests, what the tests are measuring or detecting 
and the time for the presentation of reports in each country (Modig, Ahlbom, & Matthews, 2020) 
(Okell et al., 2020) .

The results of the tests of Homogeneity of the Relative Risks reject the null hypothesis of the 
homogeneity of the relative risk of COVID-19 (NS 5%), with the exception of Moran’s I for the 
relative risk for morbidity. It can be concluded that there does not exist a cluster defined by mor-
bidity (p-value 0.925), this is in agreement with the characteristics of a pandemic which affects all 
levels and strata of the society (Porta M, 2008). The mortality ratio is also in agreement with the 
expected behavior because the process for this variable must be highly influenced by each coun-
try’s ability to respond, especially in the health care system which was quantified by the Global 
Health Index (John Hopkins Institute, 2020). Kulldorff ’s test (Figure 6), shows that in the case 
of SIR, only Spain is a significant cluster this is related with the results obtained with Moran’s I 
for Morbidity SIR in which the process was characterized as random. It is surprising that coun-
tries like Ukraine, Belarus, Latvia, Lithuania and Estonia comprise a cluster of SMR according 
to Kulldorff ’s test, maybe due to state policies, seasonal climate changes or any other factor not 
considered. It is important to point out that in the analysis of Mortality and Morbidity SMR/SIR, 
Italy nor the United Kingdom appear as countries with high numbers of deaths by COVID-19. 
The results of Italy may possibly be due to the fact that the pandemic was centered in the region 
of Lombardy and its epidemiologic focus was relatively regional, another reason is that possibly 
the Mortality and Morbidity SMR/SIR are diluted in the country’s spatial unit. 
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Figure 6. Results of the Kulldorff test

(a) (b)

a) SIR Morbidity; b) SMR Mortality.

4.  Conclusions and Recommendations
This analysis presents a preliminary approximation of the behavior of mortality and morbidity 
risk of COVID-19 in Europe and the Mediterranean in a ratio format. The conclusion is that the 
risk model is an approximately global process type Poisson-Gamma, expected in a pandemic of 
this nature, which responds in a relatively homogeneous manner in Europe because the health 
care systems of those countries are relatively homogeneous, have high standards and an elevated 
response capacity for epidemics. The variations that were obtained are due to the individual poli-
cies of each country’s government in the short term. It is also important to point out that up to the 
time of the presentation of these results the pandemic has not ended, so the Standardized Ratio 
for Morbidity and Mortality may change. Furthermore, it must be assumed that temporarily, the 
statistic risk process is invariant in time, so there are no temporal changes in the probability dis-
tribution. Thus it is mandatory to perform a spatio-temporal monitoring using risk models for 
the dynamics of behavior of the pandemic in the future. This will give indications on the ability 
of response of each country in time. 

Can we predict the behavior of the risk models for COVID-19 in regions with great inequality? It 
is expected that more complex estimations will be required such as the hierarchical Bayesian dis-
ease risk models because there are countries with heterogeneous long term policies and although 
in the short term the response may be similar, the health care system may collapse with even a 
small number of COVID-19 cases. It is recommended that the process should be evaluated in 
time and that a script be made in a statistical language so that it automizes the processes as the 
morbidity and mortality data become available. 
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