S A

DYNA

http://dyna.medellin.unal.edu.co/

DE COLOMBIA

SEDE MEDELLIN
FACULTAD DE MINAS

Morphological and nanomechanical characterization of Guadua
Angustifolia kunth fiber by means of SEM and AFM

Martin Eduardo Espitia-Nery, Dery Esmeralda Corredor-Pulido, Nelson Javier Rodriguez-Ramirez
& Jeimy Natalia Calderén Bustos

Facultad de Ingenieria, Corporacién Universitaria Minuto de Dios, Bogota, Colombia. mespitia@uniminuto.edu, dery.corredor@uniminuto.edu,
nrodrigue35@uniminuto.edu.co, jcalderonbu@uniminuto.edu.co

Received: March 7, 2018. Received in revised form: May 25", 2018. Accepted: August 4", 2018.

Abstract

Recent developments in engineering have promoted the use of reinforced composite materials from natural fibers, which provides an
opportunity to investigate such materials using state-of the-art tools. Here we present a morphological and nanomechanical characterization
of the parallel section of the axis of guadua Angustifolia kunth fibers (GAK) from Colombia, focusing on properties such as hardness
(nanoindentation), roughness and topography. Our method was based on the application of scanning electron microscope (SEM) and
atomic force microscope (AFM). AFM provided curves of force by displacement, as well as characteristics of dynamic nanoindentation
systems and images. Their analysis revealed ridges and valleys on the surface of GAK fibers. The estimated surface roughness of 9.51
nm suggests an adequate value to provide superior adhesion between polymer and fiber. The same conclusion follows from our
measurements of hardness, reduced modulus and nanoscale topography. Due to their excellent properties, we conclude that GAK fibers
represent an ideal reinforcement material in polymer matrices.
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Caracterizacion morfologica y nanomecanica de la fibra de Guadua
Angustifolia kunth mediante SEM y AFM

Resumen

El desarrollo reciente en la ingenieria propone el uso de materiales compuestos reforzados a partir de fibras naturales, lo cual genera la
iniciativa de estudiarlos mediante herramientas sofisticadas. En esta investigacién se muestran los resultados de la caracterizacion
morfoldgica y nanomecanica como dureza (nanoidentacion), rugosidad y topografia de la seccion paralela al eje axial de fibras de guadua
Angustifolia kunth, con el fin de encontrar las propiedades mecanicas a nanoescala de las fibras. Para ello se emplearon los microscopios
electronico de barrido (SEM) y de fuerza atomica (AFM), con este Gltimo se obtuvieron curvas de fuerza vs desplazamiento, caracteristicas
de sistemas dinamicos de nanoindentacion e imagenes, donde a partir de analisis se encontr6é que la guadua Angustifolia kunth (GAK)
presenta crestas y ondulaciones en su superficie, las cuales le brindan una rugosidad adecuada otorgando adherencia entre el polimero y la
fibra, ademas la dureza, el moédulo reducido y la topografia a escala nanométrica, lo que permite concluir que las fibras de GAK presentan
mejores propiedades para ser utilizadas como material de refuerzo en matrices poliméricas.

Palabras claves: fibras de Guadua Angustifolia kunth; morfologia; nanoindentacién; SEM; AFM.

1. Introduction studies have shown that synthetic fibers such as graphite [3,4]
glass [5,6], carbon [7, 8], and thermoplastic resins such as

Polymer matrix composites consist of a continuous phase  polyesters and polypropylenes [9,10] among others, can be
(polymer matrix) and a dispersed phase (particles or fibers) used as reinforcement for composite materials through the
[1,2]. Usually the dispersed phase consists of fibers. Most incorporation of fibers, thereby improving their properties
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[11]. However, many studies have ignored the high energy
requirements and negative impact on the environment
associated with the production of those materials. While
some fibers are widely used in industry due to their excellent
properties, they may on the other hand generate health
problems such as asbestosis [12]. In Colombia, a
considerable volume of organic waste derived from the
production of fique, guadua, coconut, rice husk, bagasse,
husk and other husk fibers have contributed to increasing
pollution levels [13,14]. Therefore, the incorporation of
organic fibers as reinforcement in polymeric matrices would
not only avoid the use of synthetic or artificial fibers, but also
reduce the environmental impact generated by their disposal.

2. Materials and methods

For our study, fibers of guadua Angustifolia kunth were
collected in El Pefion, Cundinamarca Department, Colombia.
Fiber extraction was mechanically carried out, so that fiber
diameter was under 1mm and lengths under 5mm. Surfaces
of GAK fibers were then modified with 5% sodium
hydroxide (NaOH) solution to remove impurities [36],
continuously stirred for half an hour at room temperature, and
finally washed with distilled water (neutral pH) to completely
eliminate NaOH. Fibers were then left to dry for 12 hours at
room temperature, and 24 hours at 60 ° C [37].

2.1. Scanning electronic microscopy (SEM)

Fibers were coated with gold to increase conductivity of
samples and enable analysis by a Scanning Electron
Microscope, JEOL brand, model JSM 6490-LV. Imagel
software was used for processing of digital images and
measurement of average diameter and cross-sectional area of
fibers.

2.2. Atomic force microscopy (AFM)

To investigate the mechanical behavior of natural fibers
at low scale through instrumented indentation tests, we used
the AFM brand ASYLUM RESEARCH, model MFP-3D-BI.
Fibers were cut down to a length of 5mm, and appropriate
points for nanoindentation were identified on their surface.
This process consists in applying a force to the fiber with the
tip of an indenter or cantilever to create indentation marks.
The tip is pressed continuously against the fiber for about 2
seconds, and the resulting displacement is measured. Data on
force vs. displacement, and on indenter geometry, were used
to calculate hardness (H), reduced modulus (Er), rupture
modulus (H/Er), resistance to plastic deformation (H3/Er?)
and elastic module, after the method proposed in 1992 by
Oliver and Pharr. In addition, fibers were swept before and
after the indentation at low force using the same indentation
tip, thereby generating a topographic record on nanometric
scale. The obtained nanoscale topographic images of fiber
and indentation traces enabled quantification of the stacking
of ductile material around the indenter. For the
nanoindentation test, an AC 160 TS Olympus indenter was
selected based on the principle that the indenter tip must have
an elastic modulus equal to or greater than the sample in order

to generate a deformation. Finally, water left over from the
NaOH treatment was slowly neutralization (until neutral pH)
by diluted acetic acid (vinegar) and disposed by a hazardous
waste management company with a valid environmental
license.

3. Results and discussion
3.1. Morphological characterization

Fig. 1 shows the cross section of a GAK fiber from the
interior of the cluster and treated with 5% NaOH. The fiber
has an irregular and elongated shape, while its transversal
area is composed of irregularly shaped microfibers. Average
value was 13301.806 pm?,

Fig. 2 shows a comparison between two GAK fibers with
and without the 5% sodium hydroxide treatment. The
untreated fiber presents irregularities due to the presence of
lignin and hemicellulose [38], while the treated fiber exhibits
no imperfections, and instead consists of visible microfibrils
(observable in the cross-section). Treatment exposes
microfibers aligned in the axial direction, which is relevant
for applications to composite materials by providing stronger
adherence between the polymer matrix and natural fibers.
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Figure 1. Transversal section of GAK fiber.
Source: Authors.
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Figure 2. Longitudinal section of GAK fiber, with and without 5% NaOH
treatment.
Source: Authors.
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Figure 3. Longitudinal section of GAK fiber before indentation. AFM
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Figure 4. 3D morphology of the longitudinal surface of GAK fiber.
Source: Authors.
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3.2. GAK topography

Prior to indentation, we recorded the longitudinal
topography of a section of GAK fiber measuring 5um x 5um.
Fig. 3 shows that the GAK fiber displays an irregular
structure on most of its surface.

Fig. 4 is a 3D section along the longitudinal axis of the
GAK fiber, revealing surfaces without defined shape that
protrude between 0.888um-0.612um relative to the general
surface. It exhibits superior roughness (Ra) to the areca palm
[39], but inferior to flax [40]. This level of roughness may
facilitate adhesion between polymer matrices and GAK
fibers, confirming our SEM findings.

3.3. Nanoindentation

Figs. 5 and 6 show a longitudinal section of GAK fibers
before and after nanoindentation. In Fig. 5, cellulose
microfibers are observed in lignin within the hemicellulose
matrix [34] and aligned with the main axis of the GAK fiber.
Due to their orientation, microfibers confer guadua superior
resistance to tension along the main axis of the fiber. In
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addition, the distribution of microfibers confirms that guadua
is an orthotropic material [41]. Moreover, Fig. 6 shows 10
nanoimprints with different indentation depths, as shown in
Table 2. Nanoimprints 2, 3 and 4 cannot be clearly seen in
Fig. 6 since the nanoindentation zone exhibits elastic
behavior, recovering by 98.7%, 96.70 and 96.13%
respectively after removal of the indentation load, therefore
presenting no residual deformation. In contrast, nanoimprints
1, 5-10 presented only minor and non-identifiable recovery.
Fig. 7 shows the loading and unloading curve of
nanoimprint 1. The curve is similar for indentations on other
nanoimprints, which is most likely explained by the similar
elastic properties of GAK fibers in most of their surface.
Following the analysis of curves and the method proposed
by Oliver and Pharr, Table 1 presents measures of hardness,
reduced modulus, modulus of rupture and resistance to
plastic deformation for each of the 10 nanoimprints.
Hardness ranges between 10.27 and 13.48MPa,
demonstrating the homogeneity of the longitudinal section.
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Figure 5. Longitudinal section of GAK fiber prior to indentation. AFM
amplitude image.
Source: Authors.
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Figure 6. Longitudinal section of GAK fiber after indentation.
amplitude image.
Source: Authors.
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Figure 7. Full loading-unloading cycle of nanoimprint 1.
Source: Authors.

Table 1.
Mechanical properties at the nanoscale of GAK fibers.

T777777-curves (Fig. 8), as well as residual depth values
(h) for each nanoimprint and the percentage of elastic
recovery.

Residual deformation of nanoimprints is variable;
however, nanoimprints 2, 3 and 4 show the highest residual
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Figure 8. Loading-unloading curves of the 10 nanoimprints on GAK fibers.
Source: Authors.

Table 2.
Elastic properties of GAK fibers.
Nanoimprint ~ hmax h Recovery (nm) Recovery (%)
(nm) (nm)
1 1280,90 92,44 1188,46 92,78
2 1342,21 17,49 1324,72 98,70
3 1298,23 42,31 1255,92 96,74
4 1346,93 52,15 1294,78 96,13
5 1294,50 81,30 1213,20 93,72
6 1273,86 80,50 1193,36 93,68
7 1281,23 92,79 1188,44 92,76
8 1236,41 66,06 1170,35 94,66
9 1242,99 85,57 1157,42 93,12
10 1251,23 86,46 1164,77 93,09
Mean 1284,85 69,71 1215,14 94,54

Source: Authors.

difference, with values of 17.49, 42.31 and 52.15 nm. This
confirms that they exhibit the highest values of elastic
recovery (Table 2), as shown in Fig. 6 where they do not
exhibit an indentation mark. On the other hand, the
nanoimprints with the most visible marks in indentation (Fig.
6) show the highest values of residual deformation.
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Figure 9. Topographic profile of residual deformation in nanoimprint 2.
Source: Authors.
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Figure 10. Elastic recovery of GAK fibers after nanoindentation essay.
Source: Authors.

Table 3.
Elastic properties of GAK fibers.
Mechanical properties Unit Value

Hardness (H) MPa 11,75
Reduced modulus (Er) MPa 12,97
Rupture modulus (H/Er) - 091
Resistance to plastic deformation (H%Er?) MPa 9,68
Elastic recovery % 94,54

Source: Authors.
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Fig. 9 shows the residual deformation on nanoimprint
2 after application of load. Residual depth on all
nanoimprints is obtained from the topographic profile,
with a value of 17.49nm in nanoimprint 2, which displays
a minimum amount of stacking on the sides but no
sinking nonetheless. This is due to the characteristics of
plasticity and elasticity of the material.

Application of the maximum indentation load
(29,91uN) on all nanoimprints resulted in maximum
deformations (hmax) of 1290 + 60um of the GAK fibers
(Table 2). When the load is removed, fibers recover from
deformation by an amount ranging between 1160 and
1320 nm (Fig. 10). This demonstrates the elastic
recovery of GAK fibers, which averaged 94.54%.
Recovery occurs since the atoms in the fiber are not
permanently displaced, with the force applied in the
indentation being stored as a distortion of fiber
interatomic bonds [43].

Table 3 shows the summary of average mechanical
properties of GAK fibers resulting from instrumented
nanoindentation.

4. Conclusions

Due to their characteristics, fibers of Angustifolia
kunth guadua are a viable alternative to reinforcement of
composite materials. Our sampled fibers had an average
cross-sectional area of 13301.806 pm? as measured by
SEM. GAK fibers also exhibited ridges and undulations
resulting in considerable levels of rugosity, which
constitutes a key feature by enabling stronger adhesion
to polymer matrices.

Furthermore, AFM characterization demonstrated
that the cross section of GAK fibers is formed by
microfibrils in the longitudinal direction, providing
excellent resistance to tension in that direction. In
addition, most of the nanoimprints on the GAK fibers
presented minimal stacking, and no sinking. The findings
validate the view that GAK fibers are ideally suited to be
used as reinforcement in compound materials. Similarly,
characterization of the GAK fiber longitudinal section
revealed irregularities, which can nonetheless be
removed through application of 5% NaOH.

Mechanical characterization at nanometric scale
revealed that Angustifolia kunth guadua fibers had an
average hardness of 11,75MPa, a reduced modulus of
12.97MPa and break of and 0.91 respectively.
Characterization also showed that GAK fibers exhibited
a plastic deformation resistance of 9.68MPa and an
elastic recovery of 94.54%.
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