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ABSTRACT: This article proposes to use a numeric strategy based on a discrete particle swarm optimization algorithm, to solve a problem 
related to compensator design in a time-varying feedback control system. At first, it is shown why it is possible to transform a problem of 
solving a system of linear Diophantine equations, into an optimization one. Some exemplary problems are shown. High quality solutions, 
i.e. in terms of accuracy and precision, were achieved in relatively short computation times.
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RESUMEN: El presente artículo propone utilizar una estrategia numérica basada en un algoritmo de optimización metaheurístico de 
enjambre de partículas discreto, para resolver un problema de diseño de compensadores en sistemas retroalimentados variantes en el tiempo. 
Se demuestra inicialmente como se puede convertir el problema de solución del sistema de ecuaciones Diofánticas lineales resultante en la 
solución de un problema de optimización. Se desarrollan ejemplos demostrativos que ilustran la idea principal. Se lograron soluciones de 
excelente calidad en cuanto a precisión y exactitud en tiempos de computación relativamente breves.  

PALABRAS CLAVE: Enjambre de partículas, compensadores, control realimentado variante en el tiempo, optimización.

1.  INTRODUCTION 

The study and analysis of Diophantine equations and their 
solution approaches, has been an open problem for both, 
mathematicians and engineers, who strive to solve them 
for a given application. Since the appearance of Hilbert’s 
tenth problem, the literature reports several attempts at 
proving that it is unsolvable, i.e., that there is no algorithm 
that determines if a given polynomial, with integer 
coefficients has roots in the integer domain [1], [2]. The 
time and effort of the researchers has paid off: it does 
not exist. However, instead of meaning the end of a line, 
it has reoriented the question, especially in engineering, 
to determine if there are other solution approaches, that 
without being generic, allow to solve, somehow, “any” 
Diophantine equation. Here, several proposals can be 
included, by no means being exhaustive, which are 
based, for example, on the concepts of state spaces, of 
inversion in said spaces and of polynomial approximation, 

as well as on algebraic and geometric studies and on the 
extension of the well known Euclidean algorithm for the 
analysis of data dependence, among several others [3–7]. 
Likewise, some metaheuristics have been used, such as 
genetic algorithms, simulated annealing, particle swarm 
optimization and evolutionary computing [8–10]. The 
purpose of this paper is to demonstrate how to solve the 
Diophantine equation obtained during the design process 
of compensators by an optimization strategy, such as the 
discrete particle swarm optimization algorithm. Some 
examples are presented to illustrate the procedure.

2.  Mathematical Foundation

2.1.  Solving a Diophantine equation

In principle, a Diophantine problem is the solution of 
an equation, or a system of equations, in the integer     
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( ℤ ) or rational (ℚ ) domains, or their generalizations, 
such as rings generated over ℤ , or fields over ℚ . 
Consequently, a Diophantine equation has the form  
𝐹𝐹(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3 … . , 𝑥𝑥𝑛𝑛) = 0   where 𝐹𝐹  is a polynomial with 
integer coefficients and whose solution is restricted, 
in most cases, to the non-negative integers. A linear 
Diophantine equation, with 𝑛𝑛   unknowns, is defined 
by eq. (1), where 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛  are known rational, 
or integer, numbers, and 𝑥𝑥1, 𝑥𝑥2 , …, 𝑥𝑥𝑛𝑛  are unknowns, 
i.e., the numbers that should satisfy them, [11];  is a 
known integer.

 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛 =  𝑏𝑏 (1)

This type of equation is, generally, undetermined and 
with more than one unknown. It is important to remark 
that it only has a solution if the greatest common divisor 
(g.c.d.) of the 𝑎𝑎𝑖𝑖   coefficients, is a divisor of 𝑏𝑏 . In the 
case of two unknowns, for example, an equation as 
the one shown by eq. (2) appears, where (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)   are 
known integers, and the solution only exists if the g.c.d. 
of 𝑎𝑎  and 𝑏𝑏  is a divisor of 𝑐𝑐 . 

 𝑎𝑎 ∗ 𝑥𝑥 + 𝑏𝑏 ∗ 𝑦𝑦 =  𝑐𝑐 (2)

Thus, a general solution can be written, as shown by eq. 
(3), where 𝛽𝛽  is an integer, 𝑑𝑑  is an integer which represents 
the g.c.d. and (𝑥𝑥0,  𝑦𝑦0)    are two particular solutions.

𝑥𝑥 =  𝑥𝑥0  +  𝛽𝛽 ∗
𝑏𝑏
𝑑𝑑

  

𝑦𝑦 =  𝑦𝑦0 –  𝛽𝛽 ∗
𝑎𝑎
𝑑𝑑

 
(3)

The traditional approach for this case, even though 
others are available, is based on the famous extended 
Euclid algorithm [11], [12].

2.2.  System of linear Diophantine equations

Consider the system of linear Diophantine equations 
over ℤ[𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 ] , given by eq. (4). 

𝑓𝑓1 = 𝐴𝐴11𝑋𝑋1 + 𝐴𝐴12𝑋𝑋2 +⋯+ 𝐴𝐴1𝑛𝑛𝑋𝑋𝑛𝑛 − 𝐶𝐶1 = 0
𝑓𝑓2 = 𝐴𝐴21𝑋𝑋1 + 𝐴𝐴22𝑋𝑋2 +⋯+ 𝐴𝐴2𝑛𝑛𝑋𝑋𝑛𝑛 − 𝐶𝐶2 = 0

⋮
𝑓𝑓𝑖𝑖 = 𝐴𝐴𝑖𝑖1𝑋𝑋1 + 𝐴𝐴𝑖𝑖2𝑋𝑋2 + ⋯+ 𝐴𝐴𝑖𝑖𝑛𝑛𝑋𝑋𝑛𝑛 −  𝐶𝐶𝑖𝑖 = 0

⋮
𝑓𝑓𝑛𝑛 = 𝐴𝐴𝑛𝑛1𝑋𝑋1 + 𝐴𝐴𝑛𝑛2𝑋𝑋2 +⋯+ 𝐴𝐴𝑛𝑛𝑛𝑛 𝑋𝑋𝑛𝑛 − 𝐶𝐶𝑛𝑛 = 0

 (4)

It is evident that if the solution exists in ℤ, it must also 
exist in ℝ. This means that it must comply with the 
Roche-Frobenius theorem, which ultimately poses that:

range A = range (A;C )

where A is the coefficient matrix of the system, and 
(A;C) is the expanded one. Therefore, in order to find 
the solutions in the integer or rational set, each 𝑓𝑓𝑖𝑖   
function must comply such that its g.c.d.:

𝑔𝑔. 𝑐𝑐.𝑑𝑑. (𝐴𝐴𝑖𝑖1,𝐴𝐴𝑖𝑖2,⋯ ,𝐴𝐴𝑖𝑖𝑛𝑛 )|𝐶𝐶𝑖𝑖  ∀ 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 

This way, complying with these two requirements is a 
sufficient condition for the system to have a solution.

2.3.  Diophantine equations in control systems

Diophantine equations appear in the design and 
synthesis of feedback compensators. According to 
Kucera’s review, the Diophantine equation approach 
is a transfer function based control theory in which 
the transfer functions are viewed and handled as 
algebraic objects [13–16].While conceived for linear 
finite dimensional time invariant systems, it was 
generalized and currently includes some time varying 
infinite dimensional and non linear systems. The 
approach, in general, is based on the factorization 
of transfer functions over an appropriate ring, thus 
reducing the mathematical synthesis of control systems 
to the solution of linear Diophantine equations in that 
ring. More recently, Wu [17], developed a systematic 
approach for solving both linear time-varying and time-
invariant Diophantine equations. The pole-placement 
in a closed-loop structure using output feedback can be 
done by means of solving those equations. The poles 
of the overall transfer function are assigned in order 
to meet some given performance requirements. The 
approach is based on successively reducing the order 
of the Diophantine equation using the well known 
Euclidean algorithm. A complete explanation of this 
strategy is not included here. It can be found in [17].

2.4.  Systems of equations and optimization

Consider the equation given in (1).  Let 𝑓𝑓:𝕏𝕏 → ℝ   be 
the function defined by:



Gómez et al170

𝑓𝑓(𝑥𝑥) = �𝑓𝑓𝑖𝑖(𝑥𝑥)2  ;  𝑥𝑥 ∈ 𝕏𝕏   
𝒎𝒎

𝒊𝒊=𝟏𝟏

 (5)

𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1.    Suppose that the eq. (1) has a solution on 
𝕏𝕏 , and let 𝑎𝑎 ∈ 𝕏𝕏 .  Therefore:

𝑎𝑎 ∈ 𝕏𝕏∗ if, and only if, 𝑎𝑎   minimizes 𝑓𝑓 , defined by  (5).

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓.   If 𝑎𝑎 ∈ 𝕏𝕏∗  then 𝑓𝑓𝑖𝑖(𝑎𝑎) = 0   for  each  𝑖𝑖 = 1, … ,𝑒𝑒  
.  Thus, 𝑓𝑓(𝑎𝑎) = 0  and, since 𝑓𝑓(𝑥𝑥) ≥ 0   for every  
𝑥𝑥 ∈ 𝕏𝕏 , then 𝑎𝑎  is a minimum for 𝑓𝑓 . Now, if 𝑎𝑎  
minimizes 𝑓𝑓  but it does not satisfy equation (1) then  
𝑓𝑓(𝑎𝑎)   must be positive, since 𝑓𝑓(𝑥𝑥) ≥ 0   for every 
𝑥𝑥 ∈ 𝕏𝕏 . Since the system has a solution over 𝕏𝕏 , 
there exists 𝑥𝑥∗ ∈ 𝕏𝕏∗ such that 𝑓𝑓(𝑥𝑥∗) = 0  and 𝑥𝑥∗ ≠ 𝑎𝑎 
. Therefore, 𝑓𝑓(𝑥𝑥∗) < 𝑓𝑓(𝑎𝑎)   which shows 𝑎𝑎  is not a 
minimum for𝑓𝑓 . According to the previous statements, 
a problem of finding the roots of a system of non-linear 
equations, over a given set 𝕏𝕏 , can be transformed into 
an optimization one (minimization for the current case), 
with an objective function 𝑓𝑓  built in the way shown 
by equation (5) over the same domain (i.e. 𝕏𝕏 ). It is 
important to remark that this set can be of any nature, 
as long as it is not empty. In the case of finding the 
roots of a Diophantine system, the set 𝕏𝕏 ⊆ ℝ𝑛𝑛    must 
guarantee that 𝕏𝕏 ∩ ℤ𝑛𝑛 ≠ ∅ , with ℤ  being the set of 
integer numbers. In other words, 𝕏𝕏  must contain points 
whose coordinates are integers. Another application of 
this theorem can be seen in [18], [19].

2.5.  The algorithm

The implemented algorithm is built up from various 
interconnected blocks and is similar to the structure of 
traditional PSO (for real numbers), [20]. A first stage is 
given by the random assignation of a swarm of user defined 
integers. Any size can be used here. Likewise, the definition 
of these values is subject to previous knowledge of the 
objective function (fitness), as well as to the presence of 
restrictions. Moreover, an initial velocity of zero can be 
defined for the particles. After that, the algorithm evaluates, 
in the given search space, the objective function. With it, 
local and global best values are established, and both, the 
velocity and position, of each particle, are reevaluated as 
shown below. This procedure is iterative and is repeated 
until the convergence criteria are met, or until all solutions in 
the search domain are found. An algorithm, considered as a 

variant of the traditional PSO, was used during this research. 
In the same fashion as PSO, its version for discrete solutions 
includes two vectors Xi  and Vi , related to the position and 
velocity of each particle, for every iteration. The first one 
is a vector of random numbers, initially, in a valid solution 
interval. The second one can also be a random vector, but 
it can be assumed to be zero for the first iteration, in order 
to  simplify the algorithm. When the problems become 
multidimensional, the vectors transform into position and 
velocity matrices, since there is a value for each unknown. 
Discrete PSO differs from its traditional version in which 
the new velocity and position depend on both, an equation 
and a decision rule, which chooses between the local and 
global best values for the next iteration. Assuming there is a 
vector 𝑦𝑦𝑖𝑖 = (𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2,⋯ ,𝑦𝑦1𝑛𝑛)   that allows the transition 
between continuous and discrete PSO, and which takes the 
value of (-1, 1, or, 0) according to eq. (6), where 𝑔𝑔𝑔𝑔𝑒𝑒   is the 
global optimum of the swarm, and 𝑔𝑔𝑒𝑒𝑐𝑐  the local one, [20].

𝑦𝑦𝑖𝑖 = �
       1           if
   −1           if
       0          if
−1 𝑒𝑒 1      if

  Xi = 𝑔𝑔𝑔𝑔𝑒𝑒 
Xi = 𝑔𝑔𝑒𝑒𝑐𝑐

  Xi ≠ 𝑔𝑔𝑔𝑔𝑒𝑒 ≠ 𝑔𝑔𝑒𝑒𝑐𝑐
   Xi = 𝑔𝑔𝑔𝑔𝑒𝑒 = 𝑔𝑔𝑒𝑒𝑐𝑐

 (6)

Afterwards, velocity is updated according to eq. (7).

Vi+1 = Vi ∗ w + c1 ∗ r1 ∗ (−1 − yi)
+ c2 ∗ r2 ∗ (1 − yi) (7)

T h e n ,  t h e  d e c i s i o n  p a r a m e t e r ,  v e c t o r
 𝐵𝐵𝑖𝑖 = (𝐵𝐵𝑖𝑖1,  𝐵𝐵𝑖𝑖2,⋯ ,𝐵𝐵𝑖𝑖𝑛𝑛 ) , is calculated according to 
eq. (8). 

𝐵𝐵𝑖𝑖 = 𝑦𝑦𝑖𝑖 + Vi+1 (8)

This parameter decides if the next position of the particle 
is chosen as the local or global optimum, or if it is chosen 
as a random number in the search domain. Thus, position 
updating is performed according to eq. (9), where 𝛼𝛼  is 
a constant that defines the intensification (new position 
equal to the local or global optimum) or diversification 
(new position equal to a random number), [9].

𝑋𝑋𝑖𝑖+1  =  �
𝑔𝑔𝑔𝑔𝑒𝑒       if      𝐵𝐵𝑖𝑖  >   𝛼𝛼
𝑔𝑔𝑒𝑒𝑐𝑐         if      𝐵𝐵𝑖𝑖 < − 𝛼𝛼

rand int    if  −𝛼𝛼 ≤ 𝐵𝐵𝑖𝑖 ≤ 𝛼𝛼
� (9)

3.  Results and Analysis

This section shows some of the results achieved after 
solving two examples, which illustrate the suggested 
procedure. A computer with an AMD Turion X2 Dual 
Core RM-72 processor, at 2.1 GHz, and with 4 GB of 
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RAM memory, was used. For the two examples, the 
following parameters were used: w = 0.75, 𝐶𝐶1 = 0.9,     
𝐶𝐶2 = 0.2,   and, 𝛼𝛼 = 0.5.   These values were chosen 
based on some preliminary tests and on the information 
available in the literature [9], [20].  

4.1.  Example 1

As a starting point, the same example presented by Wu 
in [17] was used. If one wants the control system to have 
certain modes, that is, to have its finite poles located at 
certain positions, it is necessary to compensate the given 
plant so that the closed-loop system has a pre-specified 
characteristic polynomial. Thus, the closed-loop control 
system has unitary feedback. It is required to define the 
compensator, 𝐶𝐶(𝑠𝑠) , as a polynomial which satisfies the 
condition that six poles are located at -1. Let the plant be:

G(s)  =
𝑠𝑠2 + 𝑠𝑠 + 1

𝑠𝑠3 + 3𝑠𝑠 + 4𝑠𝑠 + 3
 

In the frequency domain, 𝑠𝑠  , the closed-loop transfer 
function is given by eq. (10),

 

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠) =

𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠)
1 + 𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠)

 (10)

where, 𝑌𝑌(𝑠𝑠)  is the output, 𝑅𝑅(𝑠𝑠)  is the set point and 
𝐶𝐶(𝑠𝑠)  and 𝐺𝐺(𝑠𝑠)   are defined as, 

 
𝐺𝐺(𝑠𝑠) =

𝐵𝐵(𝑠𝑠)
𝐴𝐴(𝑠𝑠) (11)

 
𝐶𝐶(𝑠𝑠) =

𝑁𝑁(𝑠𝑠)
𝐷𝐷(𝑠𝑠)

 (12)

After rearranging, 

 

𝑌𝑌(𝑠𝑠)
𝑅𝑅(𝑠𝑠) =

𝐵𝐵(𝑠𝑠) ∗ 𝑁𝑁(𝑠𝑠)
𝐵𝐵(𝑠𝑠) ∗ 𝑁𝑁(𝑠𝑠) + 𝐴𝐴(𝑠𝑠) ∗ 𝐷𝐷(𝑠𝑠)

 (13)

And thus, a Diophantine equation can be established as,  

𝐷𝐷(𝑠𝑠) ∗ 𝐴𝐴(𝑠𝑠) + 𝑁𝑁(𝑠𝑠) ∗ 𝐵𝐵(𝑠𝑠) = 𝐹𝐹(𝑠𝑠) (14)
If there are six poles at 𝑠𝑠 = −1 , it can be found that 
𝐹𝐹(𝑠𝑠)  is, 

𝐹𝐹(𝑠𝑠) = (𝑠𝑠 + 1)6 
= 𝑠𝑠6 + 6𝑠𝑠5 + 15𝑠𝑠4 + 20𝑠𝑠3 + 15𝑠𝑠2 + 6𝑠𝑠 + 1 

(15)

Considering the information provided in [17], it is 
known that: 

 𝐴𝐴(𝑠𝑠) = 𝑠𝑠3 + 3𝑠𝑠2 + 4𝑠𝑠 + 3 (16)
𝐵𝐵(𝑠𝑠) = 𝑠𝑠2 + 𝑠𝑠 + 1 (17)

In this example, it is then required to solve the 
Diophantine equation (14) and find 𝐷𝐷(𝑠𝑠)  and 𝑁𝑁(𝑠𝑠) , 
given by,

 𝐷𝐷(𝑠𝑠) = 𝑋𝑋1𝑠𝑠3 + 𝑋𝑋2𝑠𝑠2 + 𝑋𝑋3𝑠𝑠 + 𝑋𝑋4 (18)
 𝑁𝑁(𝑠𝑠) = 𝑋𝑋5𝑠𝑠2 + 𝑋𝑋6𝑠𝑠 + 𝑋𝑋7 (19)

The solution, with the modified Euclid algorithm as 
appears in [17], is:

𝑋𝑋1 = 1,𝑋𝑋2 = 3,𝑋𝑋3 = 2,
𝑋𝑋4 = 2,𝑋𝑋5 = 0,𝑋𝑋6
= −3,𝑋𝑋7 = −5 

Using this solution set, the controller given by eq. (20) 
can be implemented. 

 𝐶𝐶
(𝑆𝑆) =

−3 ∗ 𝑠𝑠 − 5
𝑠𝑠3 + 3 ∗ 𝑠𝑠2 + 2 ∗ 𝑠𝑠 + 2

 (20)

Now, solving the current example with the proposed 
algorithm, equations (15) to (19) are substituted into 
the Diophantine equation (eq. (14)), so it is found that, 

(𝑋𝑋1) ∗ 𝑠𝑠6 + (3𝑋𝑋1 + 𝑋𝑋2) ∗ 𝑠𝑠5 

+(𝑋𝑋1 + 3𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋5) ∗ 𝑠𝑠4 

+ �3𝑋𝑋1 + 4𝑋𝑋2 + 3𝑋𝑋3 + 𝑋𝑋4
+𝑋𝑋5 + 𝑋𝑋6

� ∗ 𝑠𝑠3 

+ �3𝑋𝑋2 + 4𝑋𝑋3 + 3𝑋𝑋4 + 𝑋𝑋5
+𝑋𝑋6 + 𝑋𝑋7

� ∗ 𝑠𝑠2 

+(3𝑋𝑋3 + 4𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋7) ∗ 𝑠𝑠 

+(3𝑋𝑋4 + 𝑋𝑋7) 

= 𝑠𝑠6 + 6𝑠𝑠5 + 15𝑠𝑠4 + 20𝑠𝑠3 

+15𝑠𝑠2 + 6𝑠𝑠 + 1 

(21)

Parting from eq. (21), the following system of 
Diophantine equations can be established:

𝑋𝑋1 − 1 = 0 
3𝑋𝑋1 + 𝑋𝑋2 − 6 = 0 
4𝑋𝑋1 + 3𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋5 − 15 = 0 
3𝑋𝑋1 + 4𝑋𝑋2 + 3𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 − 20 = 0 
3𝑋𝑋2 + 4𝑋𝑋3 + 3𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 + 𝑋𝑋7 − 15 = 0 
3𝑋𝑋3 + 4𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋7 − 6 = 0 
3𝑋𝑋4 + 𝑋𝑋7 − 1 = 0 

(22)

Thus, the objective function given by eq. (23) can be 
built. 
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𝐹𝐹(𝑥𝑥) = (𝑋𝑋1 − 1)2 + (3𝑋𝑋1 + 𝑋𝑋2 − 6)2 
+(4𝑋𝑋1 + 3𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋5 − 15)2 
+(3𝑋𝑋1 + 4𝑋𝑋2 + 3𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 − 20)2 
+(3𝑋𝑋2 + 4𝑋𝑋3 + 3𝑋𝑋4 + 𝑋𝑋5 + 𝑋𝑋6 + 𝑋𝑋7 − 15)2 
+(3𝑋𝑋3 + 4𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋7 − 6)2 + (3𝑋𝑋4 + 𝑋𝑋7 − 1)2 

(23)

With it, several simulations were run. This article 
reports, as an example, a set of 20 algorithm runs. It 
was found that for each repetition, the same answer 
was found, even though in different run times and 
number of iterations. This means that the results are of 
excellent quality, in terms of accuracy and precision. 
The minimum convergence time was 102.080 s, for 
5961 iterations, whilst the highest one was of 445.080 
s, for 22805 iterations. The average time was of 226.575 
s, with 12173 iterations on average. Figure 1 shows an 
almost linear relation between convergence time and 
number of iterations. 

Figure 1. Relationship between the convergence time and 
the number of iterations

4.2.  Example 2

Considering a closed loop control system with unity 
feedback, it is required to find the controller, C(s),    with 
the polynomial method, guaranteeing stability and an 
establishing time below 10 s. The closed-loop dominant 
pole is located at 𝑠𝑠 = 0.4016.  Thus, the plant is:

G(s)  = 10𝑠𝑠+3
(𝑠𝑠+1)∗(𝑠𝑠+2)∗(𝑠𝑠+8)

. 

The closed-loop transfer function is given by eq. (24). 
If there is a dominant pole at s = 0.4016,   then,

 𝐹𝐹(𝑠𝑠) = 3𝑠𝑠6 + 37𝑠𝑠5 + 125𝑠𝑠4 +
196𝑠𝑠3 + 166𝑠𝑠2 + 97𝑠𝑠 + 22. 

 
𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠) =

𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠)
1 + 𝐶𝐶(𝑠𝑠) ∗ 𝐺𝐺(𝑠𝑠) (24)

As in the previous example, the Diophantine equation 
given by (25) is derived. Its solution was found by 
expressing 𝐶𝐶(𝑠𝑠)   as a function of 𝑁𝑁(𝑠𝑠)   and 𝐷𝐷(𝑠𝑠).   
Therefore, now the problem resides in finding the 
values of  𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋7  that satisfy 𝐹𝐹(𝑠𝑠).   

 𝐷𝐷(𝑠𝑠) ∗ 𝐴𝐴(𝑠𝑠) + 𝑁𝑁(𝑠𝑠) ∗ 𝐵𝐵(𝑠𝑠) = 𝐹𝐹(𝑠𝑠) (25)

 
𝐶𝐶(𝑠𝑠) =

𝑋𝑋5𝑠𝑠2 + 𝑋𝑋6𝑠𝑠 + 𝑋𝑋7

𝑋𝑋1𝑠𝑠3 + 𝑋𝑋2𝑠𝑠2 + 𝑋𝑋3𝑠𝑠 + 𝑋𝑋4
  (26)

Using Euclid’s algorithm as proposed in [17], the 
solution was found to be:

𝑋𝑋1 = 3,𝑋𝑋2 = 4,𝑋𝑋3 = 3,𝑋𝑋4 = 1 

𝑋𝑋5 = 1,𝑋𝑋6 = 1,𝑋𝑋7 = 2 
In order to solve the Diophantine equation (25) with 
the PSO discrete algorithm, it must be first expanded, 
generating:

(𝑋𝑋1𝑠𝑠3 + 𝑋𝑋2𝑠𝑠2 + 𝑋𝑋3𝑠𝑠 + 𝑋𝑋4) ∗ �𝑠𝑠
3 + 3𝑠𝑠2

+4𝑠𝑠 + 3
� 

+( 𝑋𝑋5𝑠𝑠2 + 𝑋𝑋6𝑠𝑠2 + 𝑋𝑋7𝑠𝑠 + 𝑋𝑋8) ∗ (𝑠𝑠2 + 𝑠𝑠 + 1  )  
= 3𝑠𝑠6 + 37𝑠𝑠5 + 125𝑠𝑠4 + 196𝑠𝑠3 
+166𝑠𝑠2 + 97𝑠𝑠 + 22         

(27)

which leads to the system of Diophantine equations 
given by (28). 

𝑋𝑋1 − 3 = 0  
11𝑋𝑋1 + 𝑋𝑋2 − 37 = 0  
26𝑋𝑋1 + 11𝑋𝑋2 + 𝑋𝑋3 − 125 = 0  
16𝑋𝑋1 + 26𝑋𝑋2 + 11𝑋𝑋3 + 𝑋𝑋4 + 10𝑋𝑋5 − 196 = 0  
16𝑋𝑋2 + 26𝑋𝑋3 + 11𝑋𝑋4 + 3𝑋𝑋5 + 10𝑋𝑋6 − 166 = 0  
16𝑋𝑋3 + 26𝑋𝑋4 + 3𝑋𝑋6 + 10𝑋𝑋7 − 97 = 0  
16𝑋𝑋4 + 3𝑋𝑋7 − 22 = 0 

(28)

Now, the objective function can be constructed as:

𝐹𝐹(𝑥𝑥) = (𝑋𝑋1 − 3)2 + (11𝑋𝑋1 + 𝑋𝑋2 − 37)2 
+(26𝑋𝑋1 + 11𝑋𝑋2 + 𝑋𝑋3 − 125)2 

+ �16𝑋𝑋1 + 26𝑋𝑋2 + 11𝑋𝑋3 + 𝑋𝑋4 + 10𝑋𝑋5
−196 �

2
 

+ �16𝑋𝑋2 + 26𝑋𝑋3 + 11𝑋𝑋4 + 3𝑋𝑋5 + 10𝑋𝑋6
−166 �

2
 

+(16𝑋𝑋3 + 26𝑋𝑋4 + 3𝑋𝑋6 + 10𝑋𝑋7 − 97)2 
+(16𝑋𝑋4 + 3𝑋𝑋7 − 22)2 

(29)
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Several simulations were run, from which 20 of them 
are reported in this article. Once again, it was found that 
the same answer was always reported, with different 
run times and number of iterations. Thus, an excellent 
answer quality was also found in this example, which 
corresponds to the one provided by Euclid’s algorithm. 
The minimum convergence time was 145.032 s for 
7001 iterations, while the maximum was of 436.083 s 
for 19386 iterations. The average run time was 281.263 
s with an average of 12774 iterations. Figure 2 shows 
the step response of the plant and the controller. It is 
important to remark that it is stable and that it has an 
establishing time lower than 10 s, complying with the 
initial requirements.

 

Figure 2. Step response of the controlled system, where 
the x-axis represents time [s] and the y-axis represents the 

step response amplitude.

5.  CONCLUSIONS

Based on two illustrative examples, it was shown 
how a discrete PSO algorithm can be used for the 
design of compensators in a time-varying feedback 
control system. It seems plausible to assume that 
this optimization approach is valid, at least for these 
examples shown here. The main inconvenience 
found using this strategy is the algorithm’s use of 
random parameters, which has a definite impact on 
the computational time. On the other hand, the main 
advantage, in our opinion, is its simplicity and its 
straightforward programming.
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