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Abstract
Aim of study: As an innovative prediction technique, Artificial Intelligence technique based on a Deep Learning Algorithm (DLA) with 

various numbers of neurons and hidden layer alternatives were trained and evaluated to predict the relationships between total tree height 
(TTH) and diameter at breast height (DBH) with nonlinear least squared (NLS) regression models and nonlinear mixed effect (NLME) 
regression models.   

Area of study: The data of this study were measured from even-aged, pure Turkish Pine (Pinus brutia Ten.) stands in the Kestel Forests 
located in the Bursa region of northwestern Turkey.  

Material and methods: 1132 pairs of TTH-DBH measurements from 132 sample plots were used for modeling relationships between 
TTH, DBH, and stand attributes such as dominant height (Ho) and diameter (Do). 

Main results: The combination of 100 # neurons and 8 # hidden layer in DLA resulted in the best predictive total height prediction va-
lues with Average Absolute Error (0.4188), max. Average Absolute Error (3.7598), Root Mean Squared Error (0.6942), Root Mean Squared 
error % (5.2164), Akaike Information Criteria (-345.4465), Bayesian Information Criterion (-330.836), the average Bias (0.0288) and the 
average Bias % (0.2166), and fitting abilities with r (0.9842) and Fit Index (0.9684). Also, the results of equivalence tests showed that the 
DLA technique successfully predicted the TTH in the validation dataset. 

Research highlights: These superior fitting scores coupled with the validation results in TTH predictions suggested that deep learning 
network models should be considered an alternative to the traditional nonlinear regression techniques and should be given importance as an 
innovative prediction technique.
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Introduction
In forest inventories, total tree height (TTH) and 

diameter at breast height (DBH) (measured at 1.3 m 
above ground) are significant forest inventory variables 
that have been used for site index predictions, total and 
merchantable volume and biomass predictions, carbon 
budget models, and growth and yield models (Clutter et 
al., 1983; Van Laar & Akça, 2007). TTHs are generally 
measured in a subset of trees in sample plots because their 
field measurements are complex, tedious, and time-con-
suming. However, DBHs are measured for all sample 
trees in sample plots because their measurements are sim-
ple, easy, and cheap. A high correlation between TTH and 
DBH has led to the development of regression models to 

predict TTH from DBH (Huang et al., 1992; Martin & 
Flewelling, 1998). Furthermore, some growth simulators 
such as Prognosis BC (Crookston & Dixon, 2005) and 
Forest Vegetation Systems, FVS, (Wykoff et al., 1982) 
have included prediction modules that predict TTHs by 
using the relationship between TTH and DBH. 

To develop the TTH-DBH prediction models as a part 
of forest inventory, sample plots are sampled from forest 
stands with different growing conditions such as site 
quality, stocking, and stand ages. These heterogeneous 
growing conditions of forest stands have an important 
effect on the relationships between TTH and DBH, and 
thus these relations differ from one stand to another with 
various stand structures. These heterogeneities may re-
sult in unexplained variance in TTH predictions (Curtis, 
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1967). An approach to take into account the TTH variance 
is to develop generalized or region-wide TTH-DBH 
models which include some other stand characteristics 
such as dominant height, quadratic mean diameter, do-
minant diameter, number of trees per hectare and stand 
basal area as predictors (Fulton, 1999; Huang et al., 2000; 
Schröder & González, 2001; Sánchez et al., 2003; Shar-
ma & Yin Zhang, 2004; Temesgen & Gadow, 2004; Cas-
tedo-Dorado et al., 2005; Trincado et al., 2007). On the 
other hand, Nanos et al. (2004) analyzed the spatial pat-
tern of variability in height/diameter ratios and proposed 
geostatistical interpolation of the regression parameters.

Nonlinear mixed effect modeling has been proposed 
as an alternative method to deal with hierarchical data, 
representing stands with heterogeneous characteris-
tics. Previous studies including the development of 
generalized TTH-DBH models have attempted to mini-
mize or decrease the TTH prediction variances between 
sample plots which are diverse in stand characteristics. In 
general, clustered and hierarchical data are highly auto-
correlated, which mainly induces high inter-stand predic-
tion variance. The autocorrelation in these clustered and 
hierarchical data may cause serious fitting problems in 
modeling the TTH–DBH relations. Consequently, the or-
dinary least squares (OLS) for linear models or nonlinear 
least squares (NLS) techniques for nonlinear models may 
have biased predictions of the confidence intervals of mo-
del parameters when these autocorrelated data are used in 
this analysis (West et al., 1984; Gregorie, 1987; Searle et 
al., 1992; Lappi, 1997). In the linear or nonlinear mixed 
effect modeling, population-specific fixed-parameter and 
sampling unit-specific random-parameter are simulta-
neously predicted by a covariance matrix which is defined 
in the same model structure (Calama & Montero, 2004). 
The use of random parameters in model structure enables 
the estimation of the residual variance of TTH-DBH re-
lationships among clustered or nested sample units from 
different stands. Also, the NLME models that have been 
developed for predicting TTH can be calibrated for any 
locations where data have not been used for constructing 
the model. The features of the mixed effect modeling te-
chnique provide more efficient and accurate TTH predic-
tions from nested and clustered sample units located in 
different forest stands than either OLS or NLS. Numerous 
studies such as Lappi (1997); Calama & Montero (2004); 
Mehtätalo (2004); Castedo-Dorado et al. (2006); Trinca-
do et al. (2007); Sharma & Parton (2007); Crecente-Cam-
po et al. (2010); Mehtätalo et al. (2015); Sharma et al. 
(2016); Özçelik et al. (2018); Ng'andwe et al. (2019); 
Nong et al. (2019); Mugasha et al. (2019); Bronisz & 
Mehtätalo (2020) have used the linear or nonlinear mixed 
effect technique in modeling  TTH-DBH relationships.

In addition to statistical approaches, Artificial Intelli-
gence Techniques (AIT) such as Artificial Neural Networ-
ks (ANNs) and Deep Learning Algorithms (DLAs) have 

provided an innovative modeling approach to obtain the 
predictions of some tree and stand attributes. Some predic-
tion techniques based on the ANNs have been developed 
to predict various individual tree and stand attributes 
(Hasenauer et al., 2001; Diamantopoulou, 2005b, a, 2006; 
Özçelik et al., 2008; Diamantopoulou & Milios, 2010; 
Diamantopoulou & Özçelik, 2012; Diamantopoulou et 
al., 2015; Özçelik et al., 2017; Özçelik et al., 2018). In 
these studies, ANNs gave better predictive results in the 
various tree and stand attributes as compared to conven-
tional NLS and NLME models. This predictive ability of 
ANNs for these tree and stand variables proposed by the 
previous studies are based on two important characteris-
tics: (1) its strong nonlinear modeling capability without 
any predetermined statistical functions and (2) no statis-
tical assumptions needed for independence, normal dis-
tribution, and homoscedasticity of residuals as well as 
multicollinearity among variables, and spatial and longi-
tudinal autocorrelations in data.  

The network models based on DLAs are another type 
of artificial intelligence with innovative predictive abili-
ties for modeling forest and tree attributes. ANNs have the 
general structure of an input layer, a hidden layer (interla-
yer), and an output layer. This structure of ANNs is limi-
ted to several layers including one or two hidden layers, 
while DLAs can include more layers, especially a grea-
ter number of hidden layers, which makes this network 
model based on the DLAs better predictive modeling 
than those by ANNs. This is especially true for advan-
ced computational systems such as Graphical Processing 
Units (GPU) that are directly embedded into the computer 
processors and have provided highly convenient network 
models based on DLAs. These network models based on 
DLAs have been used by several studies in agriculture, 
plant disease diagnosis, and plant pattern recognition (Lee 
et al., 2015; Mohanty et al., 2016; Sladojevic et al., 2016; 
Carranza-Rojas et al., 2017; Sun et al., 2017; Ferentinos, 
2018; Ubbens et al., 2018). These studies that include the 
prediction systems based on DLAs have shown signifi-
cant improvements in the prediction of image processing 
of plant disease diagnosis and plant pattern recognition. 
In forest growth and yield modeling studies, there are few 
studies about the network models based on DLAs to pre-
dict various tree and stand variables, which are denoted 
as significant measurements in forest inventory. Ercanlı et 
al. (2018) trained the network models based on DLAs to 
model diameter distributions and obtained better predicti-
ve results including some reductions with 79.01% in SSE, 
54.15% RMSE, 18.49% in AIC and 18.37% in BIC and 
increase with 30.63% increase in R2 for five-layer deep 
learning algorithm compared as 3-Parameter Weibull 
probability density function. Ercanlı (2020) compared 
the prediction models of nonlinear regression, nonlinear 
mixed-effect regression, the network models based on the 
DLAs, and ANNs for tree heights, and showed that the 
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DLA network model with 9 layers and 100 neurons re-
sulted in the best predictive tree-heights with significant 
improvement in the values of RMSE, AIC, BIC, FI, AAE, 
max. AAE with the rates of 26.85%, 116.58%, 37.80%, 
5.48%, 33.52%, 35.51%, respectively, compared to those 
of NLS. In addition to these limited studies which include 
the network models based on the DLAs, the usability and 
predictive ability of DLAs with their versatility and high 
rate for predicting tree and stand attributes remains an un-
clear and uninvestigated issue. Therefore, the objective 
of this study is (1) to train the network models based on 
DLA models to predict the relationships between TTHs 
from DBHs and (2) to analyze the fitting performance of 
DLAs to predict these relations and (3) to evaluate these 
network models with DLAs as alternative prediction tech-
niques compared to the conventional statistical regression 
models including NLS and NLME, (4) to present the best 
predictive DLA network model as R syntax which can 
then be utilized by the future forest practitioners.

Materials and methods
Study Site

The study covers even-aged, pure Turkish Pine (Pinus 
brutia Ten.) stands located in Kestel Forest (40º 00′ 00′′–
40º 12′ 10′′ N 29º 13′ 00′′–29º 21′ 54′′ E) of the Bursa 

Forest District Area in northwestern Turkey (Fig. 1). 
Kestel Forests are one of the representative distribution 
areas for natural Turkish Pine stands. The study forests 
are located on moderate to steeply sloping (15% to 50%) 
landscapes with elevation ranging from 200 m to 800 m 
above sea level. The climate is a typical central Anato-
lian characterized by moderate winters and hot summers. 
The annual mean temperature is 13.6 ºC and mean daily 
maximum temperature ranges from 10.1 ºC to 29.4 ºC; 
mean daily minimum temperature ranges from 3.8 ºC to 
17.4 ºC, respectively. Mean annual precipitation ranges 
from 200 mm to 400 mm; and annual total precipitation 
are distributed relatively homogeneously throughout the 
year (Turkey Meteorological Service, 2017). 

Data

In the even-aged Turkish Pine stands, 132 sample 
plots were selected subjectively to represent different 
stand conditions such as site quality, age, and stand den-
sity. These sampled Turkish Pine stands were naturally 
regenerated and uniformly stocked (60-90% tree layer 
cover), with no historical evidence of damage caused 
by fire or storms. The plots were checked carefully 
for no evidence of intensive silvicultural treatments or 
clear-cutting. The size of circular sample plots ranged 
from 400 to 800 m2 to include a minimum of 30–35 
trees in a sample plot based on the stand crown closure. 
At each sample plot, DBH was measured to 0.1 cm pre-
cision using calipers on every living tree with a DBH > 
8 cm. TTH was measured on a subset of trees, selecting 
two to three trees for each 4 cm diameter class using 
Blume–Leiss Altimeter (0.1 m precision). In addition to 
these TTH measurements in the sub-samples, the TTH 
of dominant and co-dominant trees was selected based 
on the 100 dominant and co-dominant highest trees per 
hectare (e.g. four highest trees in a 0.04-ha plot), were 
measured. Thus, the dominant diameter (cm) and domi-
nant height (m) were calculated as part of the plot level 
information for each sample plot. Dominant height (Ho) 
and diameter (Do) for a sample plot was calculated by 
averaging the TTH and DBH of the corresponding do-
minant and co-dominant trees. 

In total, 1132 pairs of TTH-DBH measurements from 
132 sample plots were used for modeling relationships 
between TTH, DBH, and stand attributes such as domi-
nant height (Ho) and diameter (Do). These data were 
randomly split into training (also called modeling data 
sets for NLS and NLME regression models) and the 
validation data subsets, by using the function SAMPLE 
in the R statistical environment (R Development Core 
Team, 2018). Of 1132 trees, approximately 85%, 963 
trees in 107 sample plots, were used to train the network 
models based on the DLAs including various network 

Figure 1. The study area and distribution of sampled Turkish 
Pine Stands. 
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architectures and develop NLS and NLME models. The 
remaining 169 samples from 25 sample plots were used 
to validate these network models. The summary statis-
tics for model training and simulation data sets are given 
in Table 1. 

Prediction Methods

In this study, the performance of NLS, NLME models, 
and the Network Models based on the DLAs were evalua-
ted concerning modeling relationships between the TTH 
and DBH. 

Nonlinear Least Squares 

The relationships between the TTH and DBH are 
mainly nonlinear with a typical sigmoidal or S-shaped 
curve pattern including functional inflection point and an 
asymptote (Lappi, 1997). The Schnute’s (1981) model, 
which is the most flexible in providing typical patterns 
and adaptable functions for modeling this relation (Bre-
denkamp & Gregoire, 1988; Lei, 1998) was selected as 
the candidate model. The Schnute’s (1981) model has the 
form: 

(1)

where b0 and b1 are model parameters, hi is the obser-
ved TTH of the ith tree in the sample plots, di is DBH of 
the ith tree the sample plots, H0 is the dominant height of 
the sample plot, D0 is the dominant diameter of the sam-
ple plot. Based on the Nonlinear Least Squares (NLS), 
which uses the Levenberg-Marquardt algorithm, the pa-
rameters of Schnute’s (1981) model were obtained with 

NLS function available in the R statistical environment (R 
Development Core Team, 2018). 

To deal with heteroscedasticity problem (i.e. non-ho-
mogeneous variance in heights predictions concerning the 
regressor) in TTH predictions (a characteristic problem 
in height-diameter models), the residual variances were 
modeled as a function of DBH using Power function: 

(2)

Where DBHij is the i tree DBH at j sample plot, σ2 is a 
scaling factor for the error dispersion of TTH and ϕ is the 

variance function coefficient (Pinheiro & Bates, 2000).

Nonlinear Mixed Effect Model

The datasets with multiple measurements that were 
measured at sample plots from various forest stands re-
sult in the nested data structure, which is not independent 
and is highly correlated. Thus, unexplained variance often 
arises in the TTH-DBH relationships between clustered 
or nested sample units, which may cause the hypothesis 
testing and statistical inference to be invalid and produce 
biased estimates of the confidence intervals for the model 
parameters for the developed TTH-DBH model (Judge et 
al., 1982; Gregorie, 1987; Searle et al., 1992).

To overcome this problem originating from the nes-
ted data structure, a Nonlinear Mixed Effect (NLME) 
modeling procedure was applied to the Schnute’s (1981) 
height-diameter model by simultaneously predicting both 
fixed and random parameters, ui and vi. The nonlinear 
mixed effect modeling approach comprises basic assump-
tions of a multivariate normal distribution of the residual 
terms and random-effects parameter, ui and vi (Calama & 
Montero, 2004).  

(3)

Where D is a q x q positive-definite variance-cova-
riance matrix, representing the between-plot variance for 
the random-effects, and Rj is a q x q matrix representing 
the within plot variance-covariance. Specifically, the va-
riance-covariance structures were defined by D and Rj 

matrixes to model random variability existing within and 
between plots (Calama & Montero, 2004). The D matrix 
is mutual to all plots and typically assumed to be an uns-
tructured covariance matrix and identical for all plots, and 
it describes plot variation (Huang et al., 2009). The D 
matrix with two random parameters, ui and vi, was consi-
dered to model the variation between sampling plots, and 
the variance-covariance matrix structures are defined as 
follows:

(4)

ℎ𝑖𝑖 = (1.3𝑏𝑏0 + (𝐻𝐻0
𝑏𝑏0 − 1.3𝑏𝑏0)

(1 − 𝑒𝑒−𝑏𝑏1∙𝑑𝑑)
(1 − 𝑒𝑒−𝑏𝑏1∙𝐷𝐷0))

1
𝑏𝑏1

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖𝑖𝑖) = 𝜎𝜎2 ∙ |𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖|
2𝜙𝜙 

  𝑢𝑢𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑖𝑖 ∼ 𝑁𝑁(0, 𝐷𝐷)  𝜀𝜀𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0, 𝑅𝑅𝑖𝑖)     𝑢𝑢𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑖𝑖 ∼ 𝑁𝑁(0, 𝐷𝐷)  𝜀𝜀𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0, 𝑅𝑅𝑖𝑖)   

𝐷𝐷 = [
𝜎𝜎𝑢𝑢𝑖𝑖2 𝜎𝜎𝑢𝑢𝑢𝑢
𝜎𝜎𝑢𝑢𝑢𝑢 𝜎𝜎𝑢𝑢𝑖𝑖2

]   

Table 1. Summary statistics for sample trees originated from 
fitting and validation data. 

Number of   
trees and 

sample plots
Variables Min. Max. Mean Std. 

Deviation

Training 963 trees at DBH (cm) 8.00 69.00 29.94 11.39

THT (m) 3.50 25.00 13.31 3.90

dataset 107 plots Do (cm) 9.00 69.00 39.93 11.63

Ho (m) 3.50 25.00 15.56 3.69

Validation  169 trees at 25 DBH (cm) 8.00 66.00 31.99 11.63

THT (m) 3.00 22.50 13.53 3.90

dataset plots Do (cm) 10.00 69.00 43.05 10.74

Ho (m) 4.00 25.00 16.14 3.61

TTH: Total tree height (m), DB: Diameter at breast height (cm): 
Ho: Dominant height (m), Do: Dominant diameter (cm), 
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where 𝜎𝜎𝑢𝑢𝑖𝑖2   is the variance for the random effect ui, 𝜎𝜎𝑢𝑢𝑖𝑖2   is 
the variance for the random effect vi, 𝜎𝜎𝑢𝑢𝑢𝑢2   is the covariance 
between random effects (Castedo-Dorado et al., 2006). 

As explained before, the heteroscedasticity problem 
was assumed in TTH predictions and the residual va-
riances were modeled as a function of DBH using the 
Power function for Schnute’s (1981) model based on 
the NLS.  Similar to the weighting process in the NLS 
model, the varPower function, previously formulated in 
Eq. 2 in NLME package of R programming language by 
weighting the variance of the residuals with a power of 
the DBH, was used to obtain the solution for this heteros-
cedasticity problem (Pinheiro & Bates, 2000).   

Taking into account the weighting coefficient in the 
NLME model structure, the within-plot variance-cova-
riance must be defined by the Rj matrix in a special struc-
ture as defined by Calama & Montero (2004), which is a 
different structure than that described by Castedo-Dorado 
et al. (2006); Paulo et al. (2011); Trincado et al. (2007). 
The general explanation of Rj matrix was given by Cala-
ma & Montero (2004):

(5)

Where 𝐺𝐺𝑗𝑗0.5  is a njxnj diagonal matrix, Ij is a nj xnj iden-
tity matrix and σ2 is a scaling factor for the error disper-
sion (Grégoire et al., 1995). 

By using modeling data including 963 trees in 107 sam-
ple plots, the variance components and fixed parameters 
of Schnute’s (1981) height-diameter model were predicted 
with the NLME package in the R statistical environment (R 
Development Core Team, 2018). The maximum-likelihood 
method (ML) was used to fit the nonlinear mixed-effect re-
gression, and the adaptive Gaussian quadrature was used in 
the computation of the integral over the random effects as 
described by Pinheiro & Bates (2000). 

The Network Models based on Deep Learning Algorithms

As an alternative prediction technique to these statis-
tical regression methods including NLS and NLME, the 
network models based on the DLAs were used to obtain 
the TTH predictions from some predictor variables such 
as the DBH, the dominant height (H0), and the dominant 
diameter (D0). DLAs are a subdivision of ANNs, which 
can be developed with a greater number (more than three) 
of hidden layers; although, the architecture of ANNs 
usually comprises three layers: one input layer, one hid-
den layer, and one output layer, or two hidden layers for 
some limited applications. However, DLAs can utilize a 
greater number of layers, especially hidden layers, with 
the assistance of the power of particular GPUs. This mul-
ti-layer structure provides an effective representation of 
complex systems (e.g., forest ecosystems). Thus, the ne-
twork models based on DLAs may define complex and 

inter-correlated relationships between different trees and 
stand attributes, representing different forest areas, better 
than ANN models.

DLAs utilize great quantities of information and the 
computational power of GPUs to learn and discover in-
formation from data such as images, numerals, and text. 
To achieve the sophisticated computation processes nee-
ded by DLAs, some tools and libraries such as Caffe2, 
Cognitive Toolkit, MXNet, PyTorch, TensorFlow, and 
H20 have been developed based on GPU-accelerated ope-
rations. Among these applications, H2O is an open-source 
Artificial Intelligence platform that allows users to uti-
lize Machine Learning techniques such as Naïve Bayes, 
K-means, PCA, Deep Learning, and Autoencoders (H2O.
ai, 2018). The H2O package includes an h2o.deeplearning 
function, which was coded on Java and is principally sui-
table to train multi-layer feedforward deep learning neu-
ral networks. The h2o.deeplearning function available in 
R was used to train the network models based on DLAs 
(H2O.ai, 2018). This h2o.deeplearning function provides 
multi-layer feedforward neural network models, which 
comprise a supervised training protocol to predict TTHs 
from input variables of DBH, D0, and H0. In training, the-
se DLAs, DBH, H0, and D0 were identified as input va-
riables, and TTHs were identified as the output variable.  

The convergence of DLAs critically depends on the 
architecture of the network, the number of hidden layers, 
the type of activation function, the number of neurons 
in hidden layers, and other parameters such as epochs, 
type of distribution functions, rho, and epsilon. This h2o.
deeplearning function uses the adaptive learning rate 
algorithm ADADELTA (Zeiler, 2012), which includes a 
combination of learning rate annealing and momentum 
training, enabling fast converge of the DLAs (H2O.ai, 
2018). The rho defines the rate of ADADELTA and epsi-
lon defines the learning rate strength during preliminary 
training. The value of 0.999 for rho and 1x10-8 for epsilon 
were used to train DLAs. Also, the value of 1000 for the 
epochs, the number of iterations to be carried in training 
networks, was used in the training of DLAs, since the best 
predictive results have been obtained with 1000 in va-
rious neural network studies. The h2o.deeplearning func-
tion uses the gradient descent and displays distributions 
of Bernoulli, Multinomial, Poisson, Gamma, Tweedie, 
Laplace, Huber, and Gaussian. The Gaussian distribution 
with the Mean Squared Error as training distribution was 
used in the training of DLAs, since the distribution of our 
output variable, the TTHs, presented a more similar trend 
to the Gaussian distribution function than the other distri-
bution functions in the H2O package. 

Besides the above-mentioned parameters, the num-
ber of hidden layers, type of activation function, and the 
number of neurons in the hidden layers is also important 
parameters, affecting the predictive ability of DLAs. 
In our study, the number of hidden layers ranged from 

𝑅𝑅𝑗𝑗(𝜆𝜆, 𝑏𝑏𝑗𝑗, 𝜌𝜌) = 𝜎𝜎2 ∙ 𝐺𝐺𝑗𝑗0.5 ∙ 𝐼𝐼𝑗𝑗 ∙ 𝐺𝐺𝑗𝑗0.5 
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3 to 10, including the number of hidden layer alterna-
tives of 3, 4, 5, 6, 7, 8, 9, 10. In AI studies, the ANNs 
with several three and more hidden layers is considered 
a DLA. We did not analyze more than ten hidden layers 
since the network model then becomes too complex to 
converge. The h2o.deeplearning function includes three 
activation functions such as Tanh, Rectifier, and Maxout. 
These activation functions define the nonlinear trends in 
the data. In this study, some preliminary analyses were 
performed to determine the predictive activation function 
of choice from these activation functions. These prelimi-
nary analyzes included various predictive evaluations be-
tween these activation functions. In these analyses, Tanh 
and Maxout’s activation functions resulted in extremely 
poor predictions of TTH. Therefore, we chose the recti-
fier function as an alternative activation function to train 
the DLAs. We tried different numbers of neurons in these 
hidden layers, another important factor in the architec-
ture of the DLAs, ranging from 10 to 100 by increasing 
by ten at each step, (10, 20, 30, 40, 50, 60, 70, 80, 90 
and 100 number of neurons). Thus, a total of 80 DLAs 
(eight alternatives for the number of hidden layers X ten 
alternatives for the number of neurons in these hidden la-
yers = 80 alternatives) were trained and used to obtain  
the predictions for TTH. 

“Underfitting” and “overfitting” are principal problems 
in AIT studies and should be considered when training 
these network models. The problem of “underfitting”, 
caused by under-accounted prediction variance, may be 
overcome using nonlinear and flexible fitting abilities of 
these network models without including any statistical 
functions. However, the “overfitting” problem may be no-
ticeable in that the training and validation datasets differ 
substantially in their fitting statistics. The fitting statistics 
for validation datasets may appear rather poor and even 
worse as compared to those for training datasets (Srivas-
tava et al., 2014). To deal with this “overfitting” problem, 
which may be a significant issue for the generalizability 
of network models, three preventing methods including 
Lasso (L1) and Ridge (L2) regularizations, convergen-
ce-based Early Stopping metrics and cross-validation pro-
cedure were used by regulating some parameters in h2o.
deeplearning function in the H20 package. In this study, 
other preliminary analyses based on various predictive 
evaluations were carried out to decide the predictive Las-
so (L1) and Ridge (L2) regularizations and convergen-
ce-based Early Stopping metrics. From these alternatives 
for the values of regularizations and stopping metrics, 
preliminary analysis showed superior fitting statistics with 
1x10-5 of both Lasso (L1) and Ridge (L2) regularizations 
and stopping metric specified as “RMSE” with 1x10-2 of 
stopping tolerance and 5 of stopping rounds. Also, K=10-
fold cross-validation resampling techniques were used by 
specifying nfolds=10 in h2o.deeplearning function to mi-
nimize this “overfitting” problem in the DLAs. 

Evaluation Criteria for Prediction Methods 

Ten different evaluation criteria that are based on the 
observed and predicted TTH values obtained by the ne-
twork models based on the DLAs, NLS, and NLME re-
gression models were used to select the best predictive 
model from these modeling alternatives. These evaluation 
criteria include: (1) coefficient of correlation between ob-
served and predicted TTHs (r), (2) average absolute error 
(AAE), (3) the maximum absolute error (max. AE), (4) the 
root mean squared error (RMSE), (5) percent root mean 
squared error (RMSE%), (6) the average Bias (Bias), (7) 
percent average Bias (Bias%), (8) the fit index (FI), (9) 
Akaike’s information criterion (AIC), and (10) Bayesian 
information criterion (BIC) to compare the prediction 
performance of DLAs and the nonlinear regression mo-
dels. These criteria are calculated as follows: 

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Where, ℎ�̂�𝑖   is the predicted TTHs of the ith tree in the 
sample plots by the NLS, NLME and DLA models,   is 
the observed TTHs of the ith tree in the sample plots, ℎ𝑖𝑖  is     
the average of observed TTHs of the ith tree in the sample 
plots, n is the number of trees in the sample plots, k is 
the number of independent variables in the models. Sma-
ller values of AAE, max. AAE, RMSE, RMSE%, Bias, 
Bias%, AIC, BIC and higher values of r and FI indicate 
the better predictive performance of these models. When 
these evaluation criteria were calculated by using the pre-
dicted TTHs from NLME models, the marginal model 
strategy of NLME models that directly predict the popu-
lation average (marginal mean) was used for the dataset 
of 963 trees in 107 sample plots.  The reason for using the 
marginal model strategy for these datasets is that these 
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NLME models have been developed using TTH-DBH 
data in the sample plots without sub-sample data. Howe-
ver, the conditional model strategy of NLME models that 
require the estimation of random parameters based on the 
BLUP formula by using sub-sample data was used to cal-
culate some evaluation criteria such as RMSE% and FI 
and for a validation data set.

To jointly evaluate all ten criteria for the general suc-
cess of the prediction techniques with the NLS, NLME, 
and DLAs, the relative ranks proposed by Poudel & Cao 
(2013) were calculated in this study. This relative rank 
comparison procedure was used because it provides infor-
mation about relative proximity. The relative rank of the 
prediction techniques including DLAs, NLS, and NLME 
is defined as:

(16)

where Ri is the relative rank of the prediction methods 
(i=1, 2, 3 … k), k is the number of prediction methods 
with DLAs, NLS, and NLME evaluated. Si is s the evalua-
tion statistic value of method k, and Smin. and Smax. are res-
pectively the minimum and maximum value of Si. In this 
evaluation system, the best and worst predictive methods 
have a relative value of 1 and k, respectively. The relative 
ranking values of the other prediction methods (between 
the best and worst ones) are expressed as real numbers 
ranging from 1 to k. Thus, the prediction technique with 
the lowest sum of rank was accepted as the best predictive 
technique for predicting TTHs.

Equivalence Tests for Validation of Prediction Models 

These prediction techniques with NLS, NLME, and 
DLAs were further evaluated by the equivalence test pro-
cedure (Robinson & Froese, 2004; Robinson et al., 2005) 
using independent data as a validation dataset (169 trees 
in 25 sample plots). 

When the TTHs of the validation data that includes 
169 trees in 25 sample plots were predicted by NLME 
regression models, the vector of random parameters used 
as a calibration process was predicted by using the mea-
surements of sub-sample trees to obtain the predictions 
for specific stands. In this calibration process with the 
conditional model strategy of the NLME model, ran-
dom parameters, ui and vi, for a given plot were predicted 
using the best linear unbiased predictors, BLUPs (Lappi, 
1991; Mehtätalo, 2004). The comprehensive formula and 
explanations for components of BLUPs equation can be 
found in Calama & Montero (2004). For calibration of 
the conditional model strategy of the NLME model to 
the validation dataset, the sub-sampling designs and sizes 
within each plot could be significant to obtain the pre-
diction of TTHs. In this study, the sub-sample alternative 
based on the TTH of five medium-size trees that can be 

considered as closest to the quadratic mean diameter at 
breast-height per plot was used to calculate the random 
parameters for 169 trees in 25 sample plots because this 
sub-sample selection alternative gave the best predictive 
TTHs. Thus, the TTHs of these 169 trees in 25 sample 
plots were predicted by the conditional model strategy 
of the NLME models based on the calculation of random 
parameters. In addition to the calibration of NLME mo-
dels, the TTHs of the validation dataset were predicted by 
using Schnute’s (1981) height-diameter model with NLS 
and the network models with DLAs. Then, the equivalen-
cy or similarity between the predicted and the observed 
values were evaluated by the equivalence test (R Develo-
pment Core Team, 2018).  

The equivalence test is commonly applied for the 
evaluation of various prediction methods in forestry stu-
dies, especially in forest growth modeling studies. In 
performing this test, the magnitude of the region of dis-
similarity between observed and predicted TTHs is very 
important to deciding whether the prediction method 
can be acceptable or not, depending on the dissimilarity 
value. This equivalence test involves the null hypothesis 
of “significant difference” between the predicted and the 
observed values against an alternative hypothesis of “no 
difference” between these values. A rejection of the null 
hypothesis leads to acceptance of the prediction of the 
TTHs in the specified study forests. 

This equivalence test was carried out by regressing the 
relationships between observed and predicted TTHs (X: 
observed TTHs and Y: predicted TTHs by DLAs, NLS, 
and NLME models) and also regressing the regression 
parameters with the intercepts (b0) and slopes (b1) for 
this relation. The two one-sided test method (TOST) des-
cribed in Robinson et al. (2005) was used to calculate the 
confidence intervals for the slope and intercept parame-
ters. TOST tests the equality of slopes (b1) to 1±10% and 
the equality of intercepts (b0) to y±10%. The predictions 
of the confidence intervals for these parameters were ob-
tained by using a nonparametric bootstrap procedure as 
described by Robinson et al. (2005), in which the num-
ber of bootstrap replicates was specified as 1000. These 
equivalence tests procedures for different prediction te-
chniques including NLS, NLME, and DLAs were perfor-
med by using the “Regression-based TOST using boots-
trap, equiv.boot” function of the “equivalence” package 
in the R statistical environment (R Development Core  
Team, 2018).   

Results
The parameter estimations and variance components 

for Schnute’s (1981) height-diameter model obtained by 
NLS and NLME with various random parameter alterna-
tives are presented in Table 2. The fixed parameters of 

𝑅𝑅𝑖𝑖 = 1 + (𝑘𝑘−1)∙(𝑆𝑆𝑖𝑖−𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚.)
(𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚.−𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚.)
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these models were found to be significant at the 0.05 pro-
bability level (P < 0.05). 

The goodness-of-fit statistics of r, AAE, max. AAE, 
RMSE, RMSE%, Bias, Bias%, FI, AIC and BIC for the 
DLAs, NLS and NLME are given in Table 3 and rank 
values (Poudel & Cao, 2013) for these prediction methods 
are given in Table 4. Based on the goodness-of-fit statistics 
(Table 3 and 4), The NLS resulted in the poorest predicti-

ve ability with higher AAE, max. AAE, RMSE, RMSE%, 
AIC, BIC, Bias, and Bias%, and lowest r and FI compared 
to all the other prediction techniques. Especially, the in-
clusion of random parameters to model structure with the 
nonlinear mixed effect model provided moderate impro-
vements in fitting statistics. However, the network models 
based on DLAs with various numbers of neurons and hi-
dden layer alternatives resulted in better fitting statistics 

Table 2. Parameter estimations and variance components for the Schnute (1981)’s height-diameter model 
obtained by NLS and NLME with various random parameter alternatives 

Techniques Parameter Type Parameters Estimate Standard 
error t value Pr>|t|

NLS
Fixed Parameters

b0 0.02465 0.00629 3.920 <0.0001
ϕ=0.3126 b1 1.28508 0.18637 6.895 <0.0001

NLME with 
random 

b0 alternative
ϕ=0.353

Fixed Parameters b0 0.03930 0.00685 5.733 <0.0001
b1 0.91369 0.14787 6.179 <0.0001

Variance 
components of 

random parameter
 𝜎𝜎𝑢𝑢𝑖𝑖2  = 0.00066 σ2= 0.02564

NLME with 
random 

b1 alternative
ϕ=0.4491

Fixed Parameters b0 0.06687 0.00704 9.502 <0.0001
b1 0.34937 0.13958 2.503 <0.05

Variance 
components of 

random parameter
  𝜎𝜎𝑢𝑢𝑖𝑖2  = 0.24179 σ2= 0.11688

NLME with 
random b0 

b1 alternative
ϕ=0.4107

Fixed Parameters
b0 0.04256 0.00685 6.213 <0.0001
b1 0.90629 0.13855 6.541 <0.0001

Variance 
components of 

random parameter
   𝜎𝜎𝑢𝑢𝑖𝑖2  = 0.00377    𝜎𝜎𝑢𝑢𝑖𝑖2  = 1.23969 σ2= 0.14899    σuv =-0.965

NLS: the nonlinear least squares, NLME: the nonlinear mixed effect, ϕ: is the variance function coefficient

Table 3. Goodness-of-fit statistics of r, AAE, max. AAE, RMSE, RMSE%, Bias, Bias%, FI, AIC and BIC, for the best predictive 
deep learning algorithms of the number of neuron alternatives regarding the numbers of hidden layer and nonlinear regression and 
nonlinear regression including various random effect parameter choices. 

Number of neuron 
alternatives and

 regression models

Number 
of hidden 

layers
r AAE Max. 

AAE RMSE RMSE
% AIC BIC Bias Bias% FI

80 # neuron 3 0.948 0.9295 5.583 1.241 9.3297 214.42 229.0 0.0161 0.120 0.8990
100 # neuron 4 0.966 0.7224 4.857 1.011 7.6037 17.437 32.04 -0.0067 -0.0503 0.9329
100 # neuron 5 0.971 0.6606 4.612 0.944 7.0989 -48.7190 -34.1088 -0.0243 -0.1825 0.9415
80 # neuron 6 0.971 0.6599 3.999 0.936 7.0339 -57.5721 -42.9619 -0.0265 -0.1994 0.9426
100 # neuron 7 0.982 0.4855 4.144 0.740 5.5603 -283.9673 -269.357 -0.0569 -0.4275 0.9641
100 # neuron 8 0.984 0.4188 3.759 0.694 5.2164 -345.4465 -330.836 0.028 0.216 0.9684

70 # neuron 9 0.977 0.5667 4.183 0.838 6.3023 -163.3478 -148.737 0.047 0.356 0.9539

90 # neuron 10 0.978 0.5296 4.177 0.812 6.1022 -194.4066 -179.796 -0.0314 -0.2359 0.9568
Nonlinear Least Squares 0.887 1.2602 6.997 1.789 13.448 566.54 581.1 0.149 1.124 0.7901
NLME with b0 random 0.932 1.0187 5.630 1.433 10.770 352.70 367.3 0.102 0.773 0.8654
NLME with b1 random 0.930 0.9413 6.664 1.410 10.596 337.06 351.6 0.166 1.253 0.8697
NLME with b0 and b1 random 0.933 0.9565 5.619 1.387 10.423 321.18 335.7 -0.0957 -0.7191 0.8739

r: coefficient of correlation between observed and predicted heights, AAE: average absolute error, max. AAE: the maximum   ab-
solute error (max. AE), RMSE: the root mean squared error, RMSE%: percent of root mean squared error, Bias: the average Bias, 
Bias%: percent average Bias, FI: the fit index, AIC: Akaike’s information criterion, and BIC: Bayesian information criterion, NLS: 
the nonlinear least squares, NLME: the nonlinear mixed effect
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(lower total ranks ranging from 113.808 to 303.410) than 
those by NLS and NLME with b0 and b1 random alter-
natives, ranging from 408.531 to 688.885. These results 
suggest that the DLAs outperformed the regression tech-
niques including NLS and NLME with various random 
parameter alternatives. The DLAs with 100 # neurons 
and 8 # hidden layer gave significant improvements in the 
error values of AAE, max. AAE, RMSE, RMSE%, AIC, 
BIC, Bias, and Bias%, and a noticeable increase in r and 
FI than those by the NLS and NLME (Table 3 and 4). 
The DLAs with 100 # neurons and 8 # hidden layer resul-
ted in the best predictive ability with a r-value of 0.9842, 
AAE value of 0.4188, the Max. AAE value of 3.7598, 
RMSE value of 0.6942, RMSE% of 5.2164 values, AIC 
value of -345.4465, BIC value of -330.836, Bias value of 
0.0288, Bias% value of 0.2166% and FI value of 0.9684  
for TTHs (Table 3). 

Fig. 2 and Fig. 3. show the variation of RMSE% and 
FI of 80 trained DLAs with a various number of neurons 
and hidden layers. An increased number of hidden layers 
generally resulted in decreased values for the mean of 
RMSE% and increased values for FI, except the 7, 9, and 
10 # layers for RMSE% and the 7 and 10 # layers for 
FI (Table S1 [suppl.]). Also, there are no significant di-
fferences in RMSE% value for some numbers of hidden 
layers, namely 6 (Fig. 2). In terms of FI values, lower FI 
values were obtained for the 3, 4, and 5 numbers of hid-
den layers than others and more than 6 numbers of hidden 
layers have similar FI indices (Fig. 3). The network mo-
del with 9 # layer gave the best predictive results with 
an average of fitting criteria including AAE (0.7205), 
max. AAE (5.3849), RMSE (1.0372), RMSE% (7.7932), 
r (0.9632), FI (0.9264), and sum of rank (10.614) (Table 
S1 [suppl.]. Correspondingly, an increase in the num-

ber of neurons from 10 to 100 resulted in a substantial 
improvement in predictive ability, which was shown by 
decreased RMSE% and increased FI (Table S2 [suppl.]. 
Although there is a general increase from the RMSE% 
value according to the increase in the number of neurons, 
this change has a fluctuating trend (Fig. 2 and Fig. 3). 
The network model with 100 # neurons provided the best 
average predictive results with AAE (0.6205), max. AAE 
(5.0593), RMSE (0.9184), RMSE% (6.9006), r (0.9719), 
FI (0.9432), and sum of rank (6.290) (Table S2 [suppl.].

The relationships obtained between observed and pre-
dicted TTH values by network models based on the DLAs 
including  (a) 80 # neurons in three hidden layer, (b) 100 
# neurons in four hidden layer, (c) 100 # neurons in five 
hidden layer, (d) 80 # neurons in six hidden layer, (e) 100 
# neurons in seven hidden layer, (f) 100 # neurons in ei-

Table 4. Rank values for the best predictive deep learning algorithms of the number of neuron alternatives regarding the number of 
hidden layers and nonlinear regression and nonlinear regression including various random effect parameter choices. 

Number of neuron 
alternatives and

 regression models

Number 
of hidden 

layers
r AAE Max. 

AAE RMSE RMSE
% AIC BIC Bias Bias% FI ∑

80 # neuron 3 31.70 50.43 34.05 42.066 42.066 31.746 33.1 2.679 2.679 32.86 303.4
100 # neuron 4 16.47 30.38 20.89 24.834 24.834 2.989 5.10 1.208 1.208 17.30 145.2
100 # neuron 5 12.05 24.40 16.44 19.794 19.794 7.556 5.39 3.964 3.964 13.34 126.7
80 # neuron 6 12.05 24.34 5.353 19.146 19.146 8.848 6.65 4.316 4.316 12.85 117.0

100 # neuron 7 2.696 7.460 7.979 4.433 4.433 41.897 38.8 9.075 9.075 2.974 128.8
100 # neuron 8 1.000 1.000 1.000 1.000 1.000 50.872 47.5 4.676 4.676 1.000 113.8

70 # neuron 9 7.182 15.31 8.678 11.841 11.841 24.289 21.6 7.593 7.593 7.661 123.6

90 # neuron 10 6.09 11.72 8.580 9.844 9.844 28.823 26.1 5.077 5.077 6.340 117.5
Nonlinear Least Squares 84.00 82.44 59.68 83.184 83.184 83.148 83.1 23.61 23.618 82.82 688.8
NLME with b0 random 47.12 51.57 53.65 54.716 54.716 49.649 50.5 26.29 26.298 46.31 460.8
NLME with b1 random 45.48 59.07 34.90 56.448 56.448 51.932 52.7 16.29 16.290 48.28 437.9
NLME with b0 and b1 random 44.49 53.05 34.71 52.985 52.985 47.330 48.2 15.15 15.157 44.37 408.5

Figure 2. The change of RMSE% of a total of 80 trained 
Deep Learning Algorithms according to various the number of 
neurons and hidden layers. 
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ght hidden layer, (g) 70 # neurons in nine hidden layer, 
(h) 90 # neurons in ten hidden layer, (i) by the nonlinear 
regression, (k) by the NLME with b0 random, (l) by the 
NLME with b1 random and (m) by the NLME with b0 
and b1 random were shown in Fig. 4. As seen in this gra-
ph, these network models with DLAs that include various 
alternatives of the numbers of neurons and hidden layers 
incline to an angle of 45 degrees with axes. These graphs 
depict that the predictions of TTH by the network models 
based on the DLAs have better predictive ability than tho-
se of NLS and NLME with random parameter alternatives 
models, which were shown by more tidy coalescence of 
predicted and measured values around the 1:1-line. 

The results of the equivalence test including predic-
ted bootstrap b0 and b1 limits with RMSE% and FI va-
lues for validation data are presented in Table 5. For all 
prediction techniques with NLS, NLME, and DLAs the 
null hypothesis of dissimilarity for intercept parameters 
(b0) was rejected based on equivalence tests, in which 

the bootstrap intercept (b0) falls within the equivalent re-
gions, y ̅±10%. The null hypothesis of dissimilarity for 
slope (b1) parameters was rejected by equivalence tests 
for some DLA models such as 80 # neurons in three hi-
dden layers, 100 # neurons in four hidden layers, 100 
# neurons in eight hidden layers, 70 # neurons in nine 
hidden layers, for which the bootstrap b1 are contained 
within the equivalent regions, 1±10%. However, other 
network models, NLS, and NLME models were not va-
lidated because these bootstrap slopes (b1) did not fall 
within these equivalent regions (1±10% for the slope). As 
a result, the network model based on the DLAs with 100 
# neurons in eight hidden layers could be achieved as the 
best predictive network mode of all the prediction tech-
niques l based on the equivalence tests and related fitting 
statistics (Table 5). 

Discussion
This study investigates whether the network models 

based on DLAs can be used as alternative techniques to 
predict the relationships between the total tree height and 
diameter at breast height for Turkish Pine stands. Many 
different statistical prediction models have been proposed 
and used to predict and model this relation in the literatu-
re. Besides developing a wide variety of regression mo-
dels with statistical considerations, artificial intelligence 
techniques are innovative prediction methods that can be 
predicated on non-requirement of statistical assumptions 
with powerful nonlinear modeling ability without using 
statistical functions. Diamantopoulou & Özçelik (2012) 
and Özçelik et al. (2013) developed the ANN models 

Figure 3. The change of FI of a total of 80 trained Deep 
Learning Algorithms according to various the number of neu-
rons and hidden layers.
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100 # neuron 5 12.2661 15.0218 13.5696 13.9665 Rejected 0.900 1.100 1.0030 1.1485 Not rejected 9.284 0.875

80 # neuron 6 12.2661 15.0218 13.5666 13.9727 Rejected 0.900 1.100 1.0292 1.1689 Not rejected 9.3689 0.872

100 # neuron 7 12.2661 15.0218 13.5737 13.9798 Rejected 0.900 1.100 0.97507 1.1238 Not rejected 9.826 0.859

100 # neuron 8 12.2661 15.0218 13.5802 13.9783 Rejected 0.900 1.100 0.9359 1.0659 Rejected 9.042 0.881

70 # neuron 9 12.2661 15.0218 13.5899 13.97471 Rejected 0.900 1.100 0.9193 1.0511 Rejected 9.180 0.877

90 # neuron 10 12.2661 15.0218 13.5744 13.9994 Rejected 0.900 1.100 0.9608 1.1079 Not rejected 9.733 0.862

Nonlinear Least Squares 12.2661 15.0218 13.2176 13.8244 Rejected 0.900 1.100 0.7759 0.9362 Not rejected 16.052 0.688

NLME with b0 random 12.2661 15.0218 13.2181 13.8234 Rejected 0.900 1.100 0.7635 0.9227 Not rejected 15.550 0.708

NLME with b1 random 12.2661 15.0218 13.2044 13.8177 Rejected 0.900 1.100 0.7255 0.8788 Not rejected 16.022 0.689

NLME with b0 and b1 random 12.2661 15.0218 13.2293 13.8144 Rejected 0.900 1.100 0.7711 0.9195 Not rejected 15.305 0.717

Table 5. Results of equivalence tests with RMSE% and FI for the best predictive deep learning algorithms of the number of neuron 
alternatives regarding the numbers of hidden layer and nonlinear regression and nonlinear regression including various random 
effect parameter choices
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Figure 4. The relationships between observed (x-axis) and predicted heights (y-axis) by the best predictive deep learning network 
models: (a) 80 # neurons in three hidden layers, (b) 100 # neurons in four hidden layers, (c) 100 # neurons in five hidden layers, (d) 
80 # neurons in six hidden layers, (e) 100 # neurons in seven hidden layers, (f) 100 # neurons in eight hidden layers, (g) 70 # neurons 
in nine hidden layers, (h) 90 # neurons in ten hidden layer, (i) by the nonlinear regression, (j) by the NLME with b0 random, (k) by 
the NLME with b1 random and (l) by the NLME with b0 and b1 random.
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for predicting tree heights and compared these network 
models with the nonlinear regression models. Diaman-
topoulou & Özçelik (2012) showed that the generalized 
regression neural network models were superior to non-
linear growth functions, providing the highest estimation 
ability with RMSE% values from 5.69 to 7.13, for all 
different tree species. Özçelik et al. (2013) showed that 
back-propagation neural network modeling approaches 
with the diameter variance of each plot gave the most pre-
cise results with a 23.7% reduction in RMSE compared 
with the regression model. In addition to the ANN mo-
dels predicting tree heights, Ercanlı (2020) compared the 
ANN models with the network models based on the DLA 
to predict the tree heights; this study found that the DLA 
models were superior to both the ANN and nonlinear re-
gression models in terms of various evaluation criteria. In 
the present study, a total of 80 DLAs with various com-
binations of hidden layers and neurons were trained and 
then evaluated by comparing traditional prediction mo-
dels such as nonlinear regression models and nonlinear 
mixed-effect regression models including various random 
effect parameter choices. The DLAs with 100 # neurons 
and 8 # hidden layers resulted in the best predictive fit-
ting statistics with an RMSE value of 0.6942, RMSE% 
of 5.2164 values, and FI value of 0.9684. In this regard, 
this neural network model based on the DLAs accounted 
for at least 97 (about % 96.84) % of the total variation 
in tree heights. The network models based on DLAs ou-
tperformed the regression techniques, which were eviden-
ced by the evaluation criteria values of AAE, max. AAE, 
RMSE, RMSE%, Bias, Bias%, AIC, BIC, r, and FI (Ta-
ble 3 and 4). This best predictive DLA network model 
with 100 # neurons and 8 # hidden layers resulted in the 
reductions of AAE, max. AAE, RMSE, RMSE%, Bias 
and Bias% by 66.767 %, 46.267 %, 61.214 %, 61.211 %, 
80.762 %, 80.745 %, and in the increase of r and FI by 
10.933 % and 22.567 % as compared to those by NLS. 
This predictive ability of the DLA network models can 
be distinguished in Fig. 4 that depicts that the predicted 
and observed values for the combination of 100 # neu-
rons and 8 hidden layers were highly close to the 1:1-line. 
Importantly, these improvements in TTH predictions by 
DLA network models suggest that these DLA network 
models can be an alternative to nonlinear regression tech-
niques such as NLA and NLME. In addition to the results 
of DLA prediction of tree heights obtained by the Ercanlı 
(2020) and the present study, Lee et al. (2015), Mohanty 
et al. (2016), Sladojevic et al. (2016), Sun et al. (2017), 
Ferentinos (2018) and Ubbens et al. (2018) successfully 
developed prediction systems based on the DLA to spe-
cify plant disease diagnosis in agricultural applications. 
Also, similar improvements in the predictive ability for 
various individual and stand variables were achieved 
by those from Hasenauer et al. (2001); Diamantopou-
lou (2005a, 2005b, 2006); Özçelik et al. (2008); Dia-

mantopoulou & Milios (2010); Özçelik et al. (2010); 
Leite et al. (2011); Ashraf et al. (2013); Diamanto-
poulou et al. (2015); Özçelik et al. (2017), especially 
tree height predictions by Diamantopoulou & Özçelik 
(2012) and Özçelik et al. (2013). Unlike those studies 
which evaluated the ANN models, this present study 
evaluated the network models based on the DLA for 
predicting TTH sampled from forest areas. However, 
the DLA models have been ignored in studies about 
forestry growth and yield modeling within different ar-
tificial intelligence techniques and remained an unstu-
died prediction technique in forest biometric literature. 
This study presented a contribution to the evaluation of 
DLA models to predict the height-diameter relation and 
is a novel artificial intelligence application.  

Significant problems to be considered in the deve-
lopment of various artificial intelligence models invol-
ving the ANN or DLA applications are “underfitting” 
and “overfitting”. The “underfitting” problem can be 
solved by prevailing nonlinear modeling ability of the 
deep learning network models, which have been veri-
fied by numerous studies about forest growth modeling. 
However, the “overfitting” problem may be the weak-
ness in deep learning network models in simulation and 
future applications for other datasets. This “overfitting” 
problem is characterized by the instance that although 
the network models that are trained by the ANN or DLA 
techniques give better predictive ability, it may result in 
poor fitting for validation dataset or another dataset in 
some studies. In this study, three main methods inclu-
ding Lasso (L1) and Ridge (L2) regularizations, con-
vergence-based Early Stopping metrics, and especially 
cross-validation were used to overcome the “overfi-
tting” problem in the validation dataset. The “overfit-
ting” problem was checked and evaluated by the equi-
valence tests with a nonparametric bootstrap procedure 
for the validation dataset. The results showed that the 
validation statistics of percent RSME and FI calculated 
for the validation dataset were close to those calculated 
for the training dataset (Table 5). Also, the results of 
equivalence tests for some deep learning network mo-
dels such as 80 # neurons in three hidden layers, 100 # 
neurons in four hidden layers, 100 # neurons in eight 
hidden layers, 70 # neurons in nine hidden layers were 
validated. These suggest that Lasso (L1) and Ridge (L2) 
regularizations, convergence-based Early Stopping me-
trics, and cross-validation were effective in dealing 
with the “overfitting” problem. However, more scien-
tific research including different datasets and evalua-
tion processes may be required to generalize the results 
about these regulations and metrics for the “overfitting” 
problem. In this regard, it may be suggested that the-
se methods for overcoming the “overfitting” problem 
should be included in training procedures in deep lear-
ning network models in further studies.  
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The results of DLA network models can be further eva-
luated to decide optimum DLA network architecture from 
some alternatives for the numbers of hidden layers and the 
number of neurons in these layers. Especially, the increa-
se in the number of neurons that positively affect fitting 
statistics for TTH prediction with low values for AAE, 
max. AAE, RMSE, RMSE%, Bias, Bias%, AIC, and BIC 
and higher values for r and FI. Thus, the number of neu-
rons can be an important and effective parameter on fitting 
statistics of the predictions from network models. When 
the changes of these fitting statistics are joined with an 
increase in the number of neurons that are evaluated, this 
change is the fluctuation trend (Fig 2 and Fig. 3). Further-
more, the increase in the number of neurons may result in 
a more sophisticated network structure, and these network 
models require a longer iteration time for convergence. 
Besides the change in the number of neurons, the results 
concerning the number of hidden layers show that the fit 
statistics according to the number of the hidden layers had 
an unstable behavior, independent from the change in the 
number of neurons (Tables S1 and S2 [suppl.]. For exam-
ple, the 9 # hidden layer gave the best predictive statis-
tics, while unexpectedly, the 10 # hidden layer gave quite 
poor-fitting results. Also, differences between some pre-
dictive fitting statistics in terms of RMSE% and FI have 
been achieved at low levels for more than 6 hidden layer 
numbers (Fig. 2 and Fig. 3). Moreover, equivalence tests 
show that network models comprising the 3, 4, 7, and 8 # 
hidden layers were validated, while the rest of the hidden 
layers were invalidated. These results can be explained by 
the fact that training with too many hidden layers does not 
contribute much to the predictive ability of these network 
models or that the computer hardware where the network 
models are trained is insufficient in the training of many 
hidden layer network models. The combinations of the 
number of hidden layers and neurons may be an impor-
tant factor that affects the prediction performance of AI 
techniques. In this regard, the optimum number of hidden 
layers and neurons should be decided by evaluating fitting 
statistics and residual values for various alternatives of 
the numbers of hidden layers with the assistance of the 
results of the equivalence test.

In addition to evaluating the predictive ability of AI 
models with various statistical methods, especially re-
gression models, it is important to present various com-
puter syntax files to ensure the usability of these AI pre-
diction systems. Traditional regression models contain a 
limited number of model parameters so that they can be 
disseminated directly in publications, whereas AI models 
can include thousands or even tens of thousands of wei-
ght values with the increase in the number of neurons in 
hidden layers. When going through a translation period 
the trained network model is run with various software 
for predicting various tree and stand variables. This is 
done by downloading these network models from an ad-

ditional file of publications from current applications that 
can be applied to the regression models by obtaining the 
parameter values of these models from the publications.  
As the applications of AI models become more defined in 
every field, it will not be possible to not utilize this tool 
regarding forestry growth and yield modeling studies. 
This study presents the R syntax file of the best predictive 
DLA network model with 8 layers and 100 neurons as 
a supplementary file ( R syntax source codes for using 
the best predictive network model based on the DLAs 
to obtain the predictions of TTH for other datasets are 
in the Appendix A1 of this study) and the downloadable 
link can be found from Google Drive Link (https://drive.
google.com/open?id=1byX88K9OvnuQMgGv_y3b2ze-
Tw7bQO1wN) so that future forest practitioners can use 
this best predictive DLA model to predict TTH for their 
specified forest areas. Because the R platform is free and 
open-source code, this trained network model based on 
DLAs has been presented on the R platform for various 
stakeholders and other users in forest management.  The-
refore, it is possible to use this network model by future 
forest practitioners to obtain the total tree height predic-
tions for specified forest areas. 

Conclusions
In this study, the network models based on DLAs 

were trained to predict the relationships between TTH 
and DBH sampled from Kestel Forest. This is a pioneer 
study of innovative DLAs, a type of AI technique. This 
study evaluated whether this new AI technique could 
be an alternative prediction technique to conventional 
regression models including the nonlinear regression 
models and nonlinear mixed effect models. The fitting 
results showed that the deep learning network models re-
sulted in better TTH predictions than those by nonlinear 
regression models, based on the nonlinear squares, and 
nonlinear mixed-effect regression models based on diffe-
rent random parameter alternatives. The DLA resulted in 
considerably better improvements in the predictive ability 
for TTH than those by NLS and NLME. Also, the best 
predictive DLA models were validated, while none of the 
nonlinear regression models were validated, indicating 
that the DLA proved successful in predicting individual 
tree TTHs and that it may be preferred over regression 
models. However, the DLAs should also be validated with 
different datasets representing different forest areas to im-
prove the portability of the developed models in predic-
ting TTHs. The models should be tested to evaluate their 
performance in predicting other attributes (e.g. volume, 
increment, tree taper, etc.) of individual trees and forests. 
The results showed that highly different layers and neuron 
combinations should be tested before deciding the most 
proper structure of the model to predict TTH. Recently 

https://drive.google.com/open?id=1byX88K9OvnuQMgGv_y3b2zeTw7bQO1wN
https://drive.google.com/open?id=1byX88K9OvnuQMgGv_y3b2zeTw7bQO1wN
https://drive.google.com/open?id=1byX88K9OvnuQMgGv_y3b2zeTw7bQO1wN
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developed alternative computer-based software and 
platforms of H20, an open-source AI platform coded in the 
R core programming language, was successfully used in 
this study. Thus, these network models may significantly 
contribute to studies in forest biometry, forest growth and 
yield modeling, forest planning, and silviculture. 
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