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Abstract— At present, numerical analysis provides us with 

powerful tools to determine the solution of various problems 

whose mathematical model can be represented by a system of 

linear equations, these tools correspond to a number of direct and 

iterative methods, among which are Carl's method. Gustav Jakob 

Jacobi and the Doolittle and Crout method, which we analyze and 

compare in this document. To do this we will initially explore the 

concepts of conditioning the problem to determine how stable is 

the system from which the model was obtained, until we reach the 

decomposition of LU arrays proposed in the Doolittle and Crout 

method. As a result of the analysis and comparison in this 

document, depending on what is sought when solving a system of 

equations, either very large or small enough for our computer, we 

can choose an approximation that will bring a short-term result 

with an error. Due to the starting point as proposed in the Jacobi 

method, or it is possible to reach a direct result by implementing 

fewer iterations as proposed in the Doolittle and Crout method. 

 

Index Terms— Coefficients, convergence, direct, iterative, 

conditioning number, numerical solution. 

 

 Resumen— En la actualidad el análisis numérico nos brinda 

poderosas herramientas para determinar la solución de diversos  

problemas cuyo modelo matemático  puede ser representado por  

un sistema de ecuaciones lineales, estas herramientas 

corresponden a  un sinnúmero de métodos directos e iterativos 

entre los que se encuentran el método de Carl Gustav Jakob Jacobi  

y el método de Doolittle y Crout los cuales analizamos y 

comparamos en este  documento .Para ello exploraremos 

inicialmente los conceptos de condicionamiento del problema para 

determinar que tan estable es el sistema  de donde se obtuvo el 

modelo ,  hasta llegar a la descomposición de matrices LU 

propuestas en el método de Doolittle y Crout. Como resultado del 

análisis y comparación  en este documento    dependiendo de lo que 

se busque al  resolver un sistema de ecuaciones ya sea de tamaño 

muy grande o lo suficiente pequeño para nuestra computadora, 
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podemos optar por una aproximación que traerá un resultado a 

corto plazo con un error debido al punto de partida tal y como 

como se propone en el método del Jacobi o es posible llegar a un 

resultado directo implementando menor cantidad de iteraciones 

como se propone en el método de Doolittle y Crout. 
 
 Palabras claves— Coeficientes, convergencia, directo, iterativo, 

número de condicionamiento, solución numérica. 

I. INTRODUCTION 

T present we are encountering numerous problems that can 

be solved using a numerical technique, and many of them 

are presented as a system of equations. There are various 

numerical techniques to solve this type, however, before 

solving any problem posed as systems of equations, the 

conditioning number of the matrix should be found, in order to 

determine how stable is the system from which the model was 

obtained [1] [2]. That is why before presenting some common 

methods and others not so much it is intended to initially find 

the conditioning number. To understand the concept of 

Conditioning Number, it is necessary to first consider the types 

of errors that can occur in measurements [3]. 

 

● Error in the measurement estimates.  

● Error in the way the computer is stored.  

● Error due to previous calculations. 

 

Thus, the numerical analysis will seek to design an algorithm 

that is insensitive to such errors, an algorithm that produces a 

response with greater accuracy, and is now called the stable 

algorithm, so we need a good definition of stability. 
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Knowing the conditioning number of the problem, we will 

use an iterative method to find the solution of the system that 

the model represents, comparing these results with a direct 

method of matrix decomposition [4]. 

II. CONDITIONING OF A PROBLEM 

    Each problem can be represented as a function 𝑓(𝑥) of a 

normed space of data and results [5], thus, it is possible to 

analyze the change in the image y  from the modifications in the 

variable x, and how the function is affected as such. 

It is said that for a value in the variable x a problem is well 

conditioned, as long as said value in x produces a relatively 

small modification in the function 𝑓(𝑥).  

On the other hand, a problem will be badly conditioned if for 

small changes in the variable x there is a relatively large change 

in the function 𝑓(𝑥)[6][7]. 
 

We choose the norms of F  ͪ  and F ͫ  and using its 

corresponding induced norm for 𝑓′(𝑥)  we obtain the following 

approximation (1): 

 
||𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)||

||𝑑𝑥||
≈ 𝑓′(𝑥)                                                   (1) 

 

We can observe the ratio between the absolute error and the 

absolute error of the data, which is known by the name of 

absolute conditioning number, so that, if said number has a very 

high value, small modifications in the variable x alter largely 

the solution. 

 

From the relationship of the errors we can obtain of (2) and 

(3): 

 

||𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)||

||𝑓(𝑥)||
≈

||𝑑𝑥||

||𝑥||
∗

||𝑓′(𝑥)||||𝑥||

||𝑓(𝑥)||
                   (2) 

 
||𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)||

||𝑓(𝑥)||

||𝑑𝑥||
||𝑥||

≈
||𝑓′(𝑥)||||𝑥||

||𝑓(𝑥)||
                                 (3) 

 

So the new analysis in the relations takes the name of relative 

conditioning number or simply number of conditioning of the 

problem, which is the number which we will analyze, this 

number measures the sensitivity of the problem and is 

represented by the letter k( x).  

 

From where we can conclude that: 

 

 If k (x) is a small number (close to 1), it raises a ratio 

of small relative errors, where the errors of the data 

produce small relative errors in the solution, and, 

therefore, the problem is well conditioned. 

 

 If k (x) is a large number (much larger than 1), it raises 

a relative error ratio, where relatively small errors in 

the data produce a large relative error in the solution, 

producing an ill-conditioned problem. 

It is important to note that the implementation of a 

differentiable function is necessary, which is why another 

feature of condition number that is reduced from function f 

previously stated is required; this procedure, although of low 

complexity, requires large number of calculations [8]. 

 

 However, when we refer to the conditioning number of a 

problem, we are talking about the relative conditioning number, 

so we can put it like this (4): 

 

𝑘(𝑥) =
||𝑥||

||𝑓(𝑥)||
 𝑘′(𝑥)                                                                (4) 

 

The analysis of the conditioning number in problems and 

vectors is necessary to give a correct compression to said 

number in the matrix analysis, which is where we will focus, 

and on which the code is developed in MATLAB [9]. 

 

A. Number of conditioning for the product of matrices and 

vectors. 

For the development of the conditioning number of a matrix 

we can consider the new matrix as a function f(x) given by                 

𝑓 (𝑥)  =  𝑏 =  𝐴𝑥, where A is the square matrix to be analyzed 

and x is a vector 𝑛𝑥1. 

 

Continuing with the previous approach, in (5) and (6) we 

proceed to find the derivative of the function f: 

 

𝑓(𝑥) = 𝐴𝑥 = [∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

]

𝑖=1

𝑚

                                               (5) 

 

𝑓𝑖(𝑥) = ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

                                                                  (6)  

 

Achieving the derivative of the function through of (7) and 

(8) : 

 
𝜕𝑓𝑖

𝜕𝑥𝑗

= 𝑎𝑖𝑗                                                                                        (7) 

𝑓′(𝑥) = 𝐴                                                                                     (8) 
 

Replacing these values in the formula previously proposed 

for the condition number k (x) given in (9): 

 

𝑘 =
||𝑓′(𝑥)|| ||𝑥||

||𝑓(𝑥)||
=

||𝐴||||𝑥||

||𝐴𝑥||
                                              (9) 

 

Where the number k, condition number of the matrix takes a 

value greater than or equal to 1, and the same analysis is 

carried out as for a normal problem; so that: 

 

 If k takes values close to 1, the matrix is well 

conditioned. 
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 If k takes values much greater than 1, the matrix is 

badly conditioned. 

Since matrix A is an invertible matrix, we can conclude that 

the value of x can be represented by the product of the inverse 

of A and A, where we will apply the induced norms of the 

matrix, and its properties, producing (10) and (11):  

 

||𝑘(𝑥)|| = ||𝐴−1𝐴𝑥|| ≤ ||𝐴−1||||𝐴||                                (10) 

 

𝑘 = ||𝐴−1|| ∗ ||𝐴||                                                            (11)                        

 

The condition number of matrix A is represented in the same 

way by the letter k, and is denoted as k(A), (cond (A) to 

represent the condition in MATLAB), where the values of k 

determine, as it was already specified above, if the array is well-

conditioned or not. 

 

It can be seen that the condition number of said matrix 

depends directly on the norm of its matrix and the inverse 

matrix, so it is possible to apply different types of norm, which 

will all give us a value in the condition number, without 

However, this number does not present a significant difference 

between the norms. 

 

III. ITERATIVE AND DIRECT METHODS FOR SOLVING LINEAR 

SYSTEMS 

In this section we will expose three transcendental and easy-

to-use methods for solving systems of linear equations; These 

are the Jacobi methods, the Doolittle and Crout method, and the 

Crout method. 

 

A. Jacobi's method  

Jacobi's method seeks through iterations to give an 

approximate solution to a system of equations, which in certain 

cases can become very large and a direct method or could reach 

the solution, if it first gives a very large computational expense 

[10]. The iterative methods can arrive at the answer in an 

infinite interval of iterations, but in a number of iterations it is 

arrived at an approximation that will be considerable if a margin 

of error is established In the area of engineering, you can find a 

variety of linear algebraic problems; and when it is sought to 

solve differential equations numerically, equations with 20,000 

variables can arise in addition to a system of equations of the 

same size [11][12]. 

 

Equation (12) corresponds to a linear equation:   

 

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + … + 𝑎𝑛𝑥𝑛 = 𝑏1                   (12) 
 

Now when we have several equations, we can form a system 

of equations that is written as in (13): 

 

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + 𝑎1,3𝑥3 + 𝑎1,4𝑥4 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1 

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + 𝑎2,3𝑥3 + 𝑎2,4𝑥4 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2 

𝑎3,1𝑥1 + 𝑎3,2𝑥2 + 𝑎3,3𝑥3 + 𝑎3,4𝑥4 + … + 𝑎3,𝑛𝑥𝑛 = 𝑏3       (13) 
     ⋮ ⋮            ⋮ ⋮               ⋮ ⋮               ⋮ ⋮               ⋮ ⋮            ⋮ ⋮     
𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + 𝑎𝑛,3𝑥3 + 𝑎𝑛,4𝑥4 + … + 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛 

 

And in turn a system can be written in its matrix form as in 

(14): 

 

𝑎1,1  𝑎1,2  𝑎1,3  𝑎1,4   …   𝑎1,𝑛 = 𝑏1 

𝑎2,1  𝑎2,2  𝑎2,3  𝑎2,4   …   𝑎2,𝑛 = 𝑏2 

𝑎3,1  𝑎3,2  𝑎3,3  𝑎3,4   …   𝑎3,𝑛 = 𝑏3                                            (14) 
     ⋮ ⋮           ⋮ ⋮             ⋮ ⋮      ⋮ ⋮          ⋮ ⋮     
𝑎𝑛,1  𝑎𝑛,2  𝑎𝑛,3  𝑎𝑛,4   …   𝑎𝑛,𝑛 = 𝑏𝑛 

 

And it can be expressed as 𝐴𝑥 = 𝑏 

 

From these systems, several properties and direct forms can 

be extracted to arrive at the solution, but in an iterative method 

the equivalent formula is x = Tx + c of T is a fixed matrix and 

c is a fixed vector. 

 

We present below the Jacobi Method using the code 

implemented in MATLAB: 

1. clear all 
2. clc 
3. a=input('Enter the coefficient 

matrix:\n '); 

4. b=input('\n Enter the independent 
terms:\n '); 

5. x=input('\n Enter the vector with 

the initial approximations:\n '); 

6. iter=input('\n Enter the maximum 
number of iterations:\n '); 

7. tol=input('\n Enter the tolerance:\n 
'); 

8. % a=[6 -1 2;4 -8 1;-3 4 10]; 
9. % b=[21;5;48]; 
10. % x=[0;0;0]; 

11. % tol=0.00001; 
12. % iter=100; 
13. determinant =det(a);            
14.  
15.  
16.      % we proceed to calculate the 

determinant to know if it has a 

solution 

17. if determinant ==0 
18. disp('The determinant of the matrix 

is zero and you will not have a 

single solution') 

19. return 
20. end 
21. n=length(a);% number of vector 

elements a 

22. % with the line below the matrix is 
created with the diagonal of a 

23. d=diag(diag(a)); 

24. for i=1:n 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clear.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/all.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/det.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/length.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html


Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira 624 

25.     a(i,i)=0;   
26. end 
27. % The matrix is formed without the 

diagonal 

28. T=d^-1*(-a)%T will be the matrix a 
for the negative values and divided 

by the diagonal 

29.   
30. re=max(abs(eig(T))) % calculation 

of the spectral radius that lets me 

know if it converges or diverges 

31. if re>1 
32. disp('Greater Spectral Radio than 

1') 

33. disp(' the method does not 

converge') 

34. return 
35. end 
36. C=d^-1*b % we should do the same 

with the vector of independent 

termsi=0; 

37. err=tol+1; 

38. s=[i,x(1),x(2),x(3),err]; % vector 

that allows me to graph the 

tabledisp('The first column will be 

the iteration and the last column 

will be the error between each 

value obtained') 

39. while err>tol & i<iter 
40.   xi=T*x+C; 
41. err=norm(xi-x); % the difference 

between the value obtained and 

previous 

42. % this step is done to know if you 
have reached an acceptable point 

43. x=xi; 
44. i=i+1; 
45. s(i,1)=i; 
46. for j=2:n+1 

47.     s(i,j)=x(j-1);   
48. end 
49. s(i,j+1)=err; 
50. end 
51. fprintf('\nTABLE:\n'); 

disp(s)% printing of the table 

  

B. Doolittle and Crout method 

This method consists of decomposing matrix A into a lower 

triangular matrix and another upper triangular matrix in such a 

way that when multiplied, the original matrix is obtained, as 

shown in (15). 

 

𝐴 = 𝐿 ∗ 𝑈                                                                                      (15) 
 

Where A is the original matrix, L is the lower matrix and U is 

the upper matrix. 

  

The method of Doolittle and Crout differ in a diagonal with 

ones (1s), that is, in the lower triangular diagonal it will be filled 

with ones (1s) and this will be the Doolittle method and if the 

superior triangular diagonal matrix has ones (1s), this will be 

the Crout method.  

 

The difference of finding the respective 𝑙𝑖𝑗  and 𝑢𝑖𝑗 of each 

method does not very much, they are similar and will be 

explained later.  

 

The representation of A = LU by the Doolitle method is 𝑙𝑖𝑖 =

1 

 

𝐴 = (1 0 0  𝑙21 1 0 𝑙31 𝑙32 1     ⋯  0 ⋯  0 ⋯  0  ⋮ ⋮ 
⋮  𝑙𝑖1 𝑙𝑖2 𝑙𝑖3      ⋱ 
⋮  ⋯  1  )(𝑢11  𝑢12 𝑢13 0 𝑢22 𝑢23 0 0 𝑢33      ⋯ 𝑢1𝑗  ⋯ 𝑢2𝑗  ⋯ 𝑢3𝑗   

⋮ ⋮ ⋮  0 0 0              ⋱ ⋮  ⋯ 𝑢𝑖𝑖   ) 

 

Where A is  

 

𝐴 = (𝑎11 𝑎12 𝑎13 𝑎21 𝑎22 𝑎23       ⋯ 𝑎1𝑗  ⋯ 𝑎𝑖𝑗  ⋯ 𝑎𝑖𝑗   ⋮ ⋮ 

⋮  𝑎𝑖1 𝑎𝑖2 𝑎𝑖3     ⋱ ⋮  ⋯ 𝑎𝑖𝑗   ) 

 

To determine the coefficients of L and U as a function of 

those of A, it is enough to multiply the matrices and compare 

them with the coefficients of A, taking the first row of L and 

multiplying by the first column of U the result of each 

coefficient of the first row of A If you multiply the entire row 

of L by each and every one of the columns of U remembering 

that the first position of L is 1 

 

𝑢1𝑗 = 𝑎1𝑗             1 ≤ 𝑗 ≤ 𝑛. 

 

Proceeding in the same way we multiply all the rows of L by 

the first column of U, we obtain 

 

𝑙𝑖1𝑢11 = 𝑎𝑖1     →        𝑙𝑖1 =
𝑎𝑖1

𝑢11

=
𝑎𝑖1

𝑎11

,          2 ≤ 𝑖 ≤ 𝑛 

 

This is where the method to calculate the 𝑙𝑖2 becomes 

interesting since it will be necessary to calculate first those of 

the first row, to operate in the same way with the second row of 

L for the column of U and to add both results and we will obtain 

We multiply the second row of L by the columns of U with the 

above already calculated. 

 

𝑙𝑗1𝑢𝑗1 + 𝑢2𝑗 = 𝑎2𝑗     →         𝑢2𝑗 = 𝑎2𝑗 − 𝑙𝑗1 𝑢1𝑗

= 𝑎2𝑗 −
 𝑎𝑗1

 𝑎11

𝑎1𝑗         2 ≤ 𝑗 ≤ 𝑛 

 

These equations will be used to perform meticulous 

operations with MATLAB or by hand . For this next part, it is 

observed that initially the first two rows must be calculated and 

then the missing rows can be calculated as follows: 

 

Multiplying the rows of L by the second U columns 

 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/max.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/abs.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eig.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/norm.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/j.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/j.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/j.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fprintf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
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𝑙𝑖1𝑢1𝑖 + 𝑙𝑖2𝑢2𝑖 = 𝑎𝑖2       →        𝑙𝑖1

=
1

𝑢2𝑖

(𝑎𝑖2 − 𝑙𝑖1𝑢1𝑖)                3 ≤ 𝑖 ≤ 𝑛 

 

And so, we can continue calculating the coefficients of U and 

L step by step, filling some rows at the same time and other 

columns in the same way, obtaining the following equation to 

calculate each coefficient: 

 

𝑢𝑖𝑗 = 𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑖−1

𝑘=1

, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 

𝑙𝑖𝑗 =
1

𝑢𝑗𝑗

(𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑗−1

𝑘=1

)  1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 − 1 

 

For a good handling of the two equations one should start 

first with row i of U and then pass for column j of L 

 

We present below the Doolittle and Crout Method through 

the code implemented in MATLAB. 

1. clc 

2. clear 

3. fprintf('factoring LU 

Doolitle\n\n\n'); 

4. % A=input(' Enter the matrix A = 

\n'); 

5. % b=input('\n Enter the vector b, 

correspond to the independent terms 

b=\n'); 

6. A=[6 -1 2;4 -8 1;-3 4 10]; 

7. b=[21;5;48]; 

8. [n,m]=size(A); % it is necessary 
that the matrix be squared and the 

rows in n and the columns in m 

9. if n==m     % we assure that if the 
matrix is square    for k=1:n 

10.         L(k,k)=1; % the lower matrix 
has ones on the diagonal 

11.         sum=0; 
12.         for p=1:k-1           % the 

positions of the diagonal U 

seran (A(k,k)-s) where s is the sum 

and multiplication of the position 

Lij*Uji 

13.             sum=sum+L(k,p)*u(p,k); 
14.         end 

15.         u(k,k)=(A(k,k)-
sum);         % diagonal of U 

16.         
17.         % we started to assemble L 

by columns 

18.         for i=k+1:n       
19.             sum=0; 

20.             for r=1:k-1 
21.                 sum=suma+L(i,r)*u(r,

k); 

22.             end 

23.             L(i,k)=(A(i,k)-
sum)/u(k,k);    % the positions of L 

are the decomposition or subtraction 

by gauss and the division of the 

diagonal of U        end 

24.         
25.         for j=k+1:n 
26.             sum=0; 
27.             for s=1:k-1 
28.                 sum=suma+L(k,s)*u(s,

j); 

29.             end 
30.             u(k,j)=(A(k,j)-suma); % 

The matrix U is armed by rows for 

ease        end 

31.     end   
32. %     already decomposed to matrix A 

in L and U respectively% it is 

necessary to know that the 

determinant of A that is the same as 

LU is not 

33. % 0 cero 
34.     mu=1; % for the determinant of U 

35.     mL=1;% this is the determinant 
of L    for i=1:n      % we multiply 
the elements of the diagonal of 

U        mu=mu*u(i,i); 

36.     end 
37.    product =mL*mu;  % calculation of 

the determinte 

38. %     L*b'= b is different from this 
b by the decomposition and the 

result is%     keep in z   if 

producto~=0 

39.        for i=1:n       % this for 
will be to assemble vector b with 

the operations that were done to 

decompose A 

40.            sum=0; 
41.            for p=1:i-1 
42.                sum=sum+L(i,p)*z(p); 

43.            End 
44.            z(i)=(b(i)-sum)/L(i,i); % 

obtaining the vector Z which will be 

b as if it had been done with the 

augmented matrix 

45.        end 
46. %         U*z= this is what is going 

to be done 

47.        for i=n:-1:1 

48.            sum=0; 
49.            for p=(i+1):n 
50.                Sum 
51.  = sum+u(i,p)*x(p); 
52.            end 
53.            x(i)=(z(i)-sum)/u(i,i); % 

here the results have already 

been       end   

54.    else 
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55.        fprintf('\n The determinant 
is zero and you may have infinite 

solutions or none \n') 

56.    end 
57. end 

58.    fprintf('\n Matrix L:\n') 
59.    disp(L) 
60.    fprintf('\n Matrix U:\n') 
61.    disp(u) 
62.    fprintf('\n the vector Z:\n') 

63.    disp(z) 
64.  fprintf('\n\n The solution of X1 up 

Xn es:\n'); 

65. % a continuation of using a for 
statement, to show the user, 

66. % the results in a more orderly 
manner.for i=1:n 

67.    xi=x(1,i); 
68.    fprintf('\nX%g=',i) 

69.    disp(xi); 

C. Crout method  

The decomposition by the Crout method is distinguished by 

having the diagonal of U, some; its diagonal is composed of 

ones, but its shape does not very much.  

 

The matrix A is as follows: 

● 𝑢𝑖𝑖 = 1 
 

𝐴 = 𝐿𝑈 = (𝑙11 0 0  𝑙21 𝑙22 0 𝑙31 𝑙32 𝑙33      ⋯  0 ⋯  0 ⋯  0  ⋮ ⋮ 
⋮  𝑙𝑖1 𝑙𝑖2 𝑙𝑖3      ⋱ 
⋮  ⋯ 𝑙𝑛𝑛  )(1 𝑢12 𝑢13 0 1 𝑢23 0 0 1     ⋯ 𝑢1𝑗  ⋯ 𝑢2𝑗  ⋯ 𝑢3𝑗   ⋮ 

⋮ ⋮  0 0 0              ⋱ ⋮  ⋯  1  ) 

 

It can be shown that the diagonal of U is unitary and as it was 

done in the previous method, we are going to determine the 

coefficients of U and L that generate those of A For the first 

column of L 

𝑙𝑖1 = 𝑎𝑖1, 1 ≤ 𝑖 ≤ 𝑛, 
 

and the first row of U is also of the form: 

 

𝑙11𝑢1𝑗 = 𝑎1𝑗 , →   𝑢1𝑗 =
𝑎1𝑗

𝑙11

=
𝑎1𝑗

𝑎11

, 2 ≤ 𝑗 ≤ 𝑛 

 

Now if we generalize it as before we can get the following 

expressions 

𝑙𝑖𝑗 = 𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑗−1

𝑘=1

  1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 

𝑢𝑖𝑗 =
1

𝑢𝑖𝑖

(𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑖−1

𝑘=1

), 2 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 

 

We present below the Crout Method through the code 

implemented in MATLAB. 

1. clc 

2. clear 
3. fprintf('                     facto

ring LU Croult\n\n\n'); 

4. A=input('Enter matrix A = \n'); 
5. b=input('\n Enter the vector b, 

corresponding to the independent 

terms b=\n'); 

6.   
7. % A=[6 -1 2;4 -8 1;-3 4 10]; 
8. % b=[21;5;48]; 
9. [n,m]=size(A); % it is necessary 

that the matrix be squared and the 

rows in n and the columns in 

mC=[A,b];  % the matrix will be 

increased 

10. % the matrix C, represents the 

shape of the augmented matrix [Ab] 

11.   

12. fprintf('\n Matrix C, which 

corresponds to the augmented matrix 

[Ab] is = \n'); 

13. disp(C) 
14.   

15. if n==m 
16.     for k=1:n 
17.         u(k,k)=1; % the lower 

matrix has ones on the 

diagonal        sum=0; 

18.         for p=1:k-1   %las 

posiciones de la diagonal U 

seran (A(k,k)-s) where s is the sum 

and multiplication of the position 

Lij*Uji 

19.             suma=suma+L(k,p)*u(p,k)
; 

20.         end 
21.         L(k,k)=(A(k,k)-

suma);    %diagonal de L 

22.         
23.         % here we start to assemble 

L by columns 

24.         for i=k+1:n 
25.             sum=0; 
26.             for r=1:k-1 
27.                 sum=sum+L(i,r)*u(r,

k); 

28.             end 

29.             L(i,k)=(A(i,k)-suma); % 
the positions of L are the 

decomposition or subtraction by 

gauss and the division of the 

diagonal of U 

30.         end 
31.         
32.         for j=k+1:n 
33.             sum=0; 

34.             for s=1:k-1 
35.                 sum=sum+L(k,s)*u(s,

j); 
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36.             end 
37.             u(k,j)=(A(k,j)-

suma)/L(k,k); % The matrix U is 

armed by rows for ease 

38.         end 

39.     end 
40.     %     already decomposed to 

matrix A in L and U respectively 

41. % it is necessary to know that the 
determinant of A that is the same 

as LU is not 

42. % 0 cero 
43.     mu=1; % for the determinant of 

U 

44.     mL=1; % this is the determinant 
of L 

45.     for i=1:n 
46.         mL=mL*L(i,i); 
47. end 
48. product=mL*mu;  % we multiply the 

elements of the diagonal of U 

49. %     L*b'= b is different from 
this b by the decomposition and the 

result is 

50. %     will keep in z 
51.  
52. if product~=0 
53. for i=1:n 

54. sum=0; 
55. for p=1:i-1 
56. sum=sum+L(i,p)*z(p); 
57. end 
58. z(i)=(b(i)-sum)/L(i,i); % obtaining 

the vector Z 

59. end 
60.  
61.  
62. for i=n:-1:1 
63. suma=0; 

64. for p=(i+1):n 
65. sum = sum+u(i,p)*x(p); 
66. end 
67. x(i)=(z(i)-suma)/u(i,i); % here the 

results have already been       end 

68. else 
69. fprintf('\n The determinant is 

equal to zero, therefore the system 

has infinite or no solution \n') 

70. end 

71. fprintf('\n Matrix L:\n') 

72. disp(L) 
73. fprintf('\n Matrix U:\n') 
74. disp(u) 
B   fprintf('\n the vector Z:\n') 

75. disp(z) 

76. fprintf('\n\n The solution of X1 up 
Xn is:\n'); 

77. % then use a for statement, to show 
the user, 

78. % the results in a more orderly 
manner 

79. for i=1:n 
80. xi=x(1,i); 

81. fprintf('\nX%g=',i) 
82. disp(xi); 
83. end 

IV. ANALYSIS AND RESULTS 

In this section the calculation of the conditioning number will 

be made to a very basic model, simply in order to observe how 

this value is obtained. We will also expose a very simple linear 

system which can represent a problem of some kind, which will 

help us to apply the methods set out in the previous section, and 

thus carry out the corresponding analysis and comparison 

between them. 

 

A.  Calculation of the conditioning number 

Suppose we have the model matrix is given by: 

 

𝐴 = [2 3 1 6 4 2 1 1 1 ] 
Then :  

 

𝐴−1 = [−0,3333 0,3333 − 0,3333 0,6666 − 0,1666 
− 0,3333 − 0,3333 − 0,1666 1,6667 ] 

 𝑛𝑜𝑟𝑚(𝐴) = [2 3 1 6 4 2 1 1 1 ] 
● Sum Column  1= 2+6+1 = 9 

● Sum Column 2= 3+4+1= 8 

● Sum Column 3= 1+2+1= 4 

 

So, we can conclude that the norm 1 of the matrix A, such 

that, norm (A, 1) is equal to 9. 

 

𝑛𝑜𝑟𝑚(𝐴−1) = [−0,3333 0,3333 − 0,3333 0,6666 
− 0,1666 − 0,3333 − 0,3333 
− 0,1666 1,6667 ] 

● Sum Column 1= |-0,333|+0,666+|-0,3333| = 1,333 

● Sum Column 2= 0,333+0,1666+0,166= 0,666 

● Sum Column 3= 0,333 + 0,333+ 1,667= 2,333 

 

Then we can conclude that norm 1 of matrix A is equal to 9; 

that is, norm (A, 1) = 9. So, the norm 1 of the inverse of the 

matrix will be: 2,3333. Thus, the condition number of the 

matrix is  

 

𝑐𝑜𝑛𝑑(𝐴, 1) = ||𝐴−1||||𝐴||. = 9 ∗ 2,333 = 20,99996 

 

B.  Jacobi method application 

In the next exercise we will apply the Jacobi Method. Let's 

start from the following system of equations: 

 

6𝑥1 − 𝑥2 + 2𝑥3 = 21, 
4𝑥1 − 8𝑥2 + 𝑥3 = 5 
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−3𝑥1 + 4𝑥2 + 10𝑥3 = 48 
Which we can write in matrix form as: 

 

[ 6 − 1 2 4 − 8 1 − 3 4 10 ][𝑥1 𝑥2 𝑥3 ] = [21 5 48 ] 
 

Calculating the conditioning number as in literal A, we 

obtain the value k = 3.1132. Let us now find the numerical 

solution of this problem, understanding that in an iterative 

method it is necessary to give at the beginning an 

approximation of what the result is believed to be or if it is the 

case, the point (𝑥1, 𝑥2, … , 𝑥𝑛) = (0,0, … , 0). Now, knowing the 

starting point, we will proceed to solve one of the unknowns for 

each equation, in the form: 

 

𝑥1 =     
1

6
(𝑥2 − 2𝑥3 + 21) =

1

6
𝑥2 −

1

3
𝑥3 +

21

6
 

𝑥2 =
1

−8
(−4𝑥1 − 𝑥3 + 5) =

1

2
𝑥1 +

1

8
𝑥3 −

5

8
 

𝑥3 =
1

10
(3𝑥1 − 4𝑥2 + 48) =

3

10
𝑥1 −

2

5
𝑥2 +

48

10
 

 

It is called  [
21

6
 
5

8
 
48

10
 ] as the fixed vector called C 

 

And, 

 

         𝑇 = [0 
1

6
𝑥2  

2𝑥3

6
 
4𝑥1

8
 0 

𝑥3

8
 
3𝑥1

10
 

4𝑥2

10
 0 ] 

 

Identifying who is each variable we will represent the 

equation in its successive form. 

 

𝑥𝑖+1 = 𝑇 ∗ 𝑥𝑖 + 𝐶            𝑖 = 1,2,3 … . 𝑛 

 

Following the example in matrix form would be the first 

approach as follows: 

[𝑥1 𝑥2 𝑥3 ] = [0 
1

6
 
2

6
 
4

8
 0 

1

8
 

3

10
 

4

10
 0 ][0 0 0 ] + [

21

6
 
5

8
 
48

10
 ] 

 

𝑥1 = 3.5    𝑥2 = −0.625   𝑥3 = 4.8 
 

The next iteration would look like this: 

 

[𝑥1 𝑥2 𝑥3 ] = [0 
1

6
 
2

6
 
4

8
 0 

1

8
 

3

10
 

4

10
 0 ][3.5 − 0.625 4.8 ]

+ [
21

6
 
5

8
 
48

10
 ] 

 

𝑥1 = 1.7958    𝑥2 = 1.725   𝑥3 = 6.1 

 

C. Doolittle and Crout method application 

In the following exercise we will apply the Doolittle and 

Crout method to the same system of equations solved by the 

Jacobi method in literal B: 

 

Let's start from the following system of equations already 

written in matrix form: 

 

[ 6  − 1     2  4  − 8     1 − 3      4     10 ][𝑥1 𝑥2 𝑥3 ]
= [21 5 48 ] 

 

Where: 

 

𝐴 = [6  − 1  2 4  − 8 1 − 3   4 10 ] 
 

Now we proceed to do 𝐴 = 𝐿𝑈 

 

 

𝐿 = (1 0 0 𝑙21 1 0 𝑙31 𝑙32 1 )        𝑈
= (6 − 1 2 0 𝑢22 𝑢23 0 0 𝑢33 ) 

 

● 𝑙21 =
𝑎21

𝑎11
=

4

6
≈ 0.6667 

 

● 𝑙31 =
𝑎31

𝑎11
=

−3

6
= −0.5 

 

● 𝑢22 = 𝑎22 − ∑1
𝑘=1 𝑙2𝑘𝑢𝑘2 = 𝑎22 − (𝑙21𝑢12) =

−8 − (
4

6
∗ −1) = −

22

3
≈ −7.3333 

 

● 𝑢23 = 𝑎23 − ∑1
𝑘=1 𝑙2𝑘𝑢𝑘3 = 𝑎23 − (𝑙21𝑢13) =

1 − (
4

6
∗ 2) = −

1

3
≈ −0.3333 

 

● 𝑙32 =
1

𝑢22
(𝑎32 − ∑1

𝑘=1 𝑙3𝑘𝑢𝑘2) =
1

𝑢22
(𝑎32 −

(𝑙31𝑢12)) =
1

−7.333
(4 − (−0.5 ∗ −1)) = −

21

44
≈

−0.4773 

 

● 𝑢33 = 𝑎33 − ∑2
𝑘=1 𝑙3𝑘𝑢𝑘3 = 𝑎33 − (𝑙31𝑢13 +

𝑙32𝑢23) = 10 − (−
1

2
∗ 2 + (−

21

44
∗ −

1

3
)) =

477

44
≈

10.8409 

 

Already having the coefficients of the matrices is proceeded to 

replace in each 

 

𝐿 = (1 0 0 
4

6
 1 0 −

1

2
 −

21

44
 1 )       𝑈

= (6 − 1 2 0 −
22

3
 −

1

3
 0 0 

477

44
 ) 

 

With the matrix already decomposed in L and U we can 

proceed to calculate the value of the unknowns with the 

following method or formula 

 

𝐿𝑧 = 𝑏, 𝑈𝑥 = 𝑧 
 

As the systems are staggered, it can be solved by substitution 

forward or backward according to the case  

 

𝐿𝑧 = (1 0 0 
4

6
 1 0 −

1

2
 −

21

44
 1 ) (𝑧1 𝑧2 𝑧3 ) = (21 5 48 )      

 

Where:  

● 𝑧1 = 21 

● 𝑧2 = 5 −
4

6
𝑧1 = −9 
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● 𝑧3 = 48 +
21

44
𝑧2 +

1

2
𝑧1 =

2385

44
≈ 54.2045 

 

Now with the values of z we can calculate the value of the 

unknowns in the following way: 

 

𝑈𝑥 = (6 − 1 2 0 −
22

3
 −

1

3
 0 0 

477

44
 )(𝑥1 𝑥2 𝑥3 )

= (21 − 9 
2385

44
 ) 

Where: 

 

● 𝑥3 =
2385

44
∗

44

477
= 5 

 

● 𝑥2 = −
3

22
(−9 +

1

3
𝑥3) = 1 

 

● 𝑥1 =
1

6
(21 + 𝑥2 − 2𝑧3) = 2 

 

The method is direct and computationally has a lower cost 

than other methods of elimination. 

V. CONCLUSIONS. 

We can see that depending on the need to solve a system of 

equations either very large or small enough for our computer, 

we can opt for an approximation that will bring a short-term 

result with an error due to the starting point as proposed in the 

Jacobi method it is possible to arrive at a direct result by 

implementing a smaller number of iterations as proposed in the 

Doolittle and Crout method. 

In necessary the use of non-singular square matrices, because 

the process studied to find the condition number requires the 

inverse of the matrix. 

A non-singular matrix can be close to the set of singular 

matrices; and be well conditioned. If the elements of A are very 

small in absolute value. 

On the other hand, if the inverse of the matrix has large 

values in their absolute value, it is unlikely that this matrix is 

well conditioned. 

The condition number of a matrix gives us an idea of whether 

its columns are linearly independent or not. 

The best conditioned matrix is the unitary matrix, since all its 

singular values are equal to 1, producing a condition number k 

(A) = 1. 
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