
Dyna, year 79, Nro. 176, pp. 168-174. Medellin, December, 2012. ISSN 0012-7353

AN ALTERNATIVE METHOD FOR THE DESIGN OF TIME-
VARYING FEEDBACK CONTROL SYSTEMS

MÉTODO ALTERNATIVO PARA EL DISEÑO DE SISTEMAS DE
CONTROL RETROALIMENTADOS VARIANTES EN EL TIEMPO

CARLOS GÓMEZ
Electronics Engineer, Universidad Industrial de Santander, car_cl3@hotmail.com

IVÁN AMAYA
 Mechatronics Engineer, Ph.D.(c), Universidad Industrial de Santander, iamaya2@gmail.com

RODRIGO CORREA
Professor, Ph.D., Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, crcorrea@uis.edu.co

Received for review June 4 th, 2012, accepted October 9th, 2012, final version October, 16 th, 2012

ABSTRACT: This article proposes to use a numeric strategy based on a discrete particle swarm optimization algorithm, to solve a problem
related to compensator design in a time-varying feedback control system. At first, it is shown why it is possible to transform a problem of
solving a system of linear Diophantine equations, into an optimization one. Some exemplary problems are shown. High quality solutions,
i.e. in terms of accuracy and precision, were achieved in relatively short computation times.

KEYWORDS: Particle swarm optimization, compensators, time-varying feedback control, optimization.

RESUMEN: El presente artículo propone utilizar una estrategia numérica basada en un algoritmo de optimización metaheurístico de
enjambre de partículas discreto, para resolver un problema de diseño de compensadores en sistemas retroalimentados variantes en el tiempo.
Se demuestra inicialmente como se puede convertir el problema de solución del sistema de ecuaciones Diofánticas lineales resultante en la
solución de un problema de optimización. Se desarrollan ejemplos demostrativos que ilustran la idea principal. Se lograron soluciones de
excelente calidad en cuanto a precisión y exactitud en tiempos de computación relativamente breves.

PALABRAS CLAVE: Enjambre de partículas, compensadores, control realimentado variante en el tiempo, optimización.

1. INTRODUCTION

The study and analysis of Diophantine equations and their
solution approaches, has been an open problem for both,
mathematicians and engineers, who strive to solve them
for a given application. Since the appearance of Hilbert’s
tenth problem, the literature reports several attempts at
proving that it is unsolvable, i.e., that there is no algorithm
that determines if a given polynomial, with integer
coefficients has roots in the integer domain [1], [2]. The
time and effort of the researchers has paid off: it does
not exist. However, instead of meaning the end of a line,
it has reoriented the question, especially in engineering,
to determine if there are other solution approaches, that
without being generic, allow to solve, somehow, “any”
Diophantine equation. Here, several proposals can be
included, by no means being exhaustive, which are
based, for example, on the concepts of state spaces, of
inversion in said spaces and of polynomial approximation,

as well as on algebraic and geometric studies and on the
extension of the well known Euclidean algorithm for the
analysis of data dependence, among several others [3–7].
Likewise, some metaheuristics have been used, such as
genetic algorithms, simulated annealing, particle swarm
optimization and evolutionary computing [8–10]. The
purpose of this paper is to demonstrate how to solve the
Diophantine equation obtained during the design process
of compensators by an optimization strategy, such as the
discrete particle swarm optimization algorithm. Some
examples are presented to illustrate the procedure.

2. Mathematical Foundation

2.1. Solving a Diophantine equation

In principle, a Diophantine problem is the solution of
an equation, or a system of equations, in the integer

Dyna 176, 2012 169

(ℤ) or rational (ℚ) domains, or their generalizations,
such as rings generated over ℤ , or fields over ℚ .
Consequently, a Diophantine equation has the form
𝐹𝐹(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3 … . , 𝑥𝑥𝑛𝑛) = 0 where 𝐹𝐹 is a polynomial with
integer coefficients and whose solution is restricted,
in most cases, to the non-negative integers. A linear
Diophantine equation, with 𝑛𝑛 unknowns, is defined
by eq. (1), where 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛 are known rational,
or integer, numbers, and 𝑥𝑥1, 𝑥𝑥2 , …, 𝑥𝑥𝑛𝑛 are unknowns,
i.e., the numbers that should satisfy them, [11]; is a
known integer.

 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏 (1)

This type of equation is, generally, undetermined and
with more than one unknown. It is important to remark
that it only has a solution if the greatest common divisor
(g.c.d.) of the 𝑎𝑎𝑖𝑖 coefficients, is a divisor of 𝑏𝑏 . In the
case of two unknowns, for example, an equation as
the one shown by eq. (2) appears, where (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) are
known integers, and the solution only exists if the g.c.d.
of 𝑎𝑎 and 𝑏𝑏 is a divisor of 𝑐𝑐 .

 𝑎𝑎 ∗ 𝑥𝑥 + 𝑏𝑏 ∗ 𝑦𝑦 = 𝑐𝑐 (2)

Thus, a general solution can be written, as shown by eq.
(3), where 𝛽𝛽 is an integer, 𝑑𝑑 is an integer which represents
the g.c.d. and (𝑥𝑥0, 𝑦𝑦0) are two particular solutions.

𝑥𝑥 = 𝑥𝑥0 + 𝛽𝛽 ∗
𝑏𝑏
𝑑𝑑

𝑦𝑦 = 𝑦𝑦0 – 𝛽𝛽 ∗
𝑎𝑎
𝑑𝑑

(3)

The traditional approach for this case, even though
others are available, is based on the famous extended
Euclid algorithm [11], [12].

2.2. System of linear Diophantine equations

Consider the system of linear Diophantine equations
over ℤ[𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛] , given by eq. (4).

𝑓𝑓1 = 𝐴𝐴11𝑋𝑋1 + 𝐴𝐴12𝑋𝑋2 +⋯+ 𝐴𝐴1𝑛𝑛𝑋𝑋𝑛𝑛 − 𝐶𝐶1 = 0
𝑓𝑓2 = 𝐴𝐴21𝑋𝑋1 + 𝐴𝐴22𝑋𝑋2 +⋯+ 𝐴𝐴2𝑛𝑛𝑋𝑋𝑛𝑛 − 𝐶𝐶2 = 0

⋮
𝑓𝑓𝑖𝑖 = 𝐴𝐴𝑖𝑖1𝑋𝑋1 + 𝐴𝐴𝑖𝑖2𝑋𝑋2 + ⋯+ 𝐴𝐴𝑖𝑖𝑛𝑛𝑋𝑋𝑛𝑛 − 𝐶𝐶𝑖𝑖 = 0

⋮
𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑛𝑛1𝑋𝑋1 + 𝐴𝐴𝑛𝑛2𝑋𝑋2 +⋯+ 𝐴𝐴𝑛𝑛𝑛𝑛 𝑋𝑋𝑛𝑛 − 𝐶𝐶𝑛𝑛 = 0

 (4)

It is evident that if the solution exists in ℤ, it must also
exist in ℝ. This means that it must comply with the
Roche-Frobenius theorem, which ultimately poses that:

range A = range (A;C)

where A is the coefficient matrix of the system, and
(A;C) is the expanded one. Therefore, in order to find
the solutions in the integer or rational set, each 𝑓𝑓𝑖𝑖
function must comply such that its g.c.d.:

𝑔𝑔. 𝑐𝑐.𝑑𝑑. (𝐴𝐴𝑖𝑖1,𝐴𝐴𝑖𝑖2,⋯ ,𝐴𝐴𝑖𝑖𝑛𝑛)|𝐶𝐶𝑖𝑖 ∀ 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛

This way, complying with these two requirements is a
sufficient condition for the system to have a solution.

2.3. Diophantine equations in control systems

Diophantine equations appear in the design and
synthesis of feedback compensators. According to
Kucera’s review, the Diophantine equation approach
is a transfer function based control theory in which
the transfer functions are viewed and handled as
algebraic objects [13–16].While conceived for linear
finite dimensional time invariant systems, it was
generalized and currently includes some time varying
infinite dimensional and non linear systems. The
approach, in general, is based on the factorization
of transfer functions over an appropriate ring, thus
reducing the mathematical synthesis of control systems
to the solution of linear Diophantine equations in that
ring. More recently, Wu [17], developed a systematic
approach for solving both linear time-varying and time-
invariant Diophantine equations. The pole-placement
in a closed-loop structure using output feedback can be
done by means of solving those equations. The poles
of the overall transfer function are assigned in order
to meet some given performance requirements. The
approach is based on successively reducing the order
of the Diophantine equation using the well known
Euclidean algorithm. A complete explanation of this
strategy is not included here. It can be found in [17].

2.4. Systems of equations and optimization

Consider the equation given in (1). Let 𝑓𝑓:𝕏𝕏 → ℝ be
the function defined by:

Gómez et al170

𝑓𝑓(𝑥𝑥) = �𝑓𝑓𝑖𝑖(𝑥𝑥)2 ; 𝑥𝑥 ∈ 𝕏𝕏
𝒎𝒎

𝒊𝒊=𝟏𝟏

 (5)

𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1. Suppose that the eq. (1) has a solution on
𝕏𝕏 , and let 𝑎𝑎 ∈ 𝕏𝕏 . Therefore:

𝑎𝑎 ∈ 𝕏𝕏∗ if, and only if, 𝑎𝑎 minimizes 𝑓𝑓 , defined by (5).

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓. If 𝑎𝑎 ∈ 𝕏𝕏∗ then 𝑓𝑓𝑖𝑖(𝑎𝑎) = 0 for each 𝑖𝑖 = 1, … ,𝑒𝑒
. Thus, 𝑓𝑓(𝑎𝑎) = 0 and, since 𝑓𝑓(𝑥𝑥) ≥ 0 for every
𝑥𝑥 ∈ 𝕏𝕏 , then 𝑎𝑎 is a minimum for 𝑓𝑓 . Now, if 𝑎𝑎
minimizes 𝑓𝑓 but it does not satisfy equation (1) then
𝑓𝑓(𝑎𝑎) must be positive, since 𝑓𝑓(𝑥𝑥) ≥ 0 for every
𝑥𝑥 ∈ 𝕏𝕏 . Since the system has a solution over 𝕏𝕏 ,
there exists 𝑥𝑥∗ ∈ 𝕏𝕏∗ such that 𝑓𝑓(𝑥𝑥∗) = 0 and 𝑥𝑥∗ ≠ 𝑎𝑎
. Therefore, 𝑓𝑓(𝑥𝑥∗) < 𝑓𝑓(𝑎𝑎) which shows 𝑎𝑎 is not a
minimum for𝑓𝑓 . According to the previous statements,
a problem of finding the roots of a system of non-linear
equations, over a given set 𝕏𝕏 , can be transformed into
an optimization one (minimization for the current case),
with an objective function 𝑓𝑓 built in the way shown
by equation (5) over the same domain (i.e. 𝕏𝕏). It is
important to remark that this set can be of any nature,
as long as it is not empty. In the case of finding the
roots of a Diophantine system, the set 𝕏𝕏 ⊆ ℝ𝑛𝑛 must
guarantee that 𝕏𝕏 ∩ ℤ𝑛𝑛 ≠ ∅ , with ℤ being the set of
integer numbers. In other words, 𝕏𝕏 must contain points
whose coordinates are integers. Another application of
this theorem can be seen in [18], [19].

2.5. The algorithm

The implemented algorithm is built up from various
interconnected blocks and is similar to the structure of
traditional PSO (for real numbers), [20]. A first stage is
given by the random assignation of a swarm of user defined
integers. Any size can be used here. Likewise, the definition
of these values is subject to previous knowledge of the
objective function (fitness), as well as to the presence of
restrictions. Moreover, an initial velocity of zero can be
defined for the particles. After that, the algorithm evaluates,
in the given search space, the objective function. With it,
local and global best values are established, and both, the
velocity and position, of each particle, are reevaluated as
shown below. This procedure is iterative and is repeated
until the convergence criteria are met, or until all solutions in
the search domain are found. An algorithm, considered as a

variant of the traditional PSO, was used during this research.
In the same fashion as PSO, its version for discrete solutions
includes two vectors Xi and Vi , related to the position and
velocity of each particle, for every iteration. The first one
is a vector of random numbers, initially, in a valid solution
interval. The second one can also be a random vector, but
it can be assumed to be zero for the first iteration, in order
to simplify the algorithm. When the problems become
multidimensional, the vectors transform into position and
velocity matrices, since there is a value for each unknown.
Discrete PSO differs from its traditional version in which
the new velocity and position depend on both, an equation
and a decision rule, which chooses between the local and
global best values for the next iteration. Assuming there is a
vector 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2,⋯ ,𝑦𝑦1𝑛𝑛) that allows the transition
between continuous and discrete PSO, and which takes the
value of (-1, 1, or, 0) according to eq. (6), where 𝑔𝑔𝑔𝑔𝑒𝑒 is the
global optimum of the swarm, and 𝑔𝑔𝑒𝑒𝑐𝑐 the local one, [20].

𝑦𝑦𝑖𝑖 = �
 1 if
 −1 if
 0 if
−1 𝑒𝑒 1 if

 Xi = 𝑔𝑔𝑔𝑔𝑒𝑒
Xi = 𝑔𝑔𝑒𝑒𝑐𝑐

 Xi ≠ 𝑔𝑔𝑔𝑔𝑒𝑒 ≠ 𝑔𝑔𝑒𝑒𝑐𝑐
 Xi = 𝑔𝑔𝑔𝑔𝑒𝑒 = 𝑔𝑔𝑒𝑒𝑐𝑐

 (6)

Afterwards, velocity is updated according to eq. (7).

Vi+1 = Vi ∗ w + c1 ∗ r1 ∗ (−1 − yi)
+ c2 ∗ r2 ∗ (1 − yi) (7)

T h e n , t h e d e c i s i o n p a r a m e t e r , v e c t o r
 𝐵𝐵𝑖𝑖 = (𝐵𝐵𝑖𝑖1, 𝐵𝐵𝑖𝑖2,⋯ ,𝐵𝐵𝑖𝑖𝑛𝑛) , is calculated according to
eq. (8).

𝐵𝐵𝑖𝑖 = 𝑦𝑦𝑖𝑖 + Vi+1 (8)

This parameter decides if the next position of the particle
is chosen as the local or global optimum, or if it is chosen
as a random number in the search domain. Thus, position
updating is performed according to eq. (9), where 𝛼𝛼 is
a constant that defines the intensification (new position
equal to the local or global optimum) or diversification
(new position equal to a random number), [9].

𝑋𝑋𝑖𝑖+1 = �
𝑔𝑔𝑔𝑔𝑒𝑒 if 𝐵𝐵𝑖𝑖 > 𝛼𝛼
𝑔𝑔𝑒𝑒𝑐𝑐 if 𝐵𝐵𝑖𝑖 < − 𝛼𝛼

rand int if −𝛼𝛼 ≤ 𝐵𝐵𝑖𝑖 ≤ 𝛼𝛼
� (9)

3. Results and Analysis

This section shows some of the results achieved after
solving two examples, which illustrate the suggested
procedure. A computer with an AMD Turion X2 Dual
Core RM-72 processor, at 2.1 GHz, and with 4 GB of

Dyna 176, 2012 171

RAM memory, was used. For the two examples, the
following parameters were used: w = 0.75, 𝐶𝐶1 = 0.9,
𝐶𝐶2 = 0.2, and, 𝛼𝛼 = 0.5. These values were chosen
based on some preliminary tests and on the information
available in the literature [9], [20].

4.1. Example 1

As a starting point, the same example presented by Wu
in [17] was used. If one wants the control system to have
certain modes, that is, to have its finite poles located at
certain positions, it is necessary to compensate the given
plant so that the closed-loop system has a pre-specified
characteristic polynomial. Thus, the closed-loop control
system has unitary feedback. It is required to define the
compensator, 𝐶𝐶(𝑠𝑠) , as a polynomial which satisfies the
condition that six poles are located at -1. Let the plant be:

G(s) =
𝑠𝑠2 + 𝑠𝑠 + 1

𝑠𝑠3 + 3𝑠𝑠 + 4𝑠𝑠 + 3

In the frequency domain, 𝑠𝑠 , the closed-loop transfer
function is given by eq. (10),

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠) =

𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠)
1 + 𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠)

 (10)

where, 𝑌𝑌(𝑠𝑠) is the output, 𝑅𝑅(𝑠𝑠) is the set point and
𝐶𝐶(𝑠𝑠) and 𝐺𝐺(𝑠𝑠) are defined as,

𝐺𝐺(𝑠𝑠) =

𝐵𝐵(𝑠𝑠)
𝐴𝐴(𝑠𝑠) (11)

𝐶𝐶(𝑠𝑠) =

𝑁𝑁(𝑠𝑠)
𝐷𝐷(𝑠𝑠)

 (12)

After rearranging,

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠) =

𝐵𝐵(𝑠𝑠) ∗ 𝑁𝑁(𝑠𝑠)
𝐵𝐵(𝑠𝑠) ∗ 𝑁𝑁(𝑠𝑠) + 𝐴𝐴(𝑠𝑠) ∗ 𝐷𝐷(𝑠𝑠)

 (13)

And thus, a Diophantine equation can be established as,

𝐷𝐷(𝑠𝑠) ∗ 𝐴𝐴(𝑠𝑠) + 𝑁𝑁(𝑠𝑠) ∗ 𝐵𝐵(𝑠𝑠) = 𝐹𝐹(𝑠𝑠) (14)
If there are six poles at 𝑠𝑠 = −1 , it can be found that
𝐹𝐹(𝑠𝑠) is,

𝐹𝐹(𝑠𝑠) = (𝑠𝑠 + 1)6
= 𝑠𝑠6 + 6𝑠𝑠5 + 15𝑠𝑠4 + 20𝑠𝑠3 + 15𝑠𝑠2 + 6𝑠𝑠 + 1

(15)

Considering the information provided in [17], it is
known that:

 𝐴𝐴(𝑠𝑠) = 𝑠𝑠3 + 3𝑠𝑠2 + 4𝑠𝑠 + 3 (16)
𝐵𝐵(𝑠𝑠) = 𝑠𝑠2 + 𝑠𝑠 + 1 (17)

In this example, it is then required to solve the
Diophantine equation (14) and find 𝐷𝐷(𝑠𝑠) and 𝑁𝑁(𝑠𝑠) ,
given by,

 𝐷𝐷(𝑠𝑠) = 𝑋𝑋1𝑠𝑠3 + 𝑋𝑋2𝑠𝑠2 + 𝑋𝑋3𝑠𝑠 + 𝑋𝑋4 (18)
 𝑁𝑁(𝑠𝑠) = 𝑋𝑋5𝑠𝑠2 + 𝑋𝑋6𝑠𝑠 + 𝑋𝑋7 (19)

The solution, with the modified Euclid algorithm as
appears in [17], is:

𝑋𝑋1 = 1,𝑋𝑋2 = 3,𝑋𝑋3 = 2,
𝑋𝑋4 = 2,𝑋𝑋5 = 0,𝑋𝑋6
= −3,𝑋𝑋7 = −5

Using this solution set, the controller given by eq. (20)
can be implemented.

 𝐶𝐶
(𝑆𝑆) =

−3 ∗ 𝑠𝑠 − 5
𝑠𝑠3 + 3 ∗ 𝑠𝑠2 + 2 ∗ 𝑠𝑠 + 2

 (20)

Now, solving the current example with the proposed
algorithm, equations (15) to (19) are substituted into
the Diophantine equation (eq. (14)), so it is found that,

(𝑋𝑋1) ∗ 𝑠𝑠6 + (3𝑋𝑋1 + 𝑋𝑋2) ∗ 𝑠𝑠5

+(𝑋𝑋1 + 3𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋5) ∗ 𝑠𝑠4

+ �3𝑋𝑋1 + 4𝑋𝑋2 + 3𝑋𝑋3 + 𝑋𝑋4
+𝑋𝑋5 + 𝑋𝑋6

� ∗ 𝑠𝑠3

+ �3𝑋𝑋2 + 4𝑋𝑋3 + 3𝑋𝑋4 + 𝑋𝑋5
+𝑋𝑋6 + 𝑋𝑋7

� ∗ 𝑠𝑠2

+(3𝑋𝑋3 + 4𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋7) ∗ 𝑠𝑠

+(3𝑋𝑋4 + 𝑋𝑋7)

= 𝑠𝑠6 + 6𝑠𝑠5 + 15𝑠𝑠4 + 20𝑠𝑠3

+15𝑠𝑠2 + 6𝑠𝑠 + 1

(21)

Parting from eq. (21), the following system of
Diophantine equations can be established:

𝑋𝑋1 − 1 = 0
3𝑋𝑋1 + 𝑋𝑋2 − 6 = 0
4𝑋𝑋1 + 3𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋5 − 15 = 0
3𝑋𝑋1 + 4𝑋𝑋2 + 3𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 − 20 = 0
3𝑋𝑋2 + 4𝑋𝑋3 + 3𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 + 𝑋𝑋7 − 15 = 0
3𝑋𝑋3 + 4𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋7 − 6 = 0
3𝑋𝑋4 + 𝑋𝑋7 − 1 = 0

(22)

Thus, the objective function given by eq. (23) can be
built.

Gómez et al172

𝐹𝐹(𝑥𝑥) = (𝑋𝑋1 − 1)2 + (3𝑋𝑋1 + 𝑋𝑋2 − 6)2
+(4𝑋𝑋1 + 3𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋5 − 15)2
+(3𝑋𝑋1 + 4𝑋𝑋2 + 3𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 − 20)2
+(3𝑋𝑋2 + 4𝑋𝑋3 + 3𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 + 𝑋𝑋7 − 15)2
+(3𝑋𝑋3 + 4𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋7 − 6)2 + (3𝑋𝑋4 + 𝑋𝑋7 − 1)2

(23)

With it, several simulations were run. This article
reports, as an example, a set of 20 algorithm runs. It
was found that for each repetition, the same answer
was found, even though in different run times and
number of iterations. This means that the results are of
excellent quality, in terms of accuracy and precision.
The minimum convergence time was 102.080 s, for
5961 iterations, whilst the highest one was of 445.080
s, for 22805 iterations. The average time was of 226.575
s, with 12173 iterations on average. Figure 1 shows an
almost linear relation between convergence time and
number of iterations.

Figure 1. Relationship between the convergence time and
the number of iterations

4.2. Example 2

Considering a closed loop control system with unity
feedback, it is required to find the controller, C(s), with
the polynomial method, guaranteeing stability and an
establishing time below 10 s. The closed-loop dominant
pole is located at 𝑠𝑠 = 0.4016. Thus, the plant is:

G(s) = 10𝑠𝑠+3
(𝑠𝑠+1)∗(𝑠𝑠+2)∗(𝑠𝑠+8)

.

The closed-loop transfer function is given by eq. (24).
If there is a dominant pole at s = 0.4016, then,

 𝐹𝐹(𝑠𝑠) = 3𝑠𝑠6 + 37𝑠𝑠5 + 125𝑠𝑠4 +
196𝑠𝑠3 + 166𝑠𝑠2 + 97𝑠𝑠 + 22.

𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠) =

𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠)
1 + 𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠) (24)

As in the previous example, the Diophantine equation
given by (25) is derived. Its solution was found by
expressing 𝐶𝐶(𝑠𝑠) as a function of 𝑁𝑁(𝑠𝑠) and 𝐷𝐷(𝑠𝑠).
Therefore, now the problem resides in finding the
values of 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋7 that satisfy 𝐹𝐹(𝑠𝑠).

 𝐷𝐷(𝑠𝑠) ∗ 𝐴𝐴(𝑠𝑠) + 𝑁𝑁(𝑠𝑠) ∗ 𝐵𝐵(𝑠𝑠) = 𝐹𝐹(𝑠𝑠) (25)

𝐶𝐶(𝑠𝑠) =

𝑋𝑋5𝑠𝑠2 + 𝑋𝑋6𝑠𝑠 + 𝑋𝑋7

𝑋𝑋1𝑠𝑠3 + 𝑋𝑋2𝑠𝑠2 + 𝑋𝑋3𝑠𝑠 + 𝑋𝑋4
 (26)

Using Euclid’s algorithm as proposed in [17], the
solution was found to be:

𝑋𝑋1 = 3,𝑋𝑋2 = 4,𝑋𝑋3 = 3,𝑋𝑋4 = 1

𝑋𝑋5 = 1,𝑋𝑋6 = 1,𝑋𝑋7 = 2
In order to solve the Diophantine equation (25) with
the PSO discrete algorithm, it must be first expanded,
generating:

(𝑋𝑋1𝑠𝑠3 + 𝑋𝑋2𝑠𝑠2 + 𝑋𝑋3𝑠𝑠 + 𝑋𝑋4) ∗ �𝑠𝑠
3 + 3𝑠𝑠2

+4𝑠𝑠 + 3
�

+(𝑋𝑋5𝑠𝑠2 + 𝑋𝑋6𝑠𝑠2 + 𝑋𝑋7𝑠𝑠 + 𝑋𝑋8) ∗ (𝑠𝑠2 + 𝑠𝑠 + 1)
= 3𝑠𝑠6 + 37𝑠𝑠5 + 125𝑠𝑠4 + 196𝑠𝑠3
+166𝑠𝑠2 + 97𝑠𝑠 + 22

(27)

which leads to the system of Diophantine equations
given by (28).

𝑋𝑋1 − 3 = 0
11𝑋𝑋1 + 𝑋𝑋2 − 37 = 0
26𝑋𝑋1 + 11𝑋𝑋2 + 𝑋𝑋3 − 125 = 0
16𝑋𝑋1 + 26𝑋𝑋2 + 11𝑋𝑋3 + 𝑋𝑋4 + 10𝑋𝑋5 − 196 = 0
16𝑋𝑋2 + 26𝑋𝑋3 + 11𝑋𝑋4 + 3𝑋𝑋5 + 10𝑋𝑋6 − 166 = 0
16𝑋𝑋3 + 26𝑋𝑋4 + 3𝑋𝑋6 + 10𝑋𝑋7 − 97 = 0
16𝑋𝑋4 + 3𝑋𝑋7 − 22 = 0

(28)

Now, the objective function can be constructed as:

𝐹𝐹(𝑥𝑥) = (𝑋𝑋1 − 3)2 + (11𝑋𝑋1 + 𝑋𝑋2 − 37)2
+(26𝑋𝑋1 + 11𝑋𝑋2 + 𝑋𝑋3 − 125)2

+ �16𝑋𝑋1 + 26𝑋𝑋2 + 11𝑋𝑋3 + 𝑋𝑋4 + 10𝑋𝑋5
−196 �

2

+ �16𝑋𝑋2 + 26𝑋𝑋3 + 11𝑋𝑋4 + 3𝑋𝑋5 + 10𝑋𝑋6
−166 �

2

+(16𝑋𝑋3 + 26𝑋𝑋4 + 3𝑋𝑋6 + 10𝑋𝑋7 − 97)2
+(16𝑋𝑋4 + 3𝑋𝑋7 − 22)2

(29)

Dyna 176, 2012 173

Several simulations were run, from which 20 of them
are reported in this article. Once again, it was found that
the same answer was always reported, with different
run times and number of iterations. Thus, an excellent
answer quality was also found in this example, which
corresponds to the one provided by Euclid’s algorithm.
The minimum convergence time was 145.032 s for
7001 iterations, while the maximum was of 436.083 s
for 19386 iterations. The average run time was 281.263
s with an average of 12774 iterations. Figure 2 shows
the step response of the plant and the controller. It is
important to remark that it is stable and that it has an
establishing time lower than 10 s, complying with the
initial requirements.

Figure 2. Step response of the controlled system, where
the x-axis represents time [s] and the y-axis represents the

step response amplitude.

5. CONCLUSIONS

Based on two illustrative examples, it was shown
how a discrete PSO algorithm can be used for the
design of compensators in a time-varying feedback
control system. It seems plausible to assume that
this optimization approach is valid, at least for these
examples shown here. The main inconvenience
found using this strategy is the algorithm’s use of
random parameters, which has a definite impact on
the computational time. On the other hand, the main
advantage, in our opinion, is its simplicity and its
straightforward programming.

REFERENCES

[1] Davis, M., Putnam, H. and Robinson, J., The Decision
Problem for Exponential Diophantine Equations, The Annals

of Mathematics, 74, 3, pp. 425–436, 1961.

[2] Matiyasevich, Y. V., Hilbert’s Tenth Problem. MIT
Press, 1993.

[3] Fang, C.-H., A Simple Approach to Solving the
Diophantine Equation, IEEE Transactions on Automatic
Control, 37, 1, pp. 152–155, 1992.

[4] Bonilla, E. M., Figueroa, G. M. and Malabare, M.,
Solving the Diophantine Equation by State Space Inversion
Techniques : An Illustrative Example, Proceedings of the
2006 American Control Conference, pp. 3731–3736, 2006.

[5] Jones, L., A Polynomial Approach to a Diophantine
Problem, Mathematics Magazine, 72, 1, pp. 52–55, 1999.

[6] Mvondo, E. C. B., Cherruault, Y. and Mazza, J.C.,
Computational resolution of Diophantine equations by means
of alpha-dense curves, Kybernetes, 41, 1/2, pp. 51–67, 2012.

[7] Grosslinger, A. and Schuster, S., On Computing Solutions of
Linear Diophantine Equations with One Non-linear Parameter,
2008 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 69–76, 2008.

[8] Abraham, S. and Sanglikar, M., Finding Numerical
Solution to a Diophantine Equation: Simulated Annealing
as a Viable Search Strategy, Proceedings of the International
Conference on Mathematical Sciences, 2, pp. 703–712, 2008.

[9] Abraham, S., Sanyal, S. and Sanglikar, M., Particle
Swarm Optimization Based Diophantine Equation Solver,
ArXiv, pp. 1–15, Mar. 2010.

[10] Smart, N., The Algorithmic Resolution of Diophantine
Equations. Cambridge University Press, , 1998.

[11] Contejean, E., An Efficient Incremental Algorithm
for Solving Systems of Linear Diophantine Equations,
Information and Compuation, 113, pp. 143–172, 1994.

[12] Hanta, V., Solution of Simple Diophantine Equations
by Means of Matlab. [Online]. Available: http://dsp.vscht.
cz/konference_matlab/matlab02/hanta.pdf. [Accessed: 19-
Apr-2012].

[13] Kučera, V., Diophantine equations in control—A
survey, Automatica, 29, 6, pp. 1361–1375, Nov. 1993.

[14] Dostal, P., Bobal, V. and Tomastik, M., Application of
polynomial method in control of time delay systems, 2004
IEEE International Symposium on Computer Aided Control
Systems Design, Taipei, pp. 89–94, 2004.

Gómez et al174

[15] Matusu, R., Prokop, R. and Dlapa, M., Robust control
of temperature in hot-air tunnel, 16th Mediterranean
Conference on Control and Automation, pp. 576–581, Jun.
2008.

[16] Kong, H., Zhou, B. and Zhang, M., A Stein equation
approach for solutions to the Diophantine equations, 2010
Chinese Control and Decision Conference, Xuzhou, pp.
3024–3028, 2010, no. 1.

[17] Wu, S.-H., Time-varying feedback systems design via
Diophantine equation order reduction, Ph.D. Dissertation,
The University of Texas at Arlington, 2007.

[18] Amaya, I., Cruz, J. and Correa, R., Real Roots of
Nonlinear Systems of Equations Through a Metaheuristic
Algorithm, Revista Dyna, 78, 170, pp. 15–23, 2011.

[19] Amaya, I., Cruz, J. and Correa, R., Solution of the
Mathematical Model of a Nonlinear Direct Current Circuit
Using Particle Swarm Optimization, Revista Dyna, 79, 172,
pp. 77–84, 2012.

[20] Jarboui, B., Damak, N., Siarry, P. and Rebai, A., A
combinatorial particle swarm optimization for solving multi-
mode resource-constrained project scheduling problems,
Applied Mathematics and Computation, 195, 1, pp. 299–308,
Jan. 2008.

