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Abstract

Well testing is the cheapest and most accurate tool available to find the distance from a well to a linear constant-pressure boundary or fault.
Several methods exist in the literature with which to determine this parameter. Most of them use conventional analysis and are only useful
for isotropic reservoir systems. The few methods for anisotropic systems obtain the well-to-discontinuity distance through conventional
analysis, type-curve matching and 7DS technique, and then a correction by anisotropic effects is applied. In this work, a unified behavior
of the pressure derivative was found, so the new shorter and most practical expressions used to find the distance from the well to the
discontinuity, including the simultaneous effects of anisotropy angle and anisotropy index, are included. These new formulae were
successfully tested with two synthetic examples and one field case example, and deviation errors higher than 30% are observed if an
anisotropic system is treated as an isotropic one.

Keywords: anisotropy; linear boundary; fault, constant-pressure boundary.

Calculo practico de la distancia a una discontinuidad en sistemas
anisotropicos a partir de la interpretacion de pruebas de presion

Resumen

Las pruebas de presion constituyen la herramienta mas econdmica y precisa disponible para encontrar la distancia desde un pozo a un limite
o falla de presion constante lineal. Existen varios métodos en la literatura para determinar este parametro. La mayoria de ellos usa analisis
convencionales y solo son utiles para sistemas de yacimientos isotropicos. Los pocos métodos para sistemas anisotropicos obtienen la
distancia entre el pozo y la discontinuidad a través del analisis convencional, el ajuste de curvas de tipos y la técnica 7DS, y luego se aplica
una correccion por efectos anisotropicos. En este trabajo, se encontrdé un comportamiento unificado de la derivada a presion, por lo que se
incluyen las nuevas expresiones mas cortas y practicas para encontrar la distancia desde el pozo a la discontinuidad, incluidos los efectos
simultaneos del angulo de anisotropia y el indice de anisotropia. Estas nuevas formulas se probaron con éxito con dos ejemplos sintéticos
y un ejemplo de caso de campo, y se observan errores de desviacion superiores al 30% si un sistema anisotropico se trata como si fuese un
sistema isotropico.

Palabras Clave: anisotropia; barrera lineal; falla; frontera a presion constante.

1. Introduction Most of the well test methods to estimate the distance
from wells to linear boundaries are presented for isotropic

Well testing is the cheapest way of reservoir cases. In the semilog plot, a fault is detected when the slope
characterization. Although it provides the most accurate of the radial flow regime doubles its value. The intercept of
option for finding distances from  well to lines going through these two semilog lines are normally used
faults/discontinuities, reservoir characteristics and geology to find the distance from the well to the fault. Among the
speed up or delay the transient wave travel time, leading to  isotropic methods, the following can be named: [8,9,17,20],
erroneous interpretations when isotropic methods are used. MDH presented by [2,3,6,7,16,18,21,22], Sabet presented by
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[24] and [24]. [13] compiled the methods produced until
1970.

Regarding the application of the pressure derivative, the
work by [4] presented a new mathematical solution for a
linear boundary detection, including wellbore storage and
skin factor. The authors also developed a type-curve
matching procedure and verified its application with a
synthetic example. The first 7DS Technique, [25], approach
to find the distance from the well to a given linear
discontinuity was presented by [19]. To estimate fault-to-
well distance, they used the time at which radial flow regime
ends.

[23] were the first to include fault detection in anisotropic
reservoirs. Although they wused conventional analysis
(intersection of semilog lines) for the interpretation, new
expressions for determining actual well image location and
true distance were included. Later, [14] and [15], based on
the work by [23], developed a new mathematical solution,
including wellbore storage and skin factor. They provided
both 7DS Technique and type-curve matching interpretation
techniques. Once the fault distance is found, the true
distance—corrected by anisotropy effects—is obtained using
the formulae of [23].

This work is also based on the works of [15] and [23]. A
more general and practical formula was also developed using
the time at which the radial flow regime ends. However, this
new formula includes the effects of both anisotropy angle and
anisotropy index. It was obtained by creating a unified
behavior of pressure derivative against Grc tp/(1,°3L#), where
Orc is a correction factor involving the anisotropy angle and
1, is the areal anisotropy index (k/k,). When the ending time
of the radial flow regime is obscured by noise, the inflection
point observed between the two pressure derivative plateaus
is used in a similar equation. However, this inflection point
is better determined using the maximum point on the second
pressure derivative curve. For the case of a constant-pressure
boundary, a negative unit slope line is developed. An
equation for such a line was empirically (linear regression)
obtained, so an arbitrary point read on such a line is used to
find the distance from the well to the discontinuity. Also, the
intersect of such a line with the extension of the radial flow
regime line is used to develop another expression to find the
distance to the constant-pressure boundary. Synthetic
examples and a field case were used to successfully verify the
developed equations. Care must be taken if an anisotropic
reservoir is dealt with as an isotropic system, since the error
could be as high as 100%.

2. Mathematical model

The classic assumptions used in well test analysis also
apply here; this means that, regardless of gravity, a single and
slightly compressible fluid with constant viscosity, a
homogeneous porous medium and maximum permeability
and minimum permeability are oriented in the x and y
directions, respectively, the x-y coordinate system can be
transformed by changing the scale along each axis:

X=X (D

66

y=wll,

Thus, 1,4 the anisotropic index or horizontal permeability
ratio, is defined by the following:

2

I,=k Ik, 3)

The method of images, [5], can be applied once the
coordinate change is achieved to convert to isotropic
conditions. [23] presented a general well imaging technique
based on Egs. (1) and (2), so actual image well location is
given by the following:

Lf.21A cos
= O
I, cos?0 +sin?60
L/.ZSinH
Yr= )

1, cos?6 +sin 260

These equations imply that the well image location in an
anisotropic medium is a function of both the anisotropy index
and the angle formed by the fault and the principal
permeability axis. [sotropic system results whenever the fault
is normal to either principal axis (@ = 0 or m/2) as
demonstrated by [23]. Who also provided A better picture is
given in Fig. 1, and a detailed development of Egs. (4) and
(5) is presented by [23]. Using these equations, they also
arrived at the following:

[frests]]

Where (Ly)qpp is the apparent or uncorrected well-to-fault
distance found for the isotropic system case. Estimation of
well pressure behavior is obtained once the image well
location is determined. The denominator of Eq. (6) can be
read from Fig. 9 by [23]. [15] provided a general solution,
including wellbore storage and skin factor, for a well near
either a sealing fault or a constant-pressure boundary. This
solution avoids setting many well images.

sin@
1, cos*0+sin?0

cosd
I, cos?0 +sin0

L, —(L,.)W/\/\/Z{IA[

Pp(Lty) =P, (1)) £ By(ry,tp) @)

Being that
(®)

The * symbol in Eq. (7) considers the solution for either
the fault or constant-pressure boundary. When the sign is
positive, a sealing fault is near the well. When the sign is
negative, a constant-pressure boundary is then set, and radial
stabilization characterized by a negative-unit slope in the
pressure derivative curve is presented once the constant-
pressure boundary is felt by the transient wave. Radial
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stabilization has been characterized by [11] and [12]. The two
terms at the right side of Eq.(7) are defined by the following:

Ky (s)+ SVsk, (V)
S{SCD[KoN? y+SsK (5) Ky (Vs )}

B,(1,5)= )

Ky (srp)
s {$Co Ko (s 1+S5K (5) /s, (45|

By(ry,8)= (10)

3. Interpretation methodology

The TDS Technique, [25], is a powerful and practical
interpretation technique that uses characteristic lines and
features found on the pressure derivative plot. The solutions
of the diffusivity equation for each individual flow regime
are used to develop mathematical expressions to determine
reservoir parameters. Maximum points, minimum points and
inflection points are also used to develop equations for
further reservoir characterization or parameter verification.
Even though the intersection of the governing equations of
two given flow regimes do not have any physical meaning,
its use also allows further expressions to be developed to
create more equations.

Let us start by defining some dimensional quantities for
oil reservoirs:

P 0.0002637kt

D e (11)
t'w

The dimensionless pressure and pressure derivative
follow:

= (12
141.2quB
= D

tD* D':M (13)
141.2quB

The application of Eq.(7) leads to several pressure
derivatives versus time behaviors, as displayed in Figs. 2
through 5. As can be seen, a variety of derivatives and, of
course, pressure responses are obtained as the parameters are
varied. This makes the application of type-curve matching
difficult, as proposed by [15]. [15] also extended the TDS
Technique for anisotropic systems but they involved an
expression for the estimation of the true well-to-discontinuity
distance with Eq.(6), presented by [23]. A more practical
application of the 7DS Technique will be developed here.

Fig. 1 presents the pressure derivative behavior for three
different well-to-fault distances in isotropic systems. A
unique behavior for the three systems is required to obtain the
characteristic points that will be used to develop the
interpretation equations. Notice in Fig. 1 that the
dimensionless time at which the fault is felt increases as the
well-fault distance increases; then, for the behavior
unification, the dimensionless time is divided by the distance,
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L#, where n is an unknown exponent that may affect the
unified behavior. Although, not shown here, when n = 1, no
unified behavior is obtained; then, » must be different than
one and ought to be determined. A simple procedure to find
n is based on the use of the pressure derivative curve with Ly
=1 ft.; in such a case, n has no impact on the pressure
derivative curve, since a division by the unity does not cause
any alteration on the result (see Fig. 5). To find the value of
n, an arbitrary point is chosen during the time between the
two plateaus seen on the pressure derivative, which is the
matching zone of interest on the curve Ly= 1 ft. The arbitrary
chosen reference point was the inflection point. An analogous
point is taken from another curve with Ls> 1. For this case,
the arbitrary curve for Ly= 1500 ft. was chosen. The reading
points are then obtained from Figs. 2 and 6:

(tp*Pp’Yint = 0.681097  (£p)in [for L=1500 ft] = 24647408.81
(tp)in [for L= 1 ] = 10.9544

Therefore, the following matching expression is given:

t t
L_[X; Ly=lft :L_L,; (14)
Which can easily be written as
t
Ip Ly=lft :L_?I/ L,=1500 ft (15)
Replacing the reading values from Figs. 2 and 6.
10,9544 — 24647408.81 (16)

1500"

Then, n =2 is determined using Eq.(16). Therefore, after
dividing the dimensionless time of Fig. 1 by L/, a unique
curve, as given in Fig. 4, will be obtained.

A similar treatment was first performed on Fig. 2 for the
anisotropy index. As seen on that plot, the inflection point
increases as the anisotropy index increases its effect in the
denominator. An n value of 0.5 was found with a procedure
similar to the one used for the well-to-fault distance case. In
Fig. 3, the effect of the anisotropy angle, &, is presented. As
0 increases, the inflection point shows up earlier, meaning
that its effect goes in the numerator. The n exponent for this
case is the unity, but the effect changes when 6> #/2. Then,
finally, the unified behavior is obtained when the
dimensionless time is multiplied by a correction factor, Grc,
and divided by the product of the square root of the
anisotropy index times the squared well-to-fault distance.
The range of angles applied for Grc is given in Eq.(19). This
also works for the constant-pressure boundary case, as shown
in Fig. 4. Fig. 6 presents a unified dimensionless pressure
derivative behavior against Grc tp/(1{>°L/). In other words,
universal dimensionless pressure derivative behavior is
obtained. From that plot, the inflection time, fnr—once the
fault has been felt—for all cases is given by the following:
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Figure 1. Effect of fault-well distance, L;, on the pressure derivative behavior
for isotropic systems
Source: Authors
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Figure 2. Effect of anisotropy index, /4, on the pressure derivative behavior
for anisotropic systems; 6= 0 and L,= 1500 ft.
Source: Authors
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Figure 3. Effect of anisotropy angle on the pressure derivative behavior for
anisotropic systems; [, = 10 and L,= 1500 ft.
Source: Authors
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The distance from the well to the linear boundary is
obtained from the following:

L =— 18
7 60.993 (18

The anisotropy angle correction factor, Grc, is given by
the below:
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Figure 4. Mixed effect of anisotropy index, I,; anisotropy angle, &, and
discontinuity-well distance, L;, on the pressure derivative behavior for an
anisotropic system

Source: Authors
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Figure 5. Pressure derivative behavior for isotropic systems; L= 1 ft.
Source: Authors
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Figure 6. Unified pressure derivative behavior for anisotropic system with
different values of anisotropy index, I;; anisotropy angle, & and
discontinuity-well distance, Ly

Source: Authors
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1if 6=0
(19)
23if0<rx/4
2.80°if0<f<rz/2anda =

18if 7/4<0<7/2

For the sealing-fault case, the inflection time is better
obtained using the maximum point obtained on the second
pressure derivative curve.

It is also shown in Fig. 6 that the radial flow regime ends
at a dimensionless time of 0.2077, meaning

0.
052
1L

tp),, =0.2077 (20)

Replacing Eq.(11) in the above equation leads to

0.00026376, kt,,

=0.2077
I guc

(21)
From which the below is developed:

. 1 Okt
r = 0.5
25.0142\ 1% guc,

This is very close to the expression given by Guira et al.
(2002) for an isotropic case:

(22)

L1 |&,

Puc,

(23)

As observed in Figs. 5 and 7, the constant-pressure single-
boundary case has an especial feature. Radial stabilization
develops once the boundary has been reached by the transient
wave, and the pressure derivative curve displays a negative
unit-slope line. After the unification of the dimensionless
pressure derivative curve, the governing equation for such a
line obtained from the regression analysis is

-1
Orclp,,
13‘5L§

Where rnusi stands for radial negative unit-Slope
intersection. Replacing the dimensionless quantities given by
Egs. (11) and (13) in Eq.(24) and solving for the well-to-
discontinuity distance yields the following:

(t,*P,"),,. =031 1[ (24)

]; \/hHFCtnus (t * AP )nuf (25)

Lf = 0.5
408.0774u qBI" gc,

100

z : [ =715 hr

- [¢*APY), =9.05 psi T L]

S T R i
- [ =1.13nr

0.01 0.1 1 10 100
t, hr

Figure 7. Pressure derivative versus time log—log plot for example 1
Source: Authors

The point of intersection between the radial flow regime
line and the radial stabilization negative unit-slope line is a
unique feature; by equating the right side of Eq.(24) to one
half and solving for the well-to-discontinuity distance, it is
obtained:

L1 Okt .
748567\ 1% duc,

(26)
Finally, the reservoir permeability is found from an
expression given by Tiab (1995):

70.6quB
h(t*AP')

k= @7)

xy

The gas equations are provided in appendix A.
4. Examples
4.1. Synthetic example 1

Using the data given in Table 1 and the pressure
derivative plot of Fig. 7, find the distance from the well to a
sealing fault.

Solution. The following information was read from Fig. 7.

(t*AP’), = 9.05 psi
tint=7.15 hr

tre=1.13 hr

Find reservoir permeability using Eq.(27):

k=Jkk, =

Find the anisotropy angle factor using Eq.(19):

70.6(500)(2.5)(1.23)
(30)(9.05)

=119.94 md

O, =2.80"% =2.8(x /6)"*"' =1.28456

Find the well-fault distance using Eqgs. (18) and (22):
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Reservoir permeability is found with Eq.(27), and the

veo T e P AP, — 882 psi]1] ) ! ]
[L=0nh] | "SR T anisotropy angle factor is found using Eq.(19):
S _ 70.6(250)(3)(1.25
reroo e F= Jik = 2002023 _ 55045 0g
7 ’ (100)(8.82)
Y I
<
. T O, =2.80"% =2.8(57/12)"*¢"» =5.28066
|(t* AP, =0.05 psi =
P 52}'1 Find the distance from the well to the linear boundary
LV;V_WW% using Egs. (22), (25) and (26):

0.01 0.1 1 10 100
t, hr
Figure 8. Pressure derivative versus time log—log plot for example 2 L = 1 (5.28066)(250)(1.13) =270.62 ft
Source: Authors 7250142 (30"%)(0.2)(2.5)(1x107%)
Table 1. . L= 250 (39)(5.280660)567.52)(0.0526 9553 ft
Reservoir and fluid data for examples 408.0774(3) \| (250)(1.25)(30™°)(0.2)(1x107")
PARAMETER Example 1 Example 2 Field Case
s . 0.5 0.3 0.3
h, ft. 100 30 70 1 (5.28066)(250)(0.12)
9. % 15 20 12 L = 18567 \/ (30°)(0.2)(2.5)(1x10°) 27761
14, md 18 30 5 ’ ’ ’
7 92.53
k , md 120 220 If the system were isotropic, the distance from the well to
6, Rad 6 Sal12 6 the linear boundary would be estimated to be the following
¢, bbl/D 500 250 550 bv usine Ba.(23):
B, tb/STB 123 125 1.324 y using Eq.(23):
¢, 1/psi 1x10°¢ 1x10°¢ 1.328x107°
1, cp 2.5 3 1.26 .
Ly ft 415 278 L= ! / (250)0 12)_6 =556.33ft
Source: Authors 24.06 §(0.2)(3)(1x10™7)
4.3. Field example
1 1.28456)(120)(7.1 .
;= \f (0'5 8456)120)(7 5)_6 =431.5ft [14] presented field data for a pressure test run in a well
T 60.993'\(187)(0.15)(2.5)(1x107) near a sealing fault in an anisotropic system. Pressure and

pressure derivative versus time data are provided in Fig. 9.
Finding the distance from well to the fault is required.

1 (1.28456)(120)(1.13)
250122 87 0.15) 25y 1x10) T
: (1877)(0.15)(2.5)(1x ) Solution. The following information was taken from Fig. 9.

If the system were isotropic, the well-fault distance ¢.,=3 hr tine= 13 hr

would be estimated with Eq. (23).
Find the anisotropy angle factor using Eq.(19):

1 (120)(1.13)
L, = =790.35 ft .
724,06 \/ (0.15)(2.5)(1x10™°) 0, =2.80"% =2.8(x/6)*"7=1.28456

4.2. Synthetic example 2 Find the well-fault distance using Eqs. (18) and (22):

Find the distance from the well to a constant-pressure I 1 (1.28456)(92.53)(18) 3579 £t
linear boundary using the data given in Table 1 and the T 03 Sy o2
pressure derivative plot of Fig. 8. 60.993 Y (57)(0.12)(1.26)(1.328x107)

Solution. The following data were taken from Fig. 8. I 1 (1.28456)(92.53)(3) _ 3563 ft

7 25.0142 1\ (5%°)(0.12)(1.26)(1.328x10™) ’
(t*AP’) = 8.82 psi tre=10.12 hr
trmsi = 0.43 hr A D ) If the system were isotropic, the well-to-fault distance

s = 67.52 hr (t*AP”)us = 0.05 psi would be estimated using Eq.(23).
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Figure 9. Pressure derivative versus time log—log plot for the field example
Source: Authors

0.0001 0.001 100 1000

Table 2.
Deviation errors from the working examples
Example 1, Ly=415 ft. Field Example 1, Ly= 370 ft.*

Abs. Abs.
Eq. Ly, ft. Error, % Eq. Ly, ft. Error, %
18 431.5 3.97 18 357.9 33
22 418.3 0.80 22 356.3 3.7
23 790.35 90.45 23 488.7 32.1
Example 2, L,=278 ft.
Abs.
Eq. Ly, ft. Error, %
22 270.62 2.65
25 255.30 8.17
26 277.60 0.14
23 556.33 100.12
(*) Commercial interpretation software
Source: Authors
[— 025390 _jg374
7 24.06\(0.12)(1.26)(1.328x10°)

[14] estimated L= 462.24 ft. The authors corrected the
apparent distance estimated with Eq.(23) by using a reading
from Fig. 9 by [23]. We found, however, that the correction
factor was not estimated well. Then, we interpreted the test
with a commercial software and found the well-to-fault
distance to be 370 ft. This value was then used as our
reference value for the estimation of the error.

5. Discussion of results

Table 2 provides the deviation error obtained for the
working exercises. The proposed equations provided error
values lower than 4%. The higher error was obtained from
Eq.(25), which uses any point on the negative unit slope line.

It is important to remark that the estimations provide
deviation errors higher than 30% for the actual field case and
even higher than 90% for the synthetic examples when the
system is dealt as an isotropic case.

6. Conclusions

1. Practical and accurate expressions using the unique
features of the pressure derivative plot were developed
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to determine the distance from a well to a linear
boundary (constant-pressure or sealing fault) in areal
anisotropic reservoirs. The expressions—successfully
tested with two simulated examples and one field case
example—simultaneously involve the anisotropy angle
and the anisotropic index. Most of the developed
expressions provided errors lower than 4%, except for
one expression that uses an arbitrary point on the
negative-unit-slope line.

The pressure derivative as a function of Grc tp/(1,L)
always displays the same behavior for wells near a linear
boundary. The anisotropy angle factor, Grc, has different
estimations if the angle is less or higher than 45°. The
relationship Orc tp/(1{°LP5) forms the basis of the
methodology developed in this work.

Determination of the well-discontinuity distance using
the isotropic formulae can provide errors even higher
than 100%. For the real example, the error was 32%.
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Nomenclature

B Volume factor, rb/STB
C Wellbore storage coefficient, bbl/psi
a Total system compressibility, psi’!
DDR  Dimensionless distance ratio
h Reservoir thickness, ft.
14 Areal anisotropic ratio or permeability ratio
k Reservoir horizontal permeability, md
ke Reservoir permeability in the x-direction, md
ky Reservoir permeability in the y-direction, md
Ly Distance from the well to the linear boundary, ft.
n Undetermined exponent
m(P)  Pseudopressure, psi?/cp
P Pressure, psi
Po Dimensionless pressure in the Laplace space
Pi Initial reservoir pressure, psi
Py Wellbore flowing pressure, psi
q Liquid flow rate, BPD
qs Gas flow rate, MSCF/D
Tw Wellbore radius, ft.
S Laplace parameter
s Skin factor
t Time, hr
t{(P)  Pseudotime, hr-cp/psi
ip Dimensionless time
tDa Dimensionless pseudotime
tp*Pp’  Dimensionless pressure derivative
(t*AP)  Pressure derivative
x x-direction
y y-direction

Greeks Symbols

¢  Porosity, fraction

u  Viscosity, cp

6  Angle, Rad
Orc  Anisotropy angle correction factor
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Suffices
app  Apparent of uncorrected
D Dimensionless
i Initial
Image
inf  Inflection
nus  Negative unit slope
r Radial
re  End ofradial
nusi Intercept of the radial flow and the negative unit slope
lines
true  True distance
wf" Well flowing
ws  Well static

APPENDIX A. Gas Reservoirs

The dimensionless pseudopressure
derivative are defined by the following:

and pseudopressure

_ kh[m(P)—m(P)]

m(P), =
P 1422.52¢,T an
_— ’
tD *m(P)vD — kh[t Am(P) ]
1422.52¢,T A2

[1] introduces the pseudotime function to account for the time
dependence of both gas viscosity and total system compressibility:

dt

t R
u(t)e,(t)

a

——

1

S

(A3)

This function is better defined as a pressure function given in hr
psi/cp:

(dt/dP) P

()= I u(p)e,(P)

Po

(A4)

Now, u and ¢/ are pressure-dependent properties. Eq.(A.4) can
be rewritten as follows:

~0.0002637kt
duc)r,

D
(A.5)

Including the pseudotime function, #(P), in Eq.(A.S5), the
dimensionless pseudotime is given by the below:

0.0002637k
— |t,(P)

w

(A.6)

By multiplying and then dividing by (uc:);, a similar Eq.to the
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general dimensionless time expression, Eq.(27), can be obtained.

1 =| LXO2O3TK Ny i, (P)]
¢(/uct )irw (A7)

With these new dimensionless quantities, Egs. (1), (17), (20)
and (21) will become the below:

(A.8)
L _ 1 epcl;tg(P)re
7 25.0142 179
. 4 (A9)
L = k \/ hOgct,(P),, [t * Am(P")],
= 0.5
1295.2521 qT 1,;°¢ (A.10)
I = 1 HFCBa(P)rnuxi
S 48.567 I7°¢
. 4 (A.11)

The reservoir permeability, [10], is given by the following:

_ 711.269,T
ke =k k, = i
7 h[t,(P)*Am'(P)].

(A.12)
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