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RESUMEN:  La técnica de redes neuronales es usada para modelar un PMSM. Una red recurrente multicapas 

predice el componente fundamental de la señal de corriente un paso adelante usando como entradas el componente 

fundamental de las señales de voltaje y la velocidad del motor. El modelo propuesto de PMSM puede ser 

implementado en un sistema de monitoreo de la condición del equipo para realizar labores de detección de fallas, 

evaluación de su integridad o del proceso de envejecimiento de éste. El modelo se valida usando un banco de 

pruebas para PMSM de 15 hp. El sistema de adquisición de datos es desarrollado usando Matlab
®
/Simulink

®
 con 

dSpace® como interfase con el hardware. El modelo mostró capacidades de generalización y un desempeño 

satisfactorio en la determinación de las componentes fundamentales de las corrientes en tiempo real bajo condiciones 

de no carga y fluctuaciones de esta. 

PALABRAS CLAVE:  Identificación de Sistemas, PMSM, Redes Neuronales, Redes Recurrentes. 

 

ABSTRACT:  A neural network based approach is applied to model a PMSM. A multilayer recurrent network 

provides a near term fundamental current prediction using as an input the fundamental components of the voltage 

signals and the speed. The PMSM model proposed can be implemented in a condition based maintenance to perform 

fault detection, integrity assessment and aging process.  The model is validated using a 15 hp PMSM experimental 

setup. The acquisition system is developed using Matlab
®
/Simulink

®
 with dSpace

®
 as an interface to the hardware, 

i.e. PMSM drive system. The model shows generalization capabilities and a satisfactory performance in the 

fundamental current determination on line under no load and load fluctuations.  
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1.      INTRODUCTION 

 

The number of applications of Permanent 

Magnet Synchronous Machines (PMSM) is 

steadily increasing as a result of the advantages 

attributed to this type of motor. PMSMs are 

found in power and positioning applications such 

as ship propulsion systems, robotics, machine 

tools,   etc.   The    main    reason   PMSM  is  so   

 

attractive  is   due to its  physical construction,  

which  consist  of permanent magnets mounted 

onto the rotor. This arrangement improves the 

efficiency and performance. PMSM presents 

several advantages compared with the induction 

motor, the most popular electromechanical 

actuator, such as: high power density, high air-

gap flux density, high-torque/inertia ratio, low 

package   weight,   less   copper   losses,       high  
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efficiency, and a small rotor for the same power 

output. 

  
Many real-world applications, such as adaptive 

control, adaptive filtering, adaptive prediction 

and Fault Detection and Diagnosis systems 

(FDD) require a model of the system to be 

available online while the system is in operation. 

The NN based PMSM model proposed in this 

study can be implemented particularly as a 

component of a FDD model based system to 

monitoring the electric condition of a PMSM and 

evaluate motor aging. 

 

The basic idea of a model based FDD is to 

compare measurements with computationally 

obtained values of the corresponding variables, 

from which residual signals can be constructed. 

The residuals provide the information to detect 

the fault.  

 

In fact, in a FDD system the residuals are 

generated by the comparison between a 

computational variable multiple time steps ahead 

(MSP) into the future with the present value of 

the variable. This time ahead is required to 

consider the computational time spent by the 

model to produce on line the signal to be 

compared. MSP is performed using a recursive 

approach based on a dynamic recurrent neural 

network [1]. This recursive approach is followed 

in this study and it is one of the advantages of 

the neural networks compared with other 

techniques such as support vector machines 

which training is a batch algorithm and does not 

exist a recursive algorithm [2].   

 

The modeling process for complex systems such 

as PMSM under load fluctuation demands 

methods which deal with high dimensionality, 

nonlinearity, and uncertainty. Therefore, 

alternative techniques to traditional linear and 

nonlinear modeling methods are needed.  

 

System identification is an experimental 

approach for determining the dynamic of a 

system from measured input/output data sets. It 

includes: experimental data sets, a particular 

model structure, the estimation of the model 

parameters and finally the validation of the 

identified model. A complete system 

identification process must cover the items 

mentioned above [3]. 

 

One such approach is Neural Networks (NN) 

modeling. NN are powerful empirical modeling 

tools that can be trained to represent complex 

multi-input multi-output nonlinear systems. NN 

have many advantageous features including 

parallel and distributed processing and an 

efficient non-linear mapping between inputs and 

outputs [4].  

 

NN have been also used in control applications. 

In [4-6] A multilayer feedfoward artificial neural 

networks speed PID controller for a PMSM are 

presented. In [4] on-line NN self tunning is 

developed and the NN is integrated with the 

vector control scheme of the PMSM drive. In [6-

8] an on-line adaptive NN based vector control 

of a PMSM are proposed. In this application the 

NN play both roles, system identification and 

speed control. 

 

Various types of NN structures have been used 

for modeling dynamic systems. Multilayers NN 

are universal approximator and have been 

utilized to provide an input-output representation 

of complex systems.  Among the available 

multilayer NN architectures the recurrent 

network has shown to be more robust than a plain 

feedfoward network when taking the 

accumulative error into account [8].  

 

In [1] is proposed to use a dynamic recurrent 

network in the form of an IIR filter as a multi-

step predictor for complex systems. Present and 

delayed observations of the measured system 

inputs and outputs, are utilized as inputs to the 

network. The proposed architecture includes 

local and global feedback. 

Some NN structures for modeling electrical 

motors have been proposed previously. Most of 

them have been focused in modeling induction 

machines. In [9] a NN model of an induction 

motor based on a NARX structures is used to 

simulate the speed using as input the voltage 

signal.  In [10] a NN model for simulating the 

three phase currents in an induction motor is 

proposed based on multilayer recurrent NN; 

however, the load fluctuation is not addressed. 
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In this paper, a near term fundamental current 

predictor of a PMSM is proposed using a 

recurrent (global and local feedback) multilayer 

network with delayed connections of the voltage 

and the speed signals as inputs. This architecture 

provides to the neural network the ability to 

capture the complex dynamic associated to the 

operation of the PMSM under load fluctuation. 

 

 

2.      METHODOLOGY 

 

2.1     NN for Sytem Identification  

 

In the last decade there has been a growing 

interest in identification methods based on neural 

networks [11]. The recent success of dynamic 

recurrent neural networks as semiparametric 

approximators for modeling highly complex 

systems offers the potential for broadening the 

industrial acceptance of model-based system 

identification methods [12]. Neural networks are 

universal approximators in that a sufficiently 

large network can implement any function to any 

desired degree of accuracy. By presenting a 

network with samples from a complex system 

and training it to output subsequent values, the 

network can be trained to approximate the 

dynamics, which underlie the system. The 

network, once trained, can then be used to 

generalize and predict states that it has not been 

exposed to.  

 

The use of NN as a modeling tool involves some 

issues such as: NN architecture, the number of 

neurons and layers, the activation functions, the 

appropriate training data set and the suitable 

learning algorithm.  

 

Recurrent networks are multilayer networks 

which have at least one delayed feedback loop. 

This means an output of a layer feeds back to 

any proceeding layer. In addition, some recurrent 

networks have delays inputs (Recurrent dynamic 

network). These delays give the network partial 

memory due to the fact that the hidden layers 

and the input layer receive data at time t but also 

at time t-p, where p is the number of delayed 

samples. This makes recurrent networks 

powerful in approximating functions depending 

on time.  

From the computational point of view, a 

dynamic neural structure that contains feedback 

may provide more computational advantages 

than a static neural structure, which contains 

only a feedforward neural structure. In general, a 

small feedback system is equivalent to a large 

and possibly infinite feedforward system [11]. A 

well-known example is an infinite order finite 

impulse response (FIR) filter is required to 

emulate a single-pole infinite impulse response 

(IIR).  

A. The effect of load change on a Synchronous 

Motor  

If a load is attached to the shaft of a synchronous 

motor, the motor will develop enough torque to 

keep the motor and its load turning at a 

synchronous speed. If the load on the shaft is 

increased, the rotor will initially slow down and 

the induced torque increases. The increase in 

induced torque eventually speeds the rotor back 

up, and the motor again turns at synchronous 

speed but with a large torque. Figure 1 shows the 

behavior of the speed under a load fluctuation in 

the PMSM used in this study. The load is applied 

using a ramp of 2 seconds from no load 

condition to 20% of the rated torque and a ramp 

down of 2 seconds from 20% of the rated torque 

to no load condition. It should be noted, the 

settling time of the speed control implemented in 

the motor is around 2 seconds. This value is of 

great importance in the determination of the 

training set for the training of the neural 

network. The raise in the torque at constant 

speed yields the increasing of the input power to 

the machine via current increase. 

 

2.2      Neural Network Model Development  
 

Because of the complexity of the dynamic 

behavior in the PMSM under load fluctuation 

and the difficulty associated in establishing an 

exact mathematical formulation to develop an 

explicit model of the PMSM with conventional 

methods, a nonlinear empirical model using a 

NN is developed. In this paper, it is proposed to 

utilize a multi-layer dynamic recurrent NN with 

local feedback of the hidden nodes and global 

feedback, as shown in Figure 2. Local feedback 
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implies use of delayed hidden node outputs as 

hidden node inputs, whereas global feedback is 

produced by the connection of delayed networks 

outputs as network inputs. This architecture 

provides a network in the form of a nonlinear 

infinite impulse response (IIR) filter.  

 

The operation of a recurrent NN predictor that 

employs global feedback can be represented as 

(1): 

$
( ) ( ) ( ) ( )
$ ( ) $ ( )

, 1 , 2 ,...,

1 ,..., ,

u k u k u k u k p
y

y k y k q W

− − − 
 = Φ
 − − 

    (1) 

where Φ(•) represents the nonlinear mapping of 

the NN, u is the inputs , ŷ  is the simulated 

values and W is the parameters associated to the 

NN.  

 

 
Figure 1. Effect of the load in the speed in 

PMSM(Torque=20% of rated value) 

 

This NN architecture provides the capability to 

predict the output several steps into the future 

without the availability of actual outputs. 

Empirical models with predictive capabilities are 

desirable in fault monitoring and diagnosis 

applications. The implemented NN consists of an 

input layer, a hidden layer, and an output layer. 

Each of the processing elements of a MLP 

network is governed by (2). 
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for i = 1,…,N[l] (the node index), and l = 1,….,l 

(the layer index), where x[l,i] is the i
th
 node output 

of the l
th
 layer, b[l,i] is the bias, and σ[l,i](•)  is 

the activation function of the i
th
 node in the l

th
 

layer. The relationship between inputs and 

outputs in a multilayer NN can be expressed 

using a general nonlinear input-output model, 

(3): 
 

$ ( ) ( )( ), ;y k W f u k W=                      (3) 

 

where W is the weight matrix determined by the 

learning algorithm, f (·) represents the nonlinear 

mapping of the vector input using any activation 

function. In this study, the tansig function is 

used in the hidden layer and purelin is used in 

the output layer. The input vector is defined as: 
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                                                                                  (4) 

  

where NS represents a non-stationary signal, 
NS

fV are the actual normalized values of the 3 

phases line voltages: 
 

 ,,
f f f

NS NS NS NS
f ab bc caV V V V =   

            (5) 

 

The normalized values of currents and voltages 

are obtained through the relation between the 

present current and voltage data and the 

maximum values of current and voltage 

respectively. The limit values of current and 

voltage are getting from the PMSM data sheet 

used in the test bench. The vector 
NS

fI$ is the 

three normalized predicted phase currents:   
 

, ,f f f

NS NS NS NS
f a b cI I I I

 =   
$ $ $ $              (6) 

 

The variable v
NS

 is the normalized rotational 

velocity of the rotor with respect to the 

maximum values indicated in the data sheet.  

The hidden layer is composed of 6 neurons with 

delayed local feedback employed in each neuron. 

The hidden layer node number is chosen 

considering the balance of accuracy and network 
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size.  The output layer, with global feedback, has 

3 nodes, which correspond to the three phase-

current predictions as shown in (7). 
 

( ) ( )[ ]ttItty
NS
f 1ˆ1ˆ +=+              (7) 
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 Figure 2. General structure of multilayer NN 

 

2.3      Model Training and Validation 

 

Generally, training recurrent dynamic networks 

is computationally intensive and in this work has 

been difficult due to the time dependencies 

present in their architectures. Recurrent networks 

exhibit complex error surfaces characterized by 

very narrow valleys which bottoms are often 

cusps. Additionally, initial conditions assigned in 

the training stage and variations in the input 

sequence can produce spurious valleys in the 

error surface [14].  

 

The goal of the NN training is to produce a 

network, which yield small errors on the training 

set, but which will also respond properly to 

novel inputs (regulation). Therefore, in order to 

provide appropriate training of the model 

consideration of issues such as: regulation, initial 

values of the parameters, as well as the need to 

train the NN several times, must be addressed in 

order to achieve optimal results. 

 

The neural network model proposed is trained 

using Bayesian regulation conveniently 

implemented within the framework of the 

Levenberg-Marquardt algorithm. 

Regulation is used to avoid an over fitted 

network and to produce a network that 

generalizes well [15]. This approach constrains 

the size of the network weights, adding a penalty 

term proportional to the sum of the squares of 

the weights (msw) and biases to the performance 

function. As can be seen, the objective function 

becomes a maximum penalty likelihood 

estimation procedure as shown in (8). 

 
msereg mse mswβ α= +                       (8) 

 

where α and β are objective function parameters. 

This approach provides to the neural network a 

smooth response. The values of α and β 
determine the response of the NN. When α << β, 
over fitting of the NN occurs. If α >> β the NN 

does not adequately fit the training data. In [16] 

one approach is proposed to determine the 

optimal regulation parameter based on a 

Bayesian framework. In this framework, the 

weights and biases of the network are assumed 

to be random variables with specified 

distributions. The regularization parameters are 

related to the unknown variances associated with 

these distributions. These parameters can be 

estimated using statistical techniques.  

The Levenberg-Marquardt algorithm is a 

variation of Newton’s method and was designed 

for minimizing functions that are sums of 

squares of other nonlinear functions [17]. The 

algorithm speeds up the training by employing 

an approximation of the Hessian matrix (9). The 

gradient is computed via (10),  
 

TH J J=  (9) 

 
Tg J e=  (10) 

 

where J  is the Jacobian matrix that contains 

first derivatives of the network errors with 

respect to the weights and biases, and e is a 

vector of network errors. 

 

The Jacobian matrix is much less complex than 

computing the Hessian matrix. The Levenberg-

Marquardt algorithm uses this approximation to 

the Hessian matrix in the following Newton-like 

update: 
 

1

1
T T

k kx x J J I J eµ
−

+
 = − +   (11) 
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where xk is a vector of current weights and 

biases. The Levenberg-Marquardt algorithm is 

an accommodative approach between Gauss-

Newton’s method (faster and more accurate near 

an error minimum) and gradient descent method 

(guaranteed convergence) based on the adaptive 

value of µ. If scalar µ is zero then the update 

process described by (11) resembles Newton’s 

method using the approximate Hessian matrix. If 

µ is large, then this process becomes gradient 

descent method with a small step size. 

 

A complete description of the Levenberg-

Marquardt Backpropagation (LMBP) algorithm 

can be found in [15].  A detailed discussion 

about the implementation of Bayesian 

Regulation in combination with Levenberg-

Marquardt training is presented in [15]. 

During the NN model training each layer’s 

weights and biases are initializing according to 

the method proposed for Nguyen and Widrow in 

[18]. This method for setting the initial weights 

of hidden layers of a multilayer neural network 

provides a considerable reduction in training 

time. Using the Nguyen and Widrow 

initialization algorithm, the values of weights 

and bias are assigned at the beginning of the 

training, then the network is trained and each 

hidden neuron still has the freedom to adjust its 

own values during the training process. 

 

The proposed NN is trained offline using the 

collected values at 625 Hz of sampling 

frequency  followed  by  scaling  in  the range of  

[-1:1] of the magnitude of the fundamental 

components of the voltage and the rotational 

velocity as inputs. The targets are the normalized 

values of the magnitudes of the fundamental 

components of the three phase currents. The 

training data set consists of 5487 samples; the 

number of parameters to be calculated (weights 

and biases) during the training stage is 579 for 

the neural network proposed. 

 

Tests in the lab showed a dependency between 

the percentages of the rated load applied using a 

ramp and the speed settling time. Particularly, 

for a larger load the settling time is also bigger. 

PMSM speed settling time plays an important 

role in the dynamic behavior of the currents. It is 

observed multiple current values for a unique 

value of speed when the load is applied in a 

ramp using a time below the settling time.  

 

Furthermore, longer time involves more number 

of samples to take in a loading process of the 

motor. In addition, the memory requirement of 

the Levenberg-Marquardt algorithm is relatively 

large because LM uses the Jacobian matrix 

which in the case of the network implemented 

has dimensions of Q x n, where Q is the number 

of the training sets and n is the number of 

weights and biases.  This large matrix restricts 

the size of the training set due to limitations in 

processing capacity of the test bench.  

Because the reasons explained above the training 

set is chosen under size consideration. The 

training data set is comprised of measurements 

taken by loading the motor between no-load and 

30% of the rated torque applied by ramping for 2 

seconds, followed by 2 seconds of constant 30 % 

of rated torque and then a ramp down for 2 

seconds to no-load, as shown in Figure 3. 

Currently, the torque ramp up and down 

configuration has been implemented in 

synchronic machines which startup is executed 

under torque control. This arrangement has the 

benefit that the mechanical starting behavior of 

the equipment driven by the motor will be much 

softer than when using a step torque for starting 

and stopping. Additionally the torque ramp is 

chosen to protect the test bench. Test showed a 

mechanical impact in the PMSM produced by 

the quick change between no load and load 

condition when the torque step is applied. 

The criterion established for checking if the 

network has been trained for a sufficient number 

of iterations to ensure convergence is obtained 

when the values of the Sum Squared Error (SSE) 

is low and is relatively constant over at least ten 

epochs. High variation in this term after each 

iteration is a clear sign of an unstable 

convergence. Additionally the training algorithm 

used provides a measure of how many network 

parameters (weights and biases) out of the total 

are being effectively used by the network. This 

effective number of parameters should remain 

approximately the same, no matter how large the 

number of parameters in the network becomes. 

(This assumes that the network has been trained 

for a sufficient number of iterations to ensure 

convergence.) In the case of the performed 
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training, the neural network achieved 

convergence when the value of SSE was 

approximately 1. The use of regulation avoids 

the need to use a validation data set. 
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Figure 3. Load applied to obtain the training set 

 

2.4      Experimental Approach 

 

In the proposed system identification system, the 
data acquisition system allows the sampling of 
V
NS 

(t), If
NS

(t) and v(t).  The signals are sampled at 
625 Hz and the voltage and current signals are 
filtered using bandpass filters to obtain the 
fundamental components of each phase i.e. Vf 
NS

(t) and If
NS

(t).  

The proposed neural network model is 
experimentally validated using a system which 
consists of a 28.8 kVA variable frequency drive 
connected to an 11.25 kW, 640 V, 60 Hz, Y-
connected 8-pole PMSM. A dc motor is 
mechanically coupled to the PMSM to serve as a 
load (see Figure 4).  

During the experiments, the load is changed by 
varying the armature resistance of the dc motor, 
in order to emulate a load fluctuation condition, 
e.g. increasing or decreasing the load from 0% up 
to 45%.  

The system is developed using 
MATLAB


/Simulink with dSPACE


 as an 

interface to the data acquisition hardware and 
PMSM drive system. The fully developed model 
is applied to the electrical system and 
performance can be studied in dSPACE


, which 

is used to display and record the line voltages, 
line currents, predicted values of current and the 
torque signal. 

 
 

3.      EXPERIMENTAL RESULTS 

 

A series of tests are designed to demonstrate the 

robustness and performance using the proposed 

system covering a wide variety of operating 

conditions at different load levels. 

 

In testing the performance of the developed 

network, the normalized mean square error and 

the absolute mean error are used. The testing 

data set comprises of measurements obtained 

from no load to 10%, 20%, 30%, 40%, and 45% 

of the rated torque respectively, which are 

entirely different than the ones used in the 

training data set in order to evaluate the 

generalization performance of the network. In 

addition, a series of tests are performed for 45% 

of the rated torque using different ramp slopes to 

introduce the load to the PMSM. Although the 

ramps are different to the ones used in the 

training stage, all of them are configured to 

produce ramps in a greater  time to the settling 

time. The results are summarized in Tables I and 

II in terms of MSE (mean squared error) and 

Mean error. Tables I and II demonstrate the 

generalization performance of the network up to 

45% of the rated torque. 

In Figure 5 is shown the efficacy of the model 

implemented in tracking the variations of the 

current in phase A, when the load coupled to the 

motor is changing. Figure 5 shows the actual 

value of current Ia, the simulated value of the 

current Iasim, the variation in the torque and the 

residuals.  
 

 
Figure 4.  PMSM experimental test bed 

 

 

Figures 6-11 show the deviation in the simulated 

current for a load fluctuation condition in each 

phase via residuals magnitude. The residuals or 

errors are produced by comparing the three 

phase current predictions and the actual values of 
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the three phase currents. The residual for phase 

A (phases B and C are similar) is expressed in 

(12): 

 

( ) ( ) ( )aa ar t I t I t = − 
$                                  (12) 

 

where Ia is the actual value of current in phase A 

at time t and aI$ is the predicted value of current 

in phase A at time t. 

 

As shown in Figures 5-11. The residual 

magnitudes change depending on the PMSM’s 

load condition. As noted in Figures 7-11, the NN 

model turn out the largest residuals when the 

load condition is going up from no load to load 

condition and going down towards no load 

condition. This behavior can be attributed to 

factors such as the time delay generated due to 

on line operation and the overshooting produced 

during the change of the variables in the model.  

Additionally, it can be observed the variation in 

the magnitude of residuals as a result of the 

maximum load change. In summary, the 

performance of the model developed is affected 

slightly by the variation in the load fluctuation. 

 
Table 1. Generalization performance of the network 

from no torque up to 45% of the rated torque 

Rated 

torque 

(%) 

MSE (%) Mean |Error (%)| 

 IA(t) IB(t) IC(t) IA(t) IB(t) IC(t) 

0 1.44 1.43 1.47 0.12 0.21 0.01 

10 1.13 1.16 1.17 0.10 0.20 0.01 

20 0.68 0.71 0.73 0.05 0.11 0.02 

30 0.35 0.41 0.35 0.04 0.08 0.04 

40 1.16 1.2 1.17 0.14 0.14 0.03 

45 2.26 2.20 2.25 0.15 0.16 0.03 

 

Table 2. Generalization performance of the network 

for 45% of the rated torque using different ramp 

slopes 

Slope  MSE (%) Mean |Error (%)| 
 IA(t) IB(t) IC(t) IA(t) IB(t) IC(t) 

0.175 0.41 0.48 0.41 0.07 0.05 0.01 

0.14 0.53 0.57 0.59 0.12 0.12 0.02 

0.12 0.36 0.40 0.35 0.01 0.001 0.07 

0.0875 0.33 0.35 0.33 0.01 0.01 0.01 

 

 

4.      CONCLUSIONS 

 

The NN based approach to model a PMSM under 

load fluctuation proposed shows its efficacy in 

performing current prediction when the PMSM is 

running under different conditions of load. It is 

noted, that experimentally the load fluctuation 

condition does not produce any significant 

increase in the residuals in each phase studied 

from no load condition up to 45% of the rated 

torque.   
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Figure 5. Actual and simulated fundamental 

component current phase A under load fluctuation  
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Figure 6. Residuals phase A under load fluctuation 

(0 to 30% of rated torque) 
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Figure 7. Residuals phase B under load fluctuation 

(0 to 30% of rated torque) 
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Figure 8. Residuals phase C under load fluctuation 

(0 to 30% of rated torque) 
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Figure 9. Residuals phase A under load fluctuation 

(0 to 20% of rated torque) 
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Figure 10. Residuals phase B under load 

fluctuation (0 to 20% of rated torque) 
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Figure 11. Residuals phase C under load 

fluctuation (0 to 20% of rated torque) 
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