
Introduction

Glass is usually related to a material with high chemical 
durability. However, its stability depends on the chemical 
composition and, therefore, the strength and distribution of 
the chemical bonds in the glass matrix.

Historical glasses are formed by a former oxide (SiO2), flux 
oxides which decrease the melting temperature of the 
glass (Na2O and K2O), and stabilizer oxides which create 
bridges in the structure to increase the chemical stability 
(CaO and MgO). The presence of a low content of alkaline 
oxides, alkaline ions with low ionic radius (Li+ < Na+ < K+) 

and the replacement of alkaline ions by Ca2 + or Mg2+ induce 
a high structural packing of the glass that favors their 
chemical durability (Fernández Navarro 2003). However, 
if the chemical composition of the glass is not balanced 
(high content of flux and low content of stabilizers), the 
chemical resistance decreases, accelerating the degradation 
rate. These low stable formulas can be due to an incorrect 
production technology, an over-purification of raw materials 
or a wrong batch formulation (Kunicki-Goldfinger 2003). 

Another important factor for glass alteration is the 
environmental conditions. In outdoor environments, there 
are several factors that can react with the glass surface. The 
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made, using a mixture of n-butylmethacrylate and acetone 
(10:90 wt. %) as binding medium. This methodology agrees 
with the recommendation of the Corpus Vitrearum for the 
stained-glass analyses.

For MNAA glassworks, the analyses had to be done in 
situ in the museum, by non-invasive techniques such as  
portable micro-X-ray fluorescence (µ-EDXRF). The analyses 
were therefore achieved using a portable spectrometer 
ArtTAX 800, Bruker (Billerica, MA, USA). It operates with 
a molybdenum (Mo) X-ray source, focusing polycapillary 
lens and electro-thermally cooled xFlash (Si drift) detector, 
with 170 eV resolution. The accurate positioning system 
and polycapillary optics enabled a small area of primary 
radiation (70 µm) at the sample. The excitation and 
detection paths can be purged with helium to allow the 
detection of low Z elements down to aluminium. Spectra 
were acquired under the following conditions: voltage 40 
kV, intensity 0.6 mA and live time of 360 s. Helium purging 
was used to allow the determination of elements down 
to aluminium. Each glass was analysed in (at least) three 
different areas. Quantitative analyses were carried out with 
the WinAXIL program, making use of spectra obtained 
from glass standards (A, B, C, and D from Corning Museum 
of Glass, Corning, NY, USA). All CMOG glass standards were 
used to validate the quantitative procedure.

In-depth characterization of the corrosion processes were 
obtained with the production and use of replica samples, 
with similar composition to the historical materials. The 
methodology used for this study was adopted in VICARTE 
(Glass and Ceramics for the Arts) Research Unit since 2012 
(Rodrigues et al. 2014), where through historical techniques 
– by blowing and fire-polishing the surfaces – they become 
as close as possible to the real historic ones. This revealed 
to be an important factor for the understanding of the 
alteration of these surfaces in the initial state, hence the 
composition of the glass surface is considered, as well as 
the chemistry of surface layers formed during the glass 
samples production.

Case Studies

—Crizzling in an outdoor environment: Cathedral of Girona

The stained-glass rose window “La Asunción de la Virgen 
María” (“Assumption of the Virgin Mary”) is located in 
the west façade of the Cathedral of Girona since the 18th 
century. According to some documents from the cathedral, 
their glasses were imported from Venetia (Italy) (Palomar 
et al. 2011; Palomar 2013).

All the analyzed samples presented an advance state of 
alteration on their external surface. They showed several 
fissures and crystalline deposits inside some cracks 
[figure 1 a]. Even, the accumulation of deposits raised the 
dealkalinized areas that caused their detachment [figure 
1 b]. The morphology of the cavity, with conchoidal form, 

most aggressive ones are rain, wind, pollution, and aerosols 
(Woisetschläger et al. 2000; Munier et al. 2002; Melcher 
and Schreiner 2005; Melcher et al. 2008; Gentaz et al. 2011; 
Lombardo et al. 2014; Palomar et al. 2018; Palomar et al. 
2019). In an indoor environment, these alteration agents 
are minimized; however, high environmental humidity and 
volatile organic compounds (VOCs), mainly the formic acid 
from the wood of the furniture, can accelerate the alteration 
mechanism.

The non-balanced glasses are especially susceptible to 
be altered. Their fast degradation frequently produces 
transparency loss, color change, the appearance of drops 
on the surface, salts, alteration layers, cracking, peeling 
and fracture, among others (Kunicki-Goldfinger 2008). This 
process, denominated crizzling, has been observed in soda, 
potash, mixed-alkali and lead silicate glass with low content 
of CaO and MgO, and predominantly in glasses from the 
17th to 19th centuries from Italy, UK, and Central Europe. 
The crizzling is a severe pathology on glasses, observed 
generally in indoor environments; however, it can be also 
produced in external environments. 

The main objective of this study is to characterize the effect 
of two different atmospheres on historical unbalanced 
glasses. For that, two sets of historical samples from the 
Cathedral of Girona, Spain (outdoor environment) and 
Museu Nacional de Arte Antiga (MNAA), Portugal (indoor 
environment) were characterized and compared.

Characterization techniques

The glass samples studied were characterized by the 
following techniques: optical microscopy (OM), X-ray 
fluorescence (XRF) spectrometry, and micro energy 
dispersive XRF, besides visual inspection.

OM was carried out by a Leica MZ16 reflected light 
microscope equipped with a Leica DC300 camera for 
Girona samples. The microscopic documentation in the 
case of MNAA replica samples was carried out using a light 
microscope (Axioplan 2, Zeiss) with digital camera (Nikon 
DMX). The whole surface area was observed in order to 
identify surface features.

For Girona samples, semi-quantitative chemical analysis 
by XRF was carried out by a PANalytical Axios wavelength 
dispersed X-ray spectrometer equipped with a tube of 
rhodium of 4 kW and 60 kV. Analytical determinations were 
undertaken through the standard-less analytical software 
IQ+ (PANalytical) based on fundamental parameters from 
synthetic oxides and well-characterized natural minerals. 
In addition, Sheffield glass nos. 7 and 10 (Society of Glass 
Technology) are commonly used as internal routine control 
standards. Powder samples (1 g approx.) for bulk XRF 
analysis were prepared by grinding body glass fragments, 
with their most external surfaces removed by polishing, in 
an agate mortar. After that, pressed boric acid pellets were 
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pointed out that the detachment was mechanical instead 
of chemical, where the alteration front use to be continue 
or semispherical (Palomar 2018). It was also observed new 
fissures inside some cavities as result of the recurrence of 
the degradation process. The cracked surface presented 
a high content of SiO2, result of an advanced state of 
dealkalinization, with crystals of K2SO4 [figure 1 c]. The 
formation of this salt was due to the reaction of the K+-
ions leached from the glass and the SO2 from the polluted 
environment. K2CO3 was not detected because it has a 
higher solubility in aqueous solutions than K2SO4 (Palomar 
et al. 2017).

Regarding the surfaces exposed to the indoor 
environment, the surface of the sample G1 was completely 
fissured, as the outdoor surface, instead of the other three 
glasses that showed a net of aligned pits [figure 2 a and 
b]. This uncommon pathology could also be related to the 
same alteration mechanism but in a lesser degree. The 
humidity and condensation inside the building produced 
the dealkalinization process. The tensions between the 
silica gel layer and the bulk glass were liberated forming 
fissures. In this indoor environment, the fissures can trap 
the condensed humidity creating a stationary state inside 
them. The basic species formed inside the fissures as result 
of the alkaline attack caused the dynamic breakage of the 
glass, which forms the aligned pits (Palomar and Llorente 
2016). 

Figure 1.- a) Salts inside the fissures, b-c) detachment produced by salts growth. The attached table shows the results of the EDS 
microanalyses (wt. %).

Figure 2.- a-b) Net of aligned pits.

This different mechanism is directly related to the chemical 
composition of the glasses. All of them were potash-lime 
silicate glasses with a high content of K2O (~23 wt. %), SiO2 
(~65 wt. %), and relatively low content of CaO (~ 5 wt. %) 
[table 1]. However, small differences in their proportions 
are responsible for their different degree of alteration. The 
sample G1 has a higher ratio of alkaline oxides and silica 
([K2O+Na2O]/SiO2 = 0.42) and the highest ratio between 
the potash and the calcium oxides (K2O/CaO = 4.72). This 
relatively higher content of alkaline oxides introduced 
several points of reticular discontinuity that promote 
hydration and surface dealkalinization, accelerating the 
degradation process.

Samples Chemical composition (wt%)

Na2O SiO2 K2O CaO Others

G1 2.26 62.71 24.01 5.09 5.93

G2 2.20 66.69 22.60 5.29 3.22

G3 1.41 64.55 24.36 5.19 4.49

G4 2.16 67.51 21.68 5.89 2.76

Table 1.- Chemical composition of the stained glasses from the 
Cathedral of Girona

—Crizzling in an indoor environment: Museu Nacional de 
Arte Antiga (Portugal)

The glass objects in Museu Nacional de Arte Antiga 
(MNAA), Lisbon, Portugal, presented a high variability of 
compositions. The case study of the group of glassworks 
collected by Ferdinand II of Portugal is an especially 
valuable one. This collection represents a chronology 
which spanned many centuries, as well as multiple and 
widespread European production centers (Rodrigues 
and Martinho 2015). The glass objects with unbalanced 
compositions in this case were selected from 17th and 18th 

century productions, both Na- and K-rich compositions 
from the Venetian (or façon de Venise) and Bohemian types.
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The observations made under OM [figure 4 a and b] 
revealed that in the early stages (1 year exposure), 
the formations on the surface were consistent with 
the weeping phenomenon, which often precedes the 
crizzling (Koob, 2006). This occurred to both Na-rich 
and K-rich glass types, although to different extents. No 
crizzling was observed in these early stages.

These unbalanced compositions exposed to an indoor 
environment presented signs of alteration. Museum 
objects, both with high Na2O and K2O content, evidenced 
weeping and crizzling of the surfaces [figure 3 a-d].

Figure 3.- a) Weeping (droplets on the surface, left) and crizzling 
(cracking of the glass, right) on object MNAA1074vid, a Na-rich 
glass; b) crizzling on object MNAA1079vid, a Na-rich glass; c) 
weeping phenomenon on MNAA1009vid, probably K-rich glass; d) 
crizzling phenomenon on MNAA 1043vid, a K-rich glass with PbO.

Due to the impossibility to observe these glasses under 
the OM, or to perform more invasive analyses, some 
compositions similar to analyzed glasses were replicated 
[Table 2] and aged under museum-like conditions (45%, 
55%, 65% and 75% RH and room temperature) for the 
understanding of the early stages of the alteration 
processes.

Samples Chemical composition (wt%)

(n=3) Na2O SiO2 K2O CaO Others
MNAA1079vid 13.8* 79.0 2.73 3.47 1.0

Na1 17.2 70.5 3.00 5.00 4.3

Na2 14.8 70.5 3.15 5.25 6.3

MNAA1043vid n.d. 80.0 7.5 1.9 10.6**

K1 – 69.1 18.0 3.5 9.4**

* - both Na2O and MgO, obtained through µ-XRF semi-quantification. /** - includes addition of PbO /n.d. - not detected /§ - replica materials were produced 
taking into consideration that the historic glass surfaces analyzed were depleted in alkali and enriched in SiO2, as can be seen in the analyses in Figure 1

Table 2.- Chemical composition of the glassworks and replica materials from MNAA, Lisbon. 

Figure 4.- OM analyses to the MNAA replica materials aged over 1 
year. a) Na1 glass; b) K1 glass.

It seems that the cracking and flaking of the surface 
represents a later stage in an indoor environment, 
occurring specifically in unbalanced compositions. 
Moreover, crizzling was also more visible after washing, 
such as it was in the case of MNAA1079vid [figure 3 
b]. When no run-off occurs (indoor environment), the 
alkaline species can still be partially retained in the 
alteration layer (Alloteau et al., 2017). If some run-
off occurs or if the surfaces are washed, leached and 
probably even partially retained alkali is removed 
from the surface. The µ-EDXRF analyses performed 
on the surface of MNAA1079vid and MNAA1043vid 
clearly evidence a decrease in the alkaline species 
concentration, and an increase in silica (to around 80 
wt. %, which could not have been the original glass 
composition) [table 3].

Samples Chemical composition (wt%)

(n=1) Na2O SiO2 K2O CaO Others
MNAA1079vid Min. values More leached 5.7 84.8 2.7 3.5 3.3

Max. values Less leached 14.1 78.3 2.7 3.5 1.4

Table 3.- Chemical composition of two very different areas of the surface of the glasswork MNAA1079vid.
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Discussion

In both environments, water was the main alteration agent 
of the unbalanced glasses. The rain (outdoor environment), 
the condensation water and the high humidity (indoor and 
outdoor environments) favor the leaching of the alkaline 
oxides from the glass lattice by the hydrolytic attack 
(Reaction 1) and the ionic exchange (Reaction 2). As result, 
a hydrated surface layer and drops of alkaline hydroxide 
were formed on the surface. 

ΞSi-O-SiΞ + H2O <—>2 ΞSi-OH  Reaction 1)
ΞSi−O−X + H2O —> ΞSi−O−H + XOH (X: Na, K) (Reaction 

2)

In an outdoor environment, the rainwater can wash the 
leached ions (alkaline, alkaline-earth and hydroxyl ions) 
from the glass surface. The removal of hydroxyl ions favors 
the maintenance of a neutral pH in the glass surface 
(Palomar et al. 2019). In addition, during the drought 
periods, the alkaline ions leached from the glass can react 
with the atmospheric gases (CO2, SO2, NOX), solubilized in 
rainwater to form crystalline deposits (Reaction 3) (Melcher 
and Schreiner 2006).

2K+ + SO2 + 2OH- —> K2SO4 + H2  (Reaction 3)

In the indoor environment, the accumulation of the species 
[OH-] in the surface can cause two different alteration 
mechanisms. In a humid environment, the hygroscopicity 
of the alkaline hydroxide (KOH and NaOH) can attract more 
water accelerating the ionic exchange and the hydrolytic 
attack (Reaction 1 and 2) (Rodrigues et al. 2018a; Rodrigues 
et al. 2018b) and, therefore, the advance of the alteration 
layer to the glass bulk. However, if the content of [OH-] 
ions increases pH > 9, the siloxane bonds can be broken 
by the alkaline mechanism (Reaction 4). In both situations, 
the result is the formation of a thick alteration layer on the 
glass surface, and, in the worst scenario, it can produce the 
complete loss of the piece.

ΞSi-O-SiΞ + OH− —> ΞSiOH + ΞSiO- (Reaction 4)

If the altered glass piece is moved to an environment with 
lower humidity, the alteration layer could be fissured and 
cracked, favoring the detachment of the external layer 
[figure 1 b] and the drying of the surface drops. If salts are 
crystallized inside the fissures, they could force the cracks 
progression and the layer detachment.

In a more controlled and mild environment such as a 
museum, the evolution of the deterioration processes over 
time is dependent on the equilibrium (or fluctuations) of 
the humidity, temperature and its influence to a certain 
composition. On the other hand, the composition can 
be determinant for the reactivity with the water in the 
surrounding environment. This occurs since the hydration 
of the glass is much dependent on the alkali content 
(Reaction 2) and type (energies of complexation and 

hydration vary) (Alloteau et al., 2019). Due to the lack of 
washing away of the [OH−] ions trapped in the H-bonding 
network (or of their precursor H2O species H-bonded to 
non-bringing oxygens), a self-catalytic effect of the system 
towards hydrolysis can sometimes occur (Alloteau et al., 
2019). This is enhanced if the alkali content is high, since 
H-bound species are found in the alkali vicinity. Moreover, 
if not followed by repolymerization or rearrangement of 
the structure – being some structure more prone to form 
a passivation layer than other –, the leaching of the alkali 
ions can likely contribute to the opening of the porosity of 
the network and/or to the entrance of more environmental 
water molecules attracted to the surface by the leached 
species.

Conclusions

Glasses with unbalanced composition (flux vs. formers 
and stabilizers) are very susceptible to environmental 
agents, mainly the water (rainwater, condensation, and 
humidity). The excess of alkaline oxides and the low 
percentage of calcium and magnesium oxides in these 
glasses favors the ionic-exchange mechanism between 
the environmental water and the alkaline ions from the 
glass, which favors the formation of a silica gel layer on 
the surface. In an indoor environment, alkaline drops are 
formed and they stay on the surface favoring the alkaline 
attack, capable of breaking the siloxane Si–O–Si bonds in 
the glass. However, in outdoor environment, the contact 
with the rainwater is higher but it also removes the basic 
species. The formation of salts in dry atmospheres is also 
dangerous since they can force the detachment of the 
external alteration layer.
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