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Abstract 
The naturally fractured reservoir characterization is crucial because it can help to predict the flow pattern of fluids, and the storativity ratio 
of the fractures and to understand whether two or more wells have communication, among others. This paper presents a practical 
methodology for interpreting interference tests in naturally fractured reservoirs using characteristic points found on the pressure derivative 
curve. These kinds of tests describe a system that consists of a producing well and an observation well separated by a distance (r). Using 
characteristic points and features found on the pressure and pressure derivative log-log plot, Analytical expressions were developed from 
the characteristic points of the pressure and pressure derivative log-log plot to determine the interporosity flow parameter (λ) and the 
storativity ratio of the fractures (ω). Finally, examples are used to successfully verify the expressions developed so that the naturally-
fractured parameters were reproduced with good accuracy.   
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Interpretación de pruebas de interferencia en yacimientos 
naturalmente fracturados 

 
Resumen 
La caracterización de un yacimiento naturalmente fracturado es muy importante debido a que puede ayudar a predecir patrón de flujo de 
los fluidos, la capacidad de almacenamiento de las fracturas y saber si dos o más pozos de un mismo yacimiento se encuentran comunicados, 
entre otros. Este estudio presenta una metodología práctica para interpretar pruebas de interferencia en yacimientos naturalmente 
fracturados usando puntos característicos en la curva de la derivada de presión. Este tipo de prueba describe un sistema compuesto por un 
pozo productor y un pozo de observación ubicados a una distancia (r). Utilizando puntos y características únicas del gráfico log-log de 
presión y derivada de presión, y Se desarrollaron expresiones analíticas a partir de los puntos característicos del gráfico log-log de presión 
y derivada de la presión con el fin de poder determinar el parámetro de flujo interporoso (λ) y la capacidad de almacenamiento de las 
fracturas (ω). Finalmente, se presentan ejemplos para verificar satisfactoriamente las expresiones desarrolladas de modo que los parámetros 
de los yacimientos naturalmente fracturados fueron reproducidos con buena exactitud. 
 
Palabras clave: yacimiento naturalmente fracturado; interferencia; parámetro de flujo interporoso; relación de almacenaje. 

 
 
 

1.  Introduction 
 
Interference and pulse tests provide information to 

establish reservoir characteristics, predict reservoir 
behavior, and diagnose formation damage. These tests 
are mainly performed to either find hydraulic 
connectivity or determine the permeability and porosity 
in the domain of both wells. Based on this, the 
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transmissivity (kh/μ) and storage capacity (фcth) can be 
estimated, [8,9].   

[19] studied the double-porosity model and found two 
main parameters to characterize a naturally fractured 
reservoir: the fracture storativity coefficient (ω) and the 
interporosity flow parameter (λ). For that, they assumed the 
matrix has high storage but low flow capacity, radial flow is 
only through the fracture networks, the reservoir is horizontal 
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and infinite, flow rate is constant, and gravity effects and 
vertical pressure gradients are negligible. Those assumptions 
were also studied by [12], who concluded that the study made 
by Warren and Root was accurate for double-porosity 
reservoirs only during late time behavior in a pressure test. 

According to [10], an interference test is a multiple-well 
test where there is at least one active and one observation 
well. The active well can be either a producer or an injector, 
and the observation well is shut in. The purpose of this test is 
to determine reservoir information that is not possible with 
another kind of pressure test. This test is conducted by 
measuring the pressure response in one or more observation 
wells caused by the opening or shutting| in of a neighbor well. 
Its advantage is the estimation of transmissivity of a fracture 
system, storage in the matrix and fractures, and size and 
block diffusivity. That is why [14] presented equations to 
analyze this test, which consider the interaction among 
fractures and the matrix rock. 

Several authors have conducted studies of the 
interference test neglecting the wellbore storage coefficient 
and skin effect of the active well. A method to analyze 
interference data including wellbore storage and skin was 
presented by [17]. As a result, [15] presented a technique 
whereby wellbore storage and skin existing in one well are 
correlated. After that, [4] proposed the development pressure 
derivative type curve for use in build-up and drawdown tests 
in double-porosity reservoirs. 

Double-porosity systems are formations with two porous 
systems. Each system has different porosity and permeability 
and can participate in the production process. These systems 
are usually naturally fractured reservoirs, where the fractures 
have high permeability and low storativity. On the other 
hand, the matrix has high storativity but low permeability. [3] 
presented a mathematical model for this kind of system 
where the matrix behavior operates under pseudosteady state 
conditions. 

The model used for decline-type curve analysis was 
developed for the case of a well producing a constant 
pressure. [18] considered the pressure response at a constant 
pressure test in single porosity reservoirs. They plotted log-
log-type curves for various interference wells. [5] presented 
a solution model as a function of Laplace transform including 
wellbore skin; however, their types of curves were only for 
zero skin. In addition, they did not present a single log-log-
type curve for various combinations of these parameters, λ, 
ω, and rD. 

Another method to characterize a naturally fractured 
reservoir using characteristic points found on the pressure 
derivative plot was proposed for interpretation of single-well 
pressure tests. This method utilizes an expression developed 
for the characteristic points and slopes of pressure and 
pressure derivative log-log plot. The values of these points 
are used in analytical solutions to obtain reservoir 
parameters, [7]. 

The interference test also can be used in an anisotropic 
system to estimate the horizontal and vertical permeability. 
The type curve matching for horizontal and vertical 
permeability was proposed by [16]. [11] used those type 

curves in two field cases. They found the type curves reliable 
when there is a low degree of anisotropy and if there is just 
one observation well in the direction of maximum 
permeability. This enhances the reliability of interference 
analysis. Based on Warren and Root’s model, [19], [13] 
assumed an anisotropic matrix, so they developed equations 
to determine the horizontal and vertical permeability and the 
anisotropic angle. [2] developed a numerical solution for 
anisotropic systems. After that, [2] tested the numerical 
solution in single- and double-porosity systems and found the 
model reliable for both cases. 

This research presents the effects of λ, ω, and rD on the 
pressure response of an observation well in an infinite 
reservoir and an interpretation methodology is presented for 
the estimation of the interporosity flow parameter and the 
storativity ratio following the idea proposed by [8]. Wellbore 
storage and skin effects are neglected in both the producing 
and observation wells, for which new equations were 
developed to characterize double-porosity reservoirs 
following the philosophy of the TDS Technique which uses 
characteristic points and features found on the pressure and 
pressure derivative plot as described in [7-9]. The developed 
equations were successfully tested with two synthetic and 
one field example. 

 
2.  Mathematical model 

 
The mathematical model proposed by [6] represents a 

naturally fractured reservoir as a double-porosity model that 
is homogeneous and describes the response of the system 
fracture and matrix combination. It was developed with the 
following assumptions: 
• Infinite reservoir extension with closed upper and lower 

boundaries. 
• Slightly compressible fluid, single phase and laminar 

flow. 
• The porosity of any medium is independent of the 

pressure changes of another medium. 
• The flow to the well occurs only through the most 

permeable medium, and the less permeable medium acts 
as a source. 
The diffusivity equation for the above assumptions is 

given by: 
 

𝑘𝑘𝑓𝑓
𝜇𝜇 𝛻𝛻2𝑃𝑃𝑓𝑓 = (𝜙𝜙𝜙𝜙𝑐𝑐𝑡𝑡)𝑓𝑓

𝜕𝜕𝑃𝑃𝑓𝑓
𝜕𝜕𝜕𝜕 − 𝑞𝑞∗ (1) 

 
Equation 1 can be rewritten in the Laplacian space as: 

 
𝑑𝑑2�̄�𝑃𝑓𝑓𝑓𝑓
𝑑𝑑𝑟𝑟𝑓𝑓2

+
1
𝑟𝑟𝑓𝑓
𝑑𝑑�̄�𝑃𝑓𝑓𝑓𝑓
𝑑𝑑𝑟𝑟𝑓𝑓

= 𝜔𝜔𝜔𝜔�̄�𝑃𝑓𝑓𝑓𝑓 −
𝜇𝜇𝑟𝑟𝑤𝑤2

𝑘𝑘𝑓𝑓
𝑞𝑞∗′
____

 (2) 

 

𝑞𝑞∗′
____

= −𝛼𝛼
𝑘𝑘𝑚𝑚
𝜇𝜇

(1 −𝜔𝜔)𝜔𝜔
(1 −𝜔𝜔)𝜔𝜔 +  𝜆𝜆 �̄�𝑃𝑓𝑓𝑓𝑓 (3) 

 
Substituting eq. (2) into eq. (3) gives the diffusivity 

equation for a double-porosity reservoir. 
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𝑑𝑑2�̄�𝑃𝑓𝑓𝑓𝑓
𝑑𝑑𝑟𝑟𝑓𝑓2

+
1
𝑟𝑟𝑓𝑓
𝑑𝑑�̄�𝑃𝑓𝑓𝑓𝑓
𝑑𝑑𝑟𝑟𝑓𝑓

− 𝜔𝜔𝑠𝑠(𝜔𝜔)�̄�𝑃𝑓𝑓𝑓𝑓 = 0 (4) 

 
Where: 
 

𝑠𝑠(𝜔𝜔)  =  
𝜔𝜔 (1 −𝜔𝜔)𝜔𝜔 +  𝜆𝜆

(1 − 𝜔𝜔)𝜔𝜔 +  𝜆𝜆  (5) 

 

𝜔𝜔 =
(𝜙𝜙𝜙𝜙𝑐𝑐𝑡𝑡)𝑓𝑓

(𝜙𝜙𝜙𝜙𝑐𝑐𝑡𝑡)𝑓𝑓 + (𝜙𝜙𝜙𝜙𝑐𝑐𝑡𝑡)𝑚𝑚
 (6) 

 

𝜆𝜆 = 𝛼𝛼𝑟𝑟𝑤𝑤2
𝑘𝑘𝑚𝑚
𝑘𝑘𝑓𝑓

 (7) 

 
[13] gave the dimensionless time, pressure, and derivative 

pressure: 
 

𝜕𝜕𝑓𝑓 =
0.0002637𝑘𝑘𝑓𝑓𝜕𝜕

�(𝜙𝜙𝑐𝑐)𝑓𝑓 + (𝜙𝜙𝑐𝑐)𝑚𝑚�𝜇𝜇𝑟𝑟𝑤𝑤2
 (8) 

 

𝑃𝑃𝑓𝑓 =
𝑘𝑘𝑓𝑓ℎ

141.2𝑞𝑞𝜇𝜇𝑞𝑞 𝛥𝛥𝑃𝑃 (9) 

 

𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′ =
𝑘𝑘𝑓𝑓ℎ

141.2𝑞𝑞𝜇𝜇𝑞𝑞 (𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′) (10) 

 
3.  Well behavior 

 
As mentioned before, three parameters can alter the 

pressure and pressure derivative behavior in an interference 
test: 
 
3.1.  Case 1  

 
Considers the dimensionless radius and storativity ratio 

as being constant and the interporosity flow as variable (Fig. 
1). In the log-log plot, one can observe the pressure derivative 
is the same, but the minimum time is different to all. 

Furthermore, the pressure drop is greater when the 
interporosity flow is lower; however, at a dimensionless time 
of 1x108 the drop pressure is the same for all. In addition, 
when the interporosity flow parameter is very small the early 
radial flow regime can be observed. 

 
3.2.  Case 2  

 
Considers the dimensionless radius and interporosity 

flow as being constant and the storativity ratio as variable 
(Fig.  2). The storativity ratio affects the time response 
because it requires a longer time to obtain a complete 
interpretable set of pressure data. In addition, for 
dimensionless time greater than 1x105 the pressure drop will 
yield the same for all values. Finally, this affects the 
minimum pressure derivative point. The relationship 
between the storativity ratio and the minimum point is 
directly proportional. 
 
3.3.  Case 3  
 

Considers both the interporosity flow parameter and the 
storativity ratio as being constant. The dimensionless radius 
is variable (Fig. 3). For the same time, the pressure drop is 
lower as the dimensionless radius is greater. Furthermore, the 
radius affects the values of the maximum and minimum 
pressure derivative points, so if the radius is greater, then 
these points will be lower.  

 
4.  Interpretation technique  

 
Radial regime. The governing equation developed for this 

flow regime is: 
 

(𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑟𝑟 = 0.5 (11) 
 
Replacing the dimensionless quantities, eq. (10) goes into 

eq. (11) and solves for the fracture permeability, kf: 
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Figure 1. Dimensionless pressure and pressure derivative behavior for case 1. 
Source: The Authors. 
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Figure 2. Dimensionless pressure and pressure derivative behavior for case 2. 
Source: The Authors. 
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Figure 3. Dimensionless pressure and pressure derivative behavior for case 3. 
Source: The Authors. 
 
 

𝑘𝑘𝑓𝑓 =
70.6𝑞𝑞𝜇𝜇𝑞𝑞𝑜𝑜
ℎ(𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′)𝑟𝑟

 (12) 

 
Unit slope: The governing equation for the unit slope that 

crosses through the minimum pressure derivative is: 
 
𝑙𝑙𝑙𝑙( (𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑙𝑙𝑙𝑙( 0.58) + 𝑙𝑙𝑙𝑙(𝜆𝜆 ∗ 𝜕𝜕𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) (13) 

 
Replacing dimensionless variables and solving for 

interporosity flow parameter, λ, gives: 
 

𝜆𝜆 =  
46.3ℎ(𝜙𝜙𝑐𝑐)𝑓𝑓+𝑚𝑚𝑟𝑟𝑤𝑤2

𝑞𝑞𝑞𝑞 �
𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′
𝜕𝜕 �

𝑚𝑚𝑚𝑚𝑚𝑚
 (14) 

 
Minimum time: The governing equation for the minimum 

time of the pressure derivative is: 
 

𝜕𝜕𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝜆𝜆1.05/𝜔𝜔0.86) = 1 (15) 
 

Replacing the dimensionless variables and solving for 
storativity ratio, ω, gives: 
 

𝜔𝜔 = 𝜆𝜆1.221 �
0.0002637𝑘𝑘𝑓𝑓𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚

(𝜙𝜙𝑐𝑐)𝑓𝑓+𝑚𝑚𝜇𝜇𝑟𝑟𝑤𝑤2
�

1
0.86

 (16) 

 
Pressure and derivative pressure intersection: The 

governing equation is: 
 

𝜕𝜕𝑓𝑓𝑚𝑚𝑚𝑚𝑡𝑡/(𝜔𝜔 ∗ 𝑟𝑟𝑓𝑓2) = 0.55 (17) 
 

Replacing the dimensionless variables and solving for 
storativity ratio, ω, gives: 
 

𝜔𝜔 =
0.0004795𝑘𝑘𝑓𝑓𝜕𝜕𝑚𝑚𝑚𝑚𝑡𝑡

(𝜙𝜙𝑐𝑐)𝑓𝑓+𝑚𝑚𝜇𝜇𝑟𝑟2
 (18) 

 
Minimum pressure derivative:  The governing equation of 

the minimum point of the pressure derivative is: 

 
(𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑚𝑚𝑚𝑚𝑚𝑚/𝜔𝜔0.8 = 0.9 (19) 

 
Replacing the dimensionless variables and solving for 

storativity ratio, ω, gives: 
 

𝜔𝜔 = �
𝑘𝑘𝑓𝑓ℎ(𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′)𝑚𝑚𝑚𝑚𝑚𝑚

127.08𝑞𝑞𝜇𝜇𝑞𝑞 �
1.25

 (20) 

 
Relationship between interporosity flow and beginning 

radial flow time: The governing equation is: 
 

𝑙𝑙𝑙𝑙( 𝜆𝜆) = 𝑙𝑙𝑙𝑙( 2.413) − 0.9376 𝑙𝑙𝑙𝑙( 𝜕𝜕𝑓𝑓𝐷𝐷2) (21) 
 
Replacing dimensionless variables and solving for 

interporosity flow parameter, λ, gives: 
 

𝜆𝜆 = 5471.3�
(𝜙𝜙𝑐𝑐)𝑓𝑓+𝑚𝑚𝜇𝜇𝑟𝑟𝑤𝑤2

𝑘𝑘𝑓𝑓𝜕𝜕𝐷𝐷2
�
0.9376

 (22) 

 
Relationship between the storativity ratio and the 

maximum and minimum derivative ratio: The governing 
equation is: 
 

𝑙𝑙𝑙𝑙(𝜔𝜔) = 𝑙𝑙𝑙𝑙( 0.3151) − 1.2119 𝑙𝑙𝑙𝑙 �
(𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑚𝑚𝑚𝑚𝑚𝑚
(𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑚𝑚𝑚𝑚𝑚𝑚

� (23) 

 
Replacing dimensionless variables and solving for 

storage capacity, ω, gives: 
 

𝜔𝜔 = 0.3151�
(𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′)𝑚𝑚𝑚𝑚𝑚𝑚
(𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′)𝑚𝑚𝑚𝑚𝑚𝑚

�
1.2119

 (24) 

 
Relationship between interporosity flow and the minimum 

time of minimum derivative: The governing equation is: 
 

ln(𝜆𝜆) = ln(72.255)− 1.5166 ln(𝜕𝜕𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) (25) 
 

Replacing dimensionless variables and solving for 
interporosity flow parameter, λ, gives: 
 

𝜆𝜆 = 72.255�
(𝜙𝜙𝑐𝑐)𝑓𝑓+𝑚𝑚𝜇𝜇𝑟𝑟𝑤𝑤2

0.0002637𝑘𝑘𝑓𝑓𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚
�
1.5166

 (26) 

 
Relationship between the dimensionless ratio and 

storativity ratio and the maximum and minimum derivative 
ratios: The governing equation is: 
 

ln(𝑟𝑟𝑓𝑓/𝜔𝜔5) = ln(16064 + 7.1432ln �
(𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑚𝑚𝑚𝑚𝑚𝑚
(𝜕𝜕𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓′)𝑚𝑚𝑚𝑚𝑚𝑚

� (27) 

 
Replacing dimensionless variables and solving storativity 

ratio, ω, gives: 
 

𝜔𝜔 = 0.1442 �
𝑟𝑟
𝑟𝑟𝑤𝑤
�
0.2
�

(𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′)𝑚𝑚𝑚𝑚𝑚𝑚
(𝜕𝜕 ∗ 𝛥𝛥𝑃𝑃′)𝑚𝑚𝑚𝑚𝑚𝑚

�
1.429

 (28) 
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4.1.  Intersection Point 
 

Eq. (29) gives the intersection point between the unit 
slope and the radial regime flow. 

Intersection of the unit slope that crosses through the 
minimum derivative and radial regime: 

 
𝜆𝜆 ∗ 𝜕𝜕𝑓𝑓𝑈𝑈𝑈𝑈 𝑟𝑟2,𝑖𝑖 = 1.1 (29) 

 
Replacing dimensionless variables and solving for 

interporosity flow parameter, λ, gives: 
 

𝜆𝜆 = 4171.41
(𝜙𝜙𝑐𝑐)𝑓𝑓+𝑚𝑚𝜇𝜇𝑟𝑟𝑤𝑤2

𝑘𝑘𝑓𝑓
�

1
𝜕𝜕𝑈𝑈𝑈𝑈𝑟𝑟2,𝑚𝑚

� (30) 

 
5.  Examples 

 
Figs. 4, 5 and 6 were built for the synthetic examples. 
 

5.1.  Synthetic Example 1 
 
An interference test was simulated for a naturally 

fractured reservoir (Fig. 4), and data are presented in Table 
1. It is required to estimate the storativity ratio coefficient and 
the interporosity flow parameter.  

Solution: The naturally fractured reservoir has the 
following parameters used as input for the simulation: 

 
λ = 2.75x10-8, ω = 0.0075  

 
The following characteristic points were read from Fig. 4: 
 

(t*ΔP’)min = 0.43 psia (t*ΔP’)max = 9.5 psia 
(t*ΔP’)r = 12 psia tmin = 4 hr 

tint = 0.03 hr tb2 = 900 hr 
tUSr2,i = 120 hr 

 

 
Eq. (11) helps find the fracture permeability: 
 

𝑘𝑘 =
70.6(1000)(0.65)(1.95)

(100)(12) = 40.15 md  

 
Eqs. (14), (22), (26), and (30) help find the interporosity 

flow parameter, λ, so that: 
 
Table 1.  
Input data for synthetic example. 

Parameter Synthetic 
Example 1 

Synthetic 
Example 2 

Field 
Example 

h, ft 100 30 100 
rw, ft 0.25 0.3 0.73 
μ, cp 0.65 1.2 0.3 
kf, md 40 25 - 
(φct)t, psi-1 8x10-7 7x10-7 5x10-6 

q, STB/D  1000 550 250 
Bo, bbl/STB  1.05 1.02 1 
Pi, psia 3000 2750 3750 
r, ft 375 252 180 

Source:  The Authors. 
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t   = 900 hrs  b2

min

USr2,it       =120 hr  
t    =4 hr  

t, hr
Figure 4. Pressure and pressure derivative vs. time log-log plot for synthetic 
example 1.  
Source: The Authors. 
 
 

𝜆𝜆 = 46.3 (100)(8×10-7)(0.25)2

(1000)(1.05)
�0.43
4
� = 2.37 × 10−8   

 
𝜆𝜆 = 5471.3 �(8×10−7)(0.65)(0.25)2

(40.15)(900)
�
0.9376

= 2.778 × 10−8  
 

 

𝜆𝜆 = 72.255 � (8×10-7)(0.65)(0.25)2

(0.0002637)(40.15)(4)
�
1.5166

= 3.844 × 10−8   

 
𝜆𝜆 = 4171.41 (8×10-7)(0.65)(0.25)2

(40.15)
� 1
120

� = 2.814 × 10−8   

 
Then, Eqs. (16), (18), (20), (24), and (28) find the fracture 

storativity ratio, ω: 
 

𝜔𝜔 = (2.778 × 10−8)1.221 �(0.0002637)(40.15)(4)
(8×10−7)(0.65)(0.25)2

�
1

0.86 =
0.00766  

 

 
𝜔𝜔 = 0.0004795(40.15)(0.03)

(8×10−7)(0.65)(375)2
= 0.007898   

 

𝜔𝜔 = �
(40.15)(100)(0.43)

127.08(1000)(0.65)(1.05)�
5/4

= 0.007478 
 

 
𝜔𝜔 = 0.3151 �0.43

9.5
�
1.2119

= 0.007402   

 

𝜔𝜔 = (0.1442) �
375
0.25�

0.2

�
0.43
9.5 �

1.429

= 0.007469  

 
 
5.2.  Synthetic Example 2 

 
An interference test was simulated for a naturally 

fractured reservoir (Fig. 5) and data are presented in Table 2. 
As for the synthetic example 1, it is required the estimation 
of both the storativity ratio and the interporosity flow 
parameter. 
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Solution: The below are the input values used to generate 
the pressure data: 
 

λ = 1 x10-7, ω = 0.025  
 

The following characteristic points were read Fig. 5: 
 
(t*ΔP’)min = 6.5 psi (t*ΔP’)max = 50 psi 

(t* ΔP’)r = 63 psi tmin = 10.5 hr 
tint = 0.12 hr tb2 = 800 hr 

tUSr2,i = 120 hr 

 

 
The above data were used to find the reservoir parameters 

as reported in Table 3. 
 
5.3.  Field example 

 
Data for the field example were taken from [6], from 

which pressure data were digitized and the pressure 
derivative was estimated in this work and reported in Fig. 6. 
Both the storativity ratio and the interporosity flow parameter 
are required to be calculated. 

Solution: [6] reported the following parameters:  
 

λ = 1.3 x10-6, ω = 0.09 
  

 
From Fig. 6, the characteristic points below were used to 

estimate the naturally fractured reservoir parameters, which 
are then presented in Table 4. 

 
(t*ΔP’)min = 0.01 psi (t*ΔP’)max = 0.026 psi 

(t* ΔP’)r = 0.035 psi tmin = 0.41 hr 
tint = 0.006 hr tb2 = 7 hr 

tUSr2,i = 2.3 hr 

 

 
 
6.  Comments on the results 
 

It can be seen from the three examples that the results of 
the interpretation technique match well with the input values. 
Even though some errors were greater than 10%, the 
estimation of the naturally fractured parameters accept errors 
of one order of magnitude. It is interesting to see the results 
from the field example where the pressure data were digitized 
and then pressure derivative was calculated. The results are 
very acceptable. 

 
 

Table 2.  
Comparison of results for synthetic example 1. 

Eq. Parameter Real This work Error, % 
14 

λ 2.75x10-8 

2.37 x10-8 13.82 
22 2.778 x10-8 1.02 
26 3.844 x10-8 39.78 
30 2.814 x10-8 2.31 
16 

ω 0.0075 

0.00766 2.13 
18 0.007898 5.31 
20 
24 0.007478 0.29 

24 0.007402 1.31 
28 0.007469 0.41 

Source: The Authors. 

Table 3.  
Comparison of results for synthetic example 2. 

Eq. Parameter Real This work Error, % 
14 

λ 1 x10-7 

9.656x10-8 3.44 
22 1.062x10-7 6.16 
26 6.508x10-8 34.92 
30 1.045x10-7 4.50 
16 

ω 0.025 

0.02342 6.32 
18 0.02712 8.50 
20 
24 0.02805 12.19 

24 0.02658 6.34 
28 0.03004 20.15 

Source: The Authors. 
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Figure 5. Pressure and pressure derivative vs. time log-log plot for synthetic 
example 2.  
Source: The Authors. 
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Figure 6. Pressure and pressure derivative vs. time log-log plot for the field 
example.  
Source: The Authors. 



Escobar et al / Revista DYNA, 87(214), pp. 121-128, July - September, 2020. 

127 

Table 4.  
Comparison of results for the field example. 

Eq. Parameter Real This work Error, % 
14 

λ 1.3 x10-6 

1.204 x10-6 7.42 
22 1.792 x10-6 37.87 
26 6.372 x10-7 50.98 
30 1.050 x10-6 19.27 
16 

ω 0.09 

0.08867 1.48 
18 0.08956 0.49 
20 
24 0.1002 11.32 

24 0.09898 9.98 
28 0.1107 23.06 

Source: The Authors. 
 
 

7.  Conclusions 
 

Nine new equations are presented for the characterization 
of naturally fractured double-porosity reservoirs using 
characteristic points found on the pressure and pressure 
derivative log-log plot so storativity ratio and the 
interporosity flow parameter are estimated from several 
sources. The developed expressions were successfully tested 
with examples. 

The interporosity flow parameter can be estimated from 
the minimum derivative, minimum time, beginning radial 
flow time, and the intersection point between the unit slope 
and radial regime points.  

The storativity ratio can be determined from the minimum 
and maximum derivative, minimum time, and the 
intersection point between pressure and derivative pressure.  
 
Nomenclature 
 

All the units are in the oil-field units. 
B Formation volume factor, rbbl/STB 
ct Total compressibility, 1/psi 
h Reservoir thickness, ft 
k Permeability, md 
kf Natural fracture intrinsic permeability, md 
P Pressure, psia 
PD Dimensionless pressure 
PfD  Dimensionless fracture pressure 
P*

fD(s)  Laplace transform of the dimensionless fracture 
pressure 
Pi Initial reservoir pressure, psi 
q Flow rate, STB/d 
r Radius, ft 
rD Dimensionless radius 
S Laplace parameter, skin factor 
t Time, hr 
tD Dimensionless time 
tD*PD’ Dimensionless pressure derivative 
v Determined volume and total volume ratio 

Greek 
Δ Difference operator 
α Matrix shape form, ft-2 

ф Porosity, fraction 
λ Interporosity flow parameter 

μ Viscosity, cp 
ω Storativity ratio  

Subscripts 
b2 Second radial flow initiation 
D Dimensionless 
f Natural fracture 
i Initial, intersection 
int Intersection  
m Matrix 
max Maximum 
min Minimum 
r Radial flow 
US Unit slope 
t Total 
w Wellbore 
 
SI Metric Conversion Factor 
 
 Bbl x 1.589 873  E-01 = m3 
 cp x 1.0*   E-03 = Pa-s 
 ft x 3.048*  E-01 = m 
 ft2 x 9.290 304*  E-02 = m2 
 psi x 6.894 757  E+00 = kPa 
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