
Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira. ISSN 0122-1701 y ISSN-e: 2344-7214

621

Abstract— At present, numerical analysis provides us with

powerful tools to determine the solution of various problems

whose mathematical model can be represented by a system of

linear equations, these tools correspond to a number of direct and

iterative methods, among which are Carl's method. Gustav Jakob

Jacobi and the Doolittle and Crout method, which we analyze and

compare in this document. To do this we will initially explore the

concepts of conditioning the problem to determine how stable is

the system from which the model was obtained, until we reach the

decomposition of LU arrays proposed in the Doolittle and Crout

method. As a result of the analysis and comparison in this

document, depending on what is sought when solving a system of

equations, either very large or small enough for our computer, we

can choose an approximation that will bring a short-term result

with an error. Due to the starting point as proposed in the Jacobi

method, or it is possible to reach a direct result by implementing

fewer iterations as proposed in the Doolittle and Crout method.

Index Terms— Coefficients, convergence, direct, iterative,

conditioning number, numerical solution.

 Resumen— En la actualidad el análisis numérico nos brinda

poderosas herramientas para determinar la solución de diversos

problemas cuyo modelo matemático puede ser representado por

un sistema de ecuaciones lineales, estas herramientas

corresponden a un sinnúmero de métodos directos e iterativos

entre los que se encuentran el método de Carl Gustav Jakob Jacobi

y el método de Doolittle y Crout los cuales analizamos y

comparamos en este documento .Para ello exploraremos

inicialmente los conceptos de condicionamiento del problema para

determinar que tan estable es el sistema de donde se obtuvo el

modelo , hasta llegar a la descomposición de matrices LU

propuestas en el método de Doolittle y Crout. Como resultado del

análisis y comparación en este documento dependiendo de lo que

se busque al resolver un sistema de ecuaciones ya sea de tamaño

muy grande o lo suficiente pequeño para nuestra computadora,

This manuscript was sent on November 28, 2018 and accepted on November

23, 2020.

F. Mesa; D. M. Devia-Narvaez; G. Correa- Velez work as professors of

Basic Faculty, Mathematics department. They all belong to the research group
of GIMAE (femesa@utp.edu.co, dmdevian@utp.edu.co, gecove@utp.edu.co).

podemos optar por una aproximación que traerá un resultado a

corto plazo con un error debido al punto de partida tal y como

como se propone en el método del Jacobi o es posible llegar a un

resultado directo implementando menor cantidad de iteraciones

como se propone en el método de Doolittle y Crout.

 Palabras claves— Coeficientes, convergencia, directo, iterativo,

número de condicionamiento, solución numérica.

I. INTRODUCTION

T present we are encountering numerous problems that can

be solved using a numerical technique, and many of them

are presented as a system of equations. There are various

numerical techniques to solve this type, however, before

solving any problem posed as systems of equations, the

conditioning number of the matrix should be found, in order to

determine how stable is the system from which the model was

obtained [1] [2]. That is why before presenting some common

methods and others not so much it is intended to initially find

the conditioning number. To understand the concept of

Conditioning Number, it is necessary to first consider the types

of errors that can occur in measurements [3].

● Error in the measurement estimates.

● Error in the way the computer is stored.

● Error due to previous calculations.

Thus, the numerical analysis will seek to design an algorithm

that is insensitive to such errors, an algorithm that produces a

response with greater accuracy, and is now called the stable

algorithm, so we need a good definition of stability.

F. Mesa ; D. M. Devia- Narváez ; G. Correa-Vélez
DOI: https://doi.org/10.22517/23447214.24617

Artículo de investigación científica y tecnológica

Analysis of Some Iterative Techniques for

Systems of Linear Equations and Their Study of

the Convergence Through the Number of

Conditioning

Análisis de algunas técnicas iterativas para sistemas de ecuaciones lineales y su

estudio de la convergencia a través del número de condicionamiento

A

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
mailto:femesa@utp.edu.co
mailto:dmdevian@utp.edu.co
https://doi.org/10.22517/23447214.24617
https://orcid.org/0000-0002-3418-5555
https://orcid.org/0000-0002-0447-4663
https://orcid.org/0000-0002-5244-3095

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira 622

Knowing the conditioning number of the problem, we will

use an iterative method to find the solution of the system that

the model represents, comparing these results with a direct

method of matrix decomposition [4].

II. CONDITIONING OF A PROBLEM

 Each problem can be represented as a function 𝑓(𝑥) of a

normed space of data and results [5], thus, it is possible to

analyze the change in the image y from the modifications in the

variable x, and how the function is affected as such.

It is said that for a value in the variable x a problem is well

conditioned, as long as said value in x produces a relatively

small modification in the function 𝑓(𝑥).

On the other hand, a problem will be badly conditioned if for

small changes in the variable x there is a relatively large change

in the function 𝑓(𝑥)[6][7].

We choose the norms of F ͪ and F ͫ and using its

corresponding induced norm for 𝑓′(𝑥) we obtain the following

approximation (1):

||𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)||

||𝑑𝑥||
≈ 𝑓′(𝑥) (1)

We can observe the ratio between the absolute error and the

absolute error of the data, which is known by the name of

absolute conditioning number, so that, if said number has a very

high value, small modifications in the variable x alter largely

the solution.

From the relationship of the errors we can obtain of (2) and

(3):

||𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)||

||𝑓(𝑥)||
≈

||𝑑𝑥||

||𝑥||
∗

||𝑓′(𝑥)||||𝑥||

||𝑓(𝑥)||
 (2)

||𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)||

||𝑓(𝑥)||

||𝑑𝑥||
||𝑥||

≈
||𝑓′(𝑥)||||𝑥||

||𝑓(𝑥)||
 (3)

So the new analysis in the relations takes the name of relative

conditioning number or simply number of conditioning of the

problem, which is the number which we will analyze, this

number measures the sensitivity of the problem and is

represented by the letter k(x).

From where we can conclude that:

 If k (x) is a small number (close to 1), it raises a ratio

of small relative errors, where the errors of the data

produce small relative errors in the solution, and,

therefore, the problem is well conditioned.

 If k (x) is a large number (much larger than 1), it raises

a relative error ratio, where relatively small errors in

the data produce a large relative error in the solution,

producing an ill-conditioned problem.

It is important to note that the implementation of a

differentiable function is necessary, which is why another

feature of condition number that is reduced from function f

previously stated is required; this procedure, although of low

complexity, requires large number of calculations [8].

 However, when we refer to the conditioning number of a

problem, we are talking about the relative conditioning number,

so we can put it like this (4):

𝑘(𝑥) =
||𝑥||

||𝑓(𝑥)||
 𝑘′(𝑥) (4)

The analysis of the conditioning number in problems and

vectors is necessary to give a correct compression to said

number in the matrix analysis, which is where we will focus,

and on which the code is developed in MATLAB [9].

A. Number of conditioning for the product of matrices and

vectors.

For the development of the conditioning number of a matrix

we can consider the new matrix as a function f(x) given by

𝑓 (𝑥) = 𝑏 = 𝐴𝑥, where A is the square matrix to be analyzed

and x is a vector 𝑛𝑥1.

Continuing with the previous approach, in (5) and (6) we

proceed to find the derivative of the function f:

𝑓(𝑥) = 𝐴𝑥 = [∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

]

𝑖=1

𝑚

 (5)

𝑓𝑖(𝑥) = ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 (6)

Achieving the derivative of the function through of (7) and

(8) :

𝜕𝑓𝑖

𝜕𝑥𝑗

= 𝑎𝑖𝑗 (7)

𝑓′(𝑥) = 𝐴 (8)

Replacing these values in the formula previously proposed

for the condition number k (x) given in (9):

𝑘 =
||𝑓′(𝑥)|| ||𝑥||

||𝑓(𝑥)||
=

||𝐴||||𝑥||

||𝐴𝑥||
 (9)

Where the number k, condition number of the matrix takes a

value greater than or equal to 1, and the same analysis is

carried out as for a normal problem; so that:

 If k takes values close to 1, the matrix is well

conditioned.

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira. 623

 If k takes values much greater than 1, the matrix is

badly conditioned.

Since matrix A is an invertible matrix, we can conclude that

the value of x can be represented by the product of the inverse

of A and A, where we will apply the induced norms of the

matrix, and its properties, producing (10) and (11):

||𝑘(𝑥)|| = ||𝐴−1𝐴𝑥|| ≤ ||𝐴−1||||𝐴|| (10)

𝑘 = ||𝐴−1|| ∗ ||𝐴|| (11)

The condition number of matrix A is represented in the same

way by the letter k, and is denoted as k(A), (cond (A) to

represent the condition in MATLAB), where the values of k

determine, as it was already specified above, if the array is well-

conditioned or not.

It can be seen that the condition number of said matrix

depends directly on the norm of its matrix and the inverse

matrix, so it is possible to apply different types of norm, which

will all give us a value in the condition number, without

However, this number does not present a significant difference

between the norms.

III. ITERATIVE AND DIRECT METHODS FOR SOLVING LINEAR

SYSTEMS

In this section we will expose three transcendental and easy-

to-use methods for solving systems of linear equations; These

are the Jacobi methods, the Doolittle and Crout method, and the

Crout method.

A. Jacobi's method

Jacobi's method seeks through iterations to give an

approximate solution to a system of equations, which in certain

cases can become very large and a direct method or could reach

the solution, if it first gives a very large computational expense

[10]. The iterative methods can arrive at the answer in an

infinite interval of iterations, but in a number of iterations it is

arrived at an approximation that will be considerable if a margin

of error is established In the area of engineering, you can find a

variety of linear algebraic problems; and when it is sought to

solve differential equations numerically, equations with 20,000

variables can arise in addition to a system of equations of the

same size [11][12].

Equation (12) corresponds to a linear equation:

𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + … + 𝑎𝑛𝑥𝑛 = 𝑏1 (12)

Now when we have several equations, we can form a system

of equations that is written as in (13):

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + 𝑎1,3𝑥3 + 𝑎1,4𝑥4 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1

𝑎2,1𝑥1 + 𝑎2,2𝑥2 + 𝑎2,3𝑥3 + 𝑎2,4𝑥4 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2

𝑎3,1𝑥1 + 𝑎3,2𝑥2 + 𝑎3,3𝑥3 + 𝑎3,4𝑥4 + … + 𝑎3,𝑛𝑥𝑛 = 𝑏3 (13)
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + 𝑎𝑛,3𝑥3 + 𝑎𝑛,4𝑥4 + … + 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛

And in turn a system can be written in its matrix form as in

(14):

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4 … 𝑎1,𝑛 = 𝑏1

𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4 … 𝑎2,𝑛 = 𝑏2

𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4 … 𝑎3,𝑛 = 𝑏3 (14)
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 𝑎𝑛,4 … 𝑎𝑛,𝑛 = 𝑏𝑛

And it can be expressed as 𝐴𝑥 = 𝑏

From these systems, several properties and direct forms can

be extracted to arrive at the solution, but in an iterative method

the equivalent formula is x = Tx + c of T is a fixed matrix and

c is a fixed vector.

We present below the Jacobi Method using the code

implemented in MATLAB:

1. clear all
2. clc
3. a=input('Enter the coefficient

matrix:\n ');

4. b=input('\n Enter the independent
terms:\n ');

5. x=input('\n Enter the vector with

the initial approximations:\n ');

6. iter=input('\n Enter the maximum
number of iterations:\n ');

7. tol=input('\n Enter the tolerance:\n
');

8. % a=[6 -1 2;4 -8 1;-3 4 10];
9. % b=[21;5;48];
10. % x=[0;0;0];

11. % tol=0.00001;
12. % iter=100;
13. determinant =det(a);
14.
15.
16. % we proceed to calculate the

determinant to know if it has a

solution

17. if determinant ==0
18. disp('The determinant of the matrix

is zero and you will not have a

single solution')

19. return
20. end
21. n=length(a);% number of vector

elements a

22. % with the line below the matrix is
created with the diagonal of a

23. d=diag(diag(a));

24. for i=1:n

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clear.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/all.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/input.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/det.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/length.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diag.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira 624

25. a(i,i)=0;
26. end
27. % The matrix is formed without the

diagonal

28. T=d^-1*(-a)%T will be the matrix a
for the negative values and divided

by the diagonal

29.
30. re=max(abs(eig(T))) % calculation

of the spectral radius that lets me

know if it converges or diverges

31. if re>1
32. disp('Greater Spectral Radio than

1')

33. disp(' the method does not

converge')

34. return
35. end
36. C=d^-1*b % we should do the same

with the vector of independent

termsi=0;

37. err=tol+1;

38. s=[i,x(1),x(2),x(3),err]; % vector

that allows me to graph the

tabledisp('The first column will be

the iteration and the last column

will be the error between each

value obtained')

39. while err>tol & i<iter
40. xi=T*x+C;
41. err=norm(xi-x); % the difference

between the value obtained and

previous

42. % this step is done to know if you
have reached an acceptable point

43. x=xi;
44. i=i+1;
45. s(i,1)=i;
46. for j=2:n+1

47. s(i,j)=x(j-1);
48. end
49. s(i,j+1)=err;
50. end
51. fprintf('\nTABLE:\n');

disp(s)% printing of the table

B. Doolittle and Crout method

This method consists of decomposing matrix A into a lower

triangular matrix and another upper triangular matrix in such a

way that when multiplied, the original matrix is obtained, as

shown in (15).

𝐴 = 𝐿 ∗ 𝑈 (15)

Where A is the original matrix, L is the lower matrix and U is

the upper matrix.

The method of Doolittle and Crout differ in a diagonal with

ones (1s), that is, in the lower triangular diagonal it will be filled

with ones (1s) and this will be the Doolittle method and if the

superior triangular diagonal matrix has ones (1s), this will be

the Crout method.

The difference of finding the respective 𝑙𝑖𝑗 and 𝑢𝑖𝑗 of each

method does not very much, they are similar and will be

explained later.

The representation of A = LU by the Doolitle method is 𝑙𝑖𝑖 =

1

𝐴 = (1 0 0 𝑙21 1 0 𝑙31 𝑙32 1 ⋯ 0 ⋯ 0 ⋯ 0 ⋮ ⋮
⋮ 𝑙𝑖1 𝑙𝑖2 𝑙𝑖3 ⋱
⋮ ⋯ 1)(𝑢11 𝑢12 𝑢13 0 𝑢22 𝑢23 0 0 𝑢33 ⋯ 𝑢1𝑗 ⋯ 𝑢2𝑗 ⋯ 𝑢3𝑗

⋮ ⋮ ⋮ 0 0 0 ⋱ ⋮ ⋯ 𝑢𝑖𝑖)

Where A is

𝐴 = (𝑎11 𝑎12 𝑎13 𝑎21 𝑎22 𝑎23 ⋯ 𝑎1𝑗 ⋯ 𝑎𝑖𝑗 ⋯ 𝑎𝑖𝑗 ⋮ ⋮

⋮ 𝑎𝑖1 𝑎𝑖2 𝑎𝑖3 ⋱ ⋮ ⋯ 𝑎𝑖𝑗)

To determine the coefficients of L and U as a function of

those of A, it is enough to multiply the matrices and compare

them with the coefficients of A, taking the first row of L and

multiplying by the first column of U the result of each

coefficient of the first row of A If you multiply the entire row

of L by each and every one of the columns of U remembering

that the first position of L is 1

𝑢1𝑗 = 𝑎1𝑗 1 ≤ 𝑗 ≤ 𝑛.

Proceeding in the same way we multiply all the rows of L by

the first column of U, we obtain

𝑙𝑖1𝑢11 = 𝑎𝑖1 → 𝑙𝑖1 =
𝑎𝑖1

𝑢11

=
𝑎𝑖1

𝑎11

, 2 ≤ 𝑖 ≤ 𝑛

This is where the method to calculate the 𝑙𝑖2 becomes

interesting since it will be necessary to calculate first those of

the first row, to operate in the same way with the second row of

L for the column of U and to add both results and we will obtain

We multiply the second row of L by the columns of U with the

above already calculated.

𝑙𝑗1𝑢𝑗1 + 𝑢2𝑗 = 𝑎2𝑗 → 𝑢2𝑗 = 𝑎2𝑗 − 𝑙𝑗1 𝑢1𝑗

= 𝑎2𝑗 −
 𝑎𝑗1

 𝑎11

𝑎1𝑗 2 ≤ 𝑗 ≤ 𝑛

These equations will be used to perform meticulous

operations with MATLAB or by hand . For this next part, it is

observed that initially the first two rows must be calculated and

then the missing rows can be calculated as follows:

Multiplying the rows of L by the second U columns

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/max.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/abs.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eig.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/norm.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/j.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/j.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/i.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/j.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fprintf.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/disp.html

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira. 625

𝑙𝑖1𝑢1𝑖 + 𝑙𝑖2𝑢2𝑖 = 𝑎𝑖2 → 𝑙𝑖1

=
1

𝑢2𝑖

(𝑎𝑖2 − 𝑙𝑖1𝑢1𝑖) 3 ≤ 𝑖 ≤ 𝑛

And so, we can continue calculating the coefficients of U and

L step by step, filling some rows at the same time and other

columns in the same way, obtaining the following equation to

calculate each coefficient:

𝑢𝑖𝑗 = 𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑖−1

𝑘=1

, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝑙𝑖𝑗 =
1

𝑢𝑗𝑗

(𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑗−1

𝑘=1

) 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛 − 1

For a good handling of the two equations one should start

first with row i of U and then pass for column j of L

We present below the Doolittle and Crout Method through

the code implemented in MATLAB.

1. clc

2. clear

3. fprintf('factoring LU

Doolitle\n\n\n');

4. % A=input(' Enter the matrix A =

\n');

5. % b=input('\n Enter the vector b,

correspond to the independent terms

b=\n');

6. A=[6 -1 2;4 -8 1;-3 4 10];

7. b=[21;5;48];

8. [n,m]=size(A); % it is necessary
that the matrix be squared and the

rows in n and the columns in m

9. if n==m % we assure that if the
matrix is square for k=1:n

10. L(k,k)=1; % the lower matrix
has ones on the diagonal

11. sum=0;
12. for p=1:k-1 % the

positions of the diagonal U

seran (A(k,k)-s) where s is the sum

and multiplication of the position

Lij*Uji

13. sum=sum+L(k,p)*u(p,k);
14. end

15. u(k,k)=(A(k,k)-
sum); % diagonal of U

16.
17. % we started to assemble L

by columns

18. for i=k+1:n
19. sum=0;

20. for r=1:k-1
21. sum=suma+L(i,r)*u(r,

k);

22. end

23. L(i,k)=(A(i,k)-
sum)/u(k,k); % the positions of L

are the decomposition or subtraction

by gauss and the division of the

diagonal of U end

24.
25. for j=k+1:n
26. sum=0;
27. for s=1:k-1
28. sum=suma+L(k,s)*u(s,

j);

29. end
30. u(k,j)=(A(k,j)-suma); %

The matrix U is armed by rows for

ease end

31. end
32. % already decomposed to matrix A

in L and U respectively% it is

necessary to know that the

determinant of A that is the same as

LU is not

33. % 0 cero
34. mu=1; % for the determinant of U

35. mL=1;% this is the determinant
of L for i=1:n % we multiply
the elements of the diagonal of

U mu=mu*u(i,i);

36. end
37. product =mL*mu; % calculation of

the determinte

38. % L*b'= b is different from this
b by the decomposition and the

result is% keep in z if

producto~=0

39. for i=1:n % this for
will be to assemble vector b with

the operations that were done to

decompose A

40. sum=0;
41. for p=1:i-1
42. sum=sum+L(i,p)*z(p);

43. End
44. z(i)=(b(i)-sum)/L(i,i); %

obtaining the vector Z which will be

b as if it had been done with the

augmented matrix

45. end
46. % U*z= this is what is going

to be done

47. for i=n:-1:1

48. sum=0;
49. for p=(i+1):n
50. Sum
51. = sum+u(i,p)*x(p);
52. end
53. x(i)=(z(i)-sum)/u(i,i); %

here the results have already

been end

54. else

http://www.php.net/fprintf
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira 626

55. fprintf('\n The determinant
is zero and you may have infinite

solutions or none \n')

56. end
57. end

58. fprintf('\n Matrix L:\n')
59. disp(L)
60. fprintf('\n Matrix U:\n')
61. disp(u)
62. fprintf('\n the vector Z:\n')

63. disp(z)
64. fprintf('\n\n The solution of X1 up

Xn es:\n');

65. % a continuation of using a for
statement, to show the user,

66. % the results in a more orderly
manner.for i=1:n

67. xi=x(1,i);
68. fprintf('\nX%g=',i)

69. disp(xi);

C. Crout method

The decomposition by the Crout method is distinguished by

having the diagonal of U, some; its diagonal is composed of

ones, but its shape does not very much.

The matrix A is as follows:

● 𝑢𝑖𝑖 = 1

𝐴 = 𝐿𝑈 = (𝑙11 0 0 𝑙21 𝑙22 0 𝑙31 𝑙32 𝑙33 ⋯ 0 ⋯ 0 ⋯ 0 ⋮ ⋮
⋮ 𝑙𝑖1 𝑙𝑖2 𝑙𝑖3 ⋱
⋮ ⋯ 𝑙𝑛𝑛)(1 𝑢12 𝑢13 0 1 𝑢23 0 0 1 ⋯ 𝑢1𝑗 ⋯ 𝑢2𝑗 ⋯ 𝑢3𝑗 ⋮

⋮ ⋮ 0 0 0 ⋱ ⋮ ⋯ 1)

It can be shown that the diagonal of U is unitary and as it was

done in the previous method, we are going to determine the

coefficients of U and L that generate those of A For the first

column of L

𝑙𝑖1 = 𝑎𝑖1, 1 ≤ 𝑖 ≤ 𝑛,

and the first row of U is also of the form:

𝑙11𝑢1𝑗 = 𝑎1𝑗 , → 𝑢1𝑗 =
𝑎1𝑗

𝑙11

=
𝑎1𝑗

𝑎11

, 2 ≤ 𝑗 ≤ 𝑛

Now if we generalize it as before we can get the following

expressions

𝑙𝑖𝑗 = 𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑗−1

𝑘=1

 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛

𝑢𝑖𝑗 =
1

𝑢𝑖𝑖

(𝑎𝑖𝑗 − ∑ 𝑙𝑖𝑘𝑢𝑘𝑗

𝑖−1

𝑘=1

), 2 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛

We present below the Crout Method through the code

implemented in MATLAB.

1. clc

2. clear
3. fprintf(' facto

ring LU Croult\n\n\n');

4. A=input('Enter matrix A = \n');
5. b=input('\n Enter the vector b,

corresponding to the independent

terms b=\n');

6.
7. % A=[6 -1 2;4 -8 1;-3 4 10];
8. % b=[21;5;48];
9. [n,m]=size(A); % it is necessary

that the matrix be squared and the

rows in n and the columns in

mC=[A,b]; % the matrix will be

increased

10. % the matrix C, represents the

shape of the augmented matrix [Ab]

11.

12. fprintf('\n Matrix C, which

corresponds to the augmented matrix

[Ab] is = \n');

13. disp(C)
14.

15. if n==m
16. for k=1:n
17. u(k,k)=1; % the lower

matrix has ones on the

diagonal sum=0;

18. for p=1:k-1 %las

posiciones de la diagonal U

seran (A(k,k)-s) where s is the sum

and multiplication of the position

Lij*Uji

19. suma=suma+L(k,p)*u(p,k)
;

20. end
21. L(k,k)=(A(k,k)-

suma); %diagonal de L

22.
23. % here we start to assemble

L by columns

24. for i=k+1:n
25. sum=0;
26. for r=1:k-1
27. sum=sum+L(i,r)*u(r,

k);

28. end

29. L(i,k)=(A(i,k)-suma); %
the positions of L are the

decomposition or subtraction by

gauss and the division of the

diagonal of U

30. end
31.
32. for j=k+1:n
33. sum=0;

34. for s=1:k-1
35. sum=sum+L(k,s)*u(s,

j);

http://www.php.net/fprintf
http://www.php.net/fprintf
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira. 627

36. end
37. u(k,j)=(A(k,j)-

suma)/L(k,k); % The matrix U is

armed by rows for ease

38. end

39. end
40. % already decomposed to

matrix A in L and U respectively

41. % it is necessary to know that the
determinant of A that is the same

as LU is not

42. % 0 cero
43. mu=1; % for the determinant of

U

44. mL=1; % this is the determinant
of L

45. for i=1:n
46. mL=mL*L(i,i);
47. end
48. product=mL*mu; % we multiply the

elements of the diagonal of U

49. % L*b'= b is different from
this b by the decomposition and the

result is

50. % will keep in z
51.
52. if product~=0
53. for i=1:n

54. sum=0;
55. for p=1:i-1
56. sum=sum+L(i,p)*z(p);
57. end
58. z(i)=(b(i)-sum)/L(i,i); % obtaining

the vector Z

59. end
60.
61.
62. for i=n:-1:1
63. suma=0;

64. for p=(i+1):n
65. sum = sum+u(i,p)*x(p);
66. end
67. x(i)=(z(i)-suma)/u(i,i); % here the

results have already been end

68. else
69. fprintf('\n The determinant is

equal to zero, therefore the system

has infinite or no solution \n')

70. end

71. fprintf('\n Matrix L:\n')

72. disp(L)
73. fprintf('\n Matrix U:\n')
74. disp(u)
B fprintf('\n the vector Z:\n')

75. disp(z)

76. fprintf('\n\n The solution of X1 up
Xn is:\n');

77. % then use a for statement, to show
the user,

78. % the results in a more orderly
manner

79. for i=1:n
80. xi=x(1,i);

81. fprintf('\nX%g=',i)
82. disp(xi);
83. end

IV. ANALYSIS AND RESULTS

In this section the calculation of the conditioning number will

be made to a very basic model, simply in order to observe how

this value is obtained. We will also expose a very simple linear

system which can represent a problem of some kind, which will

help us to apply the methods set out in the previous section, and

thus carry out the corresponding analysis and comparison

between them.

A. Calculation of the conditioning number

Suppose we have the model matrix is given by:

𝐴 = [2 3 1 6 4 2 1 1 1]
Then :

𝐴−1 = [−0,3333 0,3333 − 0,3333 0,6666 − 0,1666
− 0,3333 − 0,3333 − 0,1666 1,6667]

 𝑛𝑜𝑟𝑚(𝐴) = [2 3 1 6 4 2 1 1 1]
● Sum Column 1= 2+6+1 = 9

● Sum Column 2= 3+4+1= 8

● Sum Column 3= 1+2+1= 4

So, we can conclude that the norm 1 of the matrix A, such

that, norm (A, 1) is equal to 9.

𝑛𝑜𝑟𝑚(𝐴−1) = [−0,3333 0,3333 − 0,3333 0,6666
− 0,1666 − 0,3333 − 0,3333
− 0,1666 1,6667]

● Sum Column 1= |-0,333|+0,666+|-0,3333| = 1,333

● Sum Column 2= 0,333+0,1666+0,166= 0,666

● Sum Column 3= 0,333 + 0,333+ 1,667= 2,333

Then we can conclude that norm 1 of matrix A is equal to 9;

that is, norm (A, 1) = 9. So, the norm 1 of the inverse of the

matrix will be: 2,3333. Thus, the condition number of the

matrix is

𝑐𝑜𝑛𝑑(𝐴, 1) = ||𝐴−1||||𝐴||. = 9 ∗ 2,333 = 20,99996

B. Jacobi method application

In the next exercise we will apply the Jacobi Method. Let's

start from the following system of equations:

6𝑥1 − 𝑥2 + 2𝑥3 = 21,
4𝑥1 − 8𝑥2 + 𝑥3 = 5

http://www.php.net/end
http://www.php.net/end
http://www.php.net/end
http://www.php.net/end

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira 628

−3𝑥1 + 4𝑥2 + 10𝑥3 = 48
Which we can write in matrix form as:

[6 − 1 2 4 − 8 1 − 3 4 10][𝑥1 𝑥2 𝑥3] = [21 5 48]

Calculating the conditioning number as in literal A, we

obtain the value k = 3.1132. Let us now find the numerical

solution of this problem, understanding that in an iterative

method it is necessary to give at the beginning an

approximation of what the result is believed to be or if it is the

case, the point (𝑥1, 𝑥2, … , 𝑥𝑛) = (0,0, … , 0). Now, knowing the

starting point, we will proceed to solve one of the unknowns for

each equation, in the form:

𝑥1 =
1

6
(𝑥2 − 2𝑥3 + 21) =

1

6
𝑥2 −

1

3
𝑥3 +

21

6

𝑥2 =
1

−8
(−4𝑥1 − 𝑥3 + 5) =

1

2
𝑥1 +

1

8
𝑥3 −

5

8

𝑥3 =
1

10
(3𝑥1 − 4𝑥2 + 48) =

3

10
𝑥1 −

2

5
𝑥2 +

48

10

It is called [
21

6

5

8

48

10
] as the fixed vector called C

And,

 𝑇 = [0
1

6
𝑥2

2𝑥3

6

4𝑥1

8
 0

𝑥3

8

3𝑥1

10

4𝑥2

10
 0]

Identifying who is each variable we will represent the

equation in its successive form.

𝑥𝑖+1 = 𝑇 ∗ 𝑥𝑖 + 𝐶 𝑖 = 1,2,3 … . 𝑛

Following the example in matrix form would be the first

approach as follows:

[𝑥1 𝑥2 𝑥3] = [0
1

6

2

6

4

8
 0

1

8

3

10

4

10
 0][0 0 0] + [

21

6

5

8

48

10
]

𝑥1 = 3.5 𝑥2 = −0.625 𝑥3 = 4.8

The next iteration would look like this:

[𝑥1 𝑥2 𝑥3] = [0
1

6

2

6

4

8
 0

1

8

3

10

4

10
 0][3.5 − 0.625 4.8]

+ [
21

6

5

8

48

10
]

𝑥1 = 1.7958 𝑥2 = 1.725 𝑥3 = 6.1

C. Doolittle and Crout method application

In the following exercise we will apply the Doolittle and

Crout method to the same system of equations solved by the

Jacobi method in literal B:

Let's start from the following system of equations already

written in matrix form:

[6 − 1 2 4 − 8 1 − 3 4 10][𝑥1 𝑥2 𝑥3]
= [21 5 48]

Where:

𝐴 = [6 − 1 2 4 − 8 1 − 3 4 10]

Now we proceed to do 𝐴 = 𝐿𝑈

𝐿 = (1 0 0 𝑙21 1 0 𝑙31 𝑙32 1) 𝑈
= (6 − 1 2 0 𝑢22 𝑢23 0 0 𝑢33)

● 𝑙21 =
𝑎21

𝑎11
=

4

6
≈ 0.6667

● 𝑙31 =
𝑎31

𝑎11
=

−3

6
= −0.5

● 𝑢22 = 𝑎22 − ∑1
𝑘=1 𝑙2𝑘𝑢𝑘2 = 𝑎22 − (𝑙21𝑢12) =

−8 − (
4

6
∗ −1) = −

22

3
≈ −7.3333

● 𝑢23 = 𝑎23 − ∑1
𝑘=1 𝑙2𝑘𝑢𝑘3 = 𝑎23 − (𝑙21𝑢13) =

1 − (
4

6
∗ 2) = −

1

3
≈ −0.3333

● 𝑙32 =
1

𝑢22
(𝑎32 − ∑1

𝑘=1 𝑙3𝑘𝑢𝑘2) =
1

𝑢22
(𝑎32 −

(𝑙31𝑢12)) =
1

−7.333
(4 − (−0.5 ∗ −1)) = −

21

44
≈

−0.4773

● 𝑢33 = 𝑎33 − ∑2
𝑘=1 𝑙3𝑘𝑢𝑘3 = 𝑎33 − (𝑙31𝑢13 +

𝑙32𝑢23) = 10 − (−
1

2
∗ 2 + (−

21

44
∗ −

1

3
)) =

477

44
≈

10.8409

Already having the coefficients of the matrices is proceeded to

replace in each

𝐿 = (1 0 0
4

6
 1 0 −

1

2
 −

21

44
 1) 𝑈

= (6 − 1 2 0 −
22

3
 −

1

3
 0 0

477

44
)

With the matrix already decomposed in L and U we can

proceed to calculate the value of the unknowns with the

following method or formula

𝐿𝑧 = 𝑏, 𝑈𝑥 = 𝑧

As the systems are staggered, it can be solved by substitution

forward or backward according to the case

𝐿𝑧 = (1 0 0
4

6
 1 0 −

1

2
 −

21

44
 1) (𝑧1 𝑧2 𝑧3) = (21 5 48)

Where:

● 𝑧1 = 21

● 𝑧2 = 5 −
4

6
𝑧1 = −9

Scientia et Technica Año XXV, Vol. 25, No. 04, diciembre de 2020. Universidad Tecnológica de Pereira. 629

● 𝑧3 = 48 +
21

44
𝑧2 +

1

2
𝑧1 =

2385

44
≈ 54.2045

Now with the values of z we can calculate the value of the

unknowns in the following way:

𝑈𝑥 = (6 − 1 2 0 −
22

3
 −

1

3
 0 0

477

44
)(𝑥1 𝑥2 𝑥3)

= (21 − 9
2385

44
)

Where:

● 𝑥3 =
2385

44
∗

44

477
= 5

● 𝑥2 = −
3

22
(−9 +

1

3
𝑥3) = 1

● 𝑥1 =
1

6
(21 + 𝑥2 − 2𝑧3) = 2

The method is direct and computationally has a lower cost

than other methods of elimination.

V. CONCLUSIONS.

We can see that depending on the need to solve a system of

equations either very large or small enough for our computer,

we can opt for an approximation that will bring a short-term

result with an error due to the starting point as proposed in the

Jacobi method it is possible to arrive at a direct result by

implementing a smaller number of iterations as proposed in the

Doolittle and Crout method.

In necessary the use of non-singular square matrices, because

the process studied to find the condition number requires the

inverse of the matrix.

A non-singular matrix can be close to the set of singular

matrices; and be well conditioned. If the elements of A are very

small in absolute value.

On the other hand, if the inverse of the matrix has large

values in their absolute value, it is unlikely that this matrix is

well conditioned.

The condition number of a matrix gives us an idea of whether

its columns are linearly independent or not.

The best conditioned matrix is the unitary matrix, since all its

singular values are equal to 1, producing a condition number k

(A) = 1.

REFERENCES

[1] J. Nicholas, “Accuracy and Stability of Numerical Algorithms”, SIAM,

Philadelphia, 1996.

[2] G.W. Stewart, “Matrix Algorithms. Volume 1, Basic Decompositions”,
SIAM, Philadelphia, 1998.

[3] R. Burden y J. Faires, “Numerical Analysis. Ninth ed.”, Brooks-Cole

Cengage learning, 2011.
[4] O. Axelsson, “Iterative Solution Methods”, Cambridge University Press,

New York,1994.

[5] F. Mesa, P. P. Cárdenas, C. A. Rodríguez, “Comparison of the Conjugate
Gradient Methods of Liu-Storey and Dai-Yuan”, Contemporary

Engineering Sciences, vol. 10, no. 35, pp. 1719-1726, 2017. DOI:
10.12988/ces.2017.711189

[6] W. Briggs, “A Multigrid Tutorial”, Society for Industrial and Applied

Mathematics, Estados Unidos, 1987.
[7] A. Quarteroni, R. Sacco y F. Saleri, “Numerical Mathematics. Second

Ed.” Texts in applied mathematics. Springer. 2007.

[8] Y. Skiba, “Métodos y esquemas numéricos: Un análisis computacional”,
Dirección General de Publicaciones y Fomento Editorial. México, 2005.

[9] J. H. Mathews and K.D. Fink, “Métodos numéricos con Matlab”, Pearson,

Madrid, España, 2000.
[10] H. Wolfgang, “Iterative Solution of Large Sparse Systems of Equations”,

Springer-Verlag, Estados Unidos, 1994.

[11] J. M. Ledanois, “Métodos numéricos aplicados en ingeniería”, McGraw-
Hill, Venezuela, 2000.

[12] S. C. Chapra and R.P Canale, “Métodos numéricos para ingenieros”,

McGraw-Hill, México, 2015.

Fernando Mesa, university professor of

the Mathematics Department of the

Technological University of Pereira,

Colombia and director of the applied

mathematics and education research

group. Master of Science (Msc) in physical

instrumentation (2007). Member of the

plasma laboratory of the National

University of Colombia, located in

Manizales, Colombia. Member of the

group of non-linear differential equations

"GEDNOL" at the Technological University of Pereira,

Colombia. Director of the research group in Applied

Mathematics and Education "GIMAE" at the Technological

University of Pereira, Colombia.

ORCID: https://orcid.org/0000-0002-3418-5555

Diana Marcela Devia Narváez. Associated teacher of

mathematics and physics at Universidad

Tecnologica de Pereira, Colombia. PhD in

engineering (2012). Master of Science

(Msc) in the faculty of Physics - Cience

(2010). Member of plasma laboratory from

Universidad Nacional de Colombia located

in Manizales, Colombia. Member of

nonlinear differential equations group

“GEDNOL” at Universidad Tecnológica de Pereira, Colombia.

Area of expertise: material processing through assisted plasma

techniques, structural characterization mechanical of materials,

simulation and modeling of material’s physical properties.

ORCID: https://orcid.org/0000-0002-0447-4663

German Correa Vélez, university lecturer

of the department of Mathematics at the

Universidad Tecnológica de Pereira,

Colombia. Master of Science (Msc) in

mathematics (2008). Member of nonlinear

differential equations group “GEDNOL” at

Universidad Tecnologica de Pereira,

Colombia. Member of the research group

in Applied Mathematics and Education “GIMAE” at the

Universidad Tecnológica de Pereira.

ORCID: https://orcid.org/0000-0002-5244-3095

https://orcid.org/0000-0002-3418-5555
https://orcid.org/0000-0002-0447-4663
https://orcid.org/0000-0002-5244-3095

