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RESUMEN: Este estudio presenta un nuevo método para determinar la transmisibilidad en yacimientos 

naturalmente fracturados usando el análisis del flujo radial en pruebas de calibración. El método se basa en el análisis 

del comportamiento de la derivada de la presión con el tiempo.  El objetivo es simplificar y facilitar la identificación 

del flujo radial y la “garganta” característica que se observa en la derivada cuando se tienen yacimientos 

naturalmente fracturados.  El método propuesto no requiere el conocimiento previo de la presión de yacimiento.  Un 

grafico logarítmico es usado para determinar la permeabilidad, la presión promedio, el almacenamiento y el 

coeficiente que relaciona las permeabilidades s de la matriz y de las fracturas en el yacimiento. 

 

PALABRAS CLAVE: Yacimientos naturalmente fracturados, pruebas de flujo, TDS.  

 

ABSTRACT: A new method for the determination of reservoir transmissibility using the after closure radial flow 

analysis of calibration tests was developed based on the pressure derivative. The primary objective of computing the 

pressure derivative with respect to the radial flow time function is to simplify and facilitate the identification of 

radial flow and the characteristic trough of a naturally fractured reservoir. The proposed method does not require a-

priori the value of reservoir pressure. Only one log-log plot is used to determine the reservoir permeability, average 

pressure, storativity ratio, and interporosity flow coefficient. 

The main conclusion of this study is that small mini-fracture treatments can be used as an effective tool to identify 

the presence of natural fractures and determine reservoir properties. 

 

KEY WORDS: Naturally fractured reservoirs, Tiab’s direct technique (TDS), after closure analysis, mini-frac. 

 

 

 

1.      INTRODUCCION 

 

Using the theory of impulse testing and principle 

of superposition, Nolte et al [1] developed a 

method which allows the identification of radial 

flow and thus the determination of reservoir 

transmissibility and reservoir pressure. The 

exhibition of the radial flow is ensured by  

 

 

conducting a specialized calibration test called 

mini-fall off test. Benelkadi and Tiab [2] 

proposed a new procedure for determining 

reservoir permeability and the average reservoir 

pressure in homogeneous reservoirs. In this 

paper, the procedure is extended to naturally 

fractured reservoirs. 
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2.     INJECTION TEST AND NATURALLY 

FRACTURED RESERVOIRS 

The mini-frac injection test has permitted the 

determination of the reservoir description in 

homogeneous reservoirs where fluid leakoff is 

dependent on the matrix permeability, fluid 

viscosity, and reservoir fluid compressibility.  

Applying this type of test to naturally fractured 

reservoirs introduces new factors that are 

difficult to measure, e.g. fluid leakoff dominated 

by the natural fractures that vary with stress or 

net pressure. This study allows the identification 

of naturally fractured reservoirs from after 

closure tests and the estimation of their 

respective reservoir parameters. 

 

2.1     Naturally Fractured Reservoirs 

 

Because of the complexity in the geometry of 

naturally fractured reservoirs, different 

mathematical approaches have been developed 

for diverse geometric shapes in an effort to 

simulate the effect of matrix block shapes in the 

transition period. One of the most popular 

approaches was proposed by Warren and Root 

[3]. They introduced two parameters that they 

referred to as the storativity ratio (ω) and the 

interporosity flow coefficient (λ) to characterize 

naturally fractured reservoirs. 

 

 

2.2      Injection Test 

 

In the last two decades, mini fracture injection 

tests -also called calibration treatments or 

injection tests- have been developed to diagnose 

features including interpretation of near wellbore 

tortuosity and perforation friction, fracture 

height growth or confinement, pressure-

dependent leak-off, fracture closure, and more 

recently transmissibility and permeability. 

Frequently, a calibration treatment is a test done 

right before the main stimulation treatment.  This 

test follows a similar fracture treatment 

procedure but conducted, generally, without the 

addition of proppant, causing the fracture to have 

negligible conductivity when it closes.  The short 

fracture created in this test allows the connection 

between the undamaged formation and the 

wellbore.  Pressure analysis is based 

simultaneously on the principles of material 

balance, fracturing fluid flow, and rock elastic 

deformation (solid mechanics). 

The calibration treatment sequence is shown in 

Figure 1, and consists of the following tests: 

mini fall off, step rate and mini-fracture test. 
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Figure 1. Calibration Treatment Sequence  

 

2.1.1     Mini-falloff Test 

 

The test is performed using inefficient fluids and 

a low injection rate.  These characteristics make 

that the long term radial flow behavior that 

normally occurs only after a long shut-in period, 

can be attained during injection or shortly after 

closure in the mini-fall off test.  This test allows 

the integration of information for analysis of pre- 

and after- closure analysis. 

 

2.1.2     Step Rate Test 

 

The step rate test is used to estimate fracture 

extension pressure and respective rates, thereby, 

determining the horsepower required to perform 

the fracture treatment. 

 

2.1.3     Mini-fracture Test 

 

Gathering the information obtained by the first 

two tests of the calibration treatment (a 

breakdown test may be also implemented into 

the treatment sequence), a mini-fracture test is 

performed.  The determination of fracture 

propagation and fracture geometry during 

pumping is obtained by the implementation of 

Nolte-Smith [4] plot.  This test is conducted with 

the fracturing fluid at the fracturing rate similar 

to the main fracturing treatment, but on a small 
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scale. Figure 2 presents the fracturing evolution; 

each stage provides information for the fracture 

treatment design. This study is focused on the 

zone labeled as transient reservoir pressure near 

the wellbore. 

In fact, natural fracture reservoirs enhanced fluid 

loss leading to a premature closing in the 

hydraulic fracture.  In the cases that matrix 

permeability is high, the fluid leakoff process is 

not affected for the natural fractures; however, if 

matrix permeability is low the transmissibility of 

the natural fractures could be higher than the one 

from the matrix. 
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Figure 2. Example of fracturing-related pressure 

 

2.3      Closure pressure and closure time 

 

There are several methods in the literature for 

estimating closure pressure and closure time.  

Basically, this is the initial point for this study 

because the research is based on the pressure 

response after the fracture closes mechanically. 

For the purposes of this study, the estimation of 

closure pressure and closure time follows the 

method presented by Jones et al [5].  They 

related the value of the fracture closure pressure 

to the minimum horizontal stress by the 

implementation of a derivative algorithm to 

identify different flow regimes. 

The two relationships for an infinite conductivity 

fracture flow and finite conductivity fracture are, 

respectively: 

5.0AtP =∆                                                       (1) 

And, 

25.0'tAP =∆                                                     (2) 

 

Where A and A’ are grouping independents 

parameters, such as permeability, viscosity, and 

compressibility, for infinite and finite 

conductivity fracture flow respectively. 

Taking the logarithm on both sides of equations 

1 and 2, and then differentiating them in respect 

to the logarithm of time: 

 

5.0
)][log(

)][log(
=

∆
∆
td

Pd   for infinite conductivity fracture 

flow                                                                 (3) 

And, 

25.0
)][log(

)][log(
=

∆
∆
td

Pd   for finite conductivity fracture 

flow                                                                 (4) 

 

Then, a Cartesian plot of pressure derivative 

versus time would show a straight line of slope 

zero at a value of 0.5 for infinite conductivity, 

and 0.25 for finite conductivity.  Jones et al [5] 

recommend to identify the closure pressure (Pc) 

at the pressure value corresponding to the end of 

the infinite conductivity fracture flow (te).  In 

case the infinite conductivity fracture flow is not 

observed, the recommendation is to read the 

value of pressure corresponding to the first point 

of the straight line of the finite conductivity 

fracture flow (ts) as the value of closure pressure 

(see Figure 3 and Figure 4).  The closure time 

can be obtained by adding the pumping time, tp 

to te or ts. The effect of skin will cause that the 

straight lines, representing the infinite and finite 

conductivity fracture flow, to not have the values 

of 0.5 and/or 0.25, respectively, in the derivative. 
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Figure 3. Example of estimation of closure pressure 

(Pc) and ending time (te) in presence of infinite 

conductivity fracture flow 



Uribe et al 214 

Pressure

Pressure Derivative

ts=0.018 min

Pc=2300 psi

Pressure

Pressure Derivative

PressurePressure

Pressure DerivativePressure Derivative

ts=0.018 min

Pc=2300 psi

 

Figure 4. Example of estimation of closure pressure 

(Pc) and starting time (ts) in presence of finite 

conductivity fracture flow 

 

 

2.4      After-Closure Methods 
 

The basis for After Closure Analysis (ACA) was 

initially proposed by Gu et al [6] and 

Abousleiman et al [7].  They demonstrated that 

properties of the injected fluid do not have any 

effect on the pressure response, acting like a skin 

effect because it is isolated to the near well area. 

Transient pressure response is dominant within 

the reservoir exhibiting linear or radial flow, 

losing its dependency from the mechanical 

response of an open fracture.  This late time 

pressure falloff would be a good representation 

of the reservoir response allowing the estimation 

of reservoir pressure and permeability.  The after 

closure response is similar to the behavior 

observed during conventional well test analysis, 

supporting an analogous methodology for its 

evaluation. 

 

Nolte [8] introduced the concept of apparent 

time function.  The after closure time function is 

selected to define various combinations of the 

reservoir parameters, including the estimation of 

closure time and reservoir pressure.  The main 

assumptions of this dimensionless time function 

are the fracture closes instantaneously when 

pumping is stopped (tc = tp) and significant spurt 

loss occurs.  The concept of an apparent 

exposure time for the constant pressure period, 

as considered for a propagating fracture, is 

expressed as [8]: 

c

c

c
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−
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+= 1)(                               (5) 

The minimum value for time (t) in Equation 5 

corresponds to the time that fracture closes (tc).  

This means that for t = tc the value of the after-

closure dimensionless time function, F(t), is 

equal to the unity.  Therefore, the maximum 

value achieved by the dimensionless time 

function is unity and its value decreases when 

real time increases.  The term χtc symbolizes an 

apparent time of closure, or equivalently, time of 

exposure to fluid loss and χ≈1.62. 

An excellent approximation for Equation 5 with 

an error percent less than 5% for t > 2.5tc is 

given by [9]: 

2

2




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
= F

t

tc π
                                                   (6) 

F
2
 approaches the equivalence of Horner 

behavior, achieving the time behavior of linear 

and radial flow from a single function.  In fact, 

the mini-frac injection test is similar to the slug 

test or the impulse test. 

Then, the instantaneous source solution is 

applied to the diffusivity equation in order to 

model the pressure response of the reservoir.  

This concept implies a sudden extraction or 

release of fluid at the source in the reservoir 

creating a pressure change throughout the 

system.  The sources are distributed until the 

fracture closes and there is no more leakoff into 

the formation.  Abousleiman et al [7] define the 

after closure pressure response as a result of 

instantaneous point source solution by applying 

Duhamel’s principle of superposition for time t ≥ 

tc: 

∫ ∫
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3.        MATHEMATICAL MODEL 

 

Conventional pressure transient tests in low 

permeability reservoirs require a long duration to 

observe all flow regimes necessary for 

determining correctly all reservoir and near-

wellbore parameters.  The cost of these tests is 
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generally very high because of additional 

equipment and production.  Short-time tests, 

such as drill stem test and impulse test, provide 

local estimations of the properties in the 

reservoir that are usually contaminated by near-

wellbore damage.  Alternatively, the calibration 

test, as discussed previously, follows a procedure 

similar to the hydraulic fracturing treatment but 

only a small fracture is induced in the formation 

to overcome formation damage.  The pressure 

response during a calibration test is estimated by 

the instantaneous line source solution of the 

diffusivity equation. The mathematical approach 

discussed in this section is specifically for the 

calibration test.  The following assumptions are 

made: 1) the fracture and matrix are distributed 

homogeneously throughout the formation, 2) 

reservoir is fractured by a fluid injection and this 

created fracture has a constant height equal to 

the reservoir height, 3) the fluid injection has the 

same property as the reservoir fluid, 4) the 

fracture created is a Perkins-Kern-Nordgren type 

(PKN) [9], [10], 5) closed fracture is of zero 

conductivity (hydraulically and mechanically) 

and 6)natural fractures do not close. 

Following a procedure similar to the one 

Benelkadi and Tiab [2] proposed for 

conventional reservoirs, the response of pressure 

difference and pressure derivative versus an 

apparent function of time for naturally fractured 

reservoirs is expected to show a trend similar to 

the one in conventional techniques.  F
2
 is a time 

function similar to Horner time; therefore, late 

times correspond to low values of F
2
, and early 

times to values of F
2
 close to unity.  The 

maximum value of F
2
 is unity, which 

corresponds to the value of closure time.  

Therefore, the expected shape obtained by this 

method is shown in Figure 3. 

 

Similarly to the TDS (Tiab’s Direct Synthesis) 

technique in naturally fractured reservoirs, it is 

possible to identify unique characteristic points 

from Figure 5 for calculating various reservoir 

parameters.  The nomenclature for these points 

is: 
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Figure 5. Idealized sketch of the characteristic points 

detected on a logarithmic plot of pressure and 

pressure derivative versus F
2
 

 

 

3.1     Intermediate time– appreciation of the 

trough F
2
 Procedure 

 

Analogous to the TDS technique, the plot of 

pressure and pressure derivative versus F
2
 shows 

a trough at intermediate times.  Previous 

investigations [11], [12] have proven that a 

logarithmic plot of pressure derivative versus 

dimensionless time allows the identification of 

characteristic points for calculating storativity 

ratio and interporosity coefficient at the   
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Defining dimensionless time as: 

2
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After mathematical manipulation of Nolte’s 

apparent time function approximation (i.e. Eq. 6) 

and combining it with dimensionless time (i.e. 

Eq. 11) in function of F
2
 the following equations 

are obtained at the beginning, base, and end of 

the trough, respectively: 
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2
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2
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In order to calculate ω by Equation 12 we must 

first determine the value of the right side of the 

equation; then read the value of the 

corresponding ω from Figure 6 (for ω < 50%).  

The following correlation is obtained from 

Figure 6: 

22951.173554.31

0064.03834.1

AA

A

−+

−
=ω                            (15) 

Where A = ω(1-ω) = 400(F3
2
/F1

2
).  

 

It is important to notice that this correlation 

implies 0 ≤ ω ≤ 0.45 and 0 ≤ A ≤ 0.25.  

Furthermore, Figure 6 shows that the value of 

ω(1-ω) varies between 0 and 0.25.  This range 

allows the estimation of ω from reading the 

values of F
2
1 and F

2
3 and the quadratic solution 

of Equation 12 without obtaining imaginary 

results.  Substituting for A into Eq. 15 yields: 
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Figure 6. Graphical representation of ω versus 

 ω(1-ω) 

 

From Figure 6 only the negative solution of the 

quadratic solution is applicable (values of 

storativity in the range of 0 < ω < 0.5); therefore 

ω can also be calculated from the following 

equation: 
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To calculate ω by Equation 13 it is required to 

determine the value of the right side of the 

equation; then read the value of the 

corresponding ω from Figure 7 (for ω < 35%).  

The following correlation is obtained from 

Figure 7: 

2750.0517.01

106.0118.0

BB

B

−+

−
=ω                                 (17) 

 

Where B = (1/ω)
ω
.  Note that this correlation 

implies 0 ≤ ω ≤ 0.35 and 1 ≤ B ≤ 1.44. 

 

 

3.2     Late Time - Radial Flow F
2
 Procedure 

 

The instantaneous line source solution for 

naturally fractured reservoirs presented by 

Chipperfield [13] is used to evaluate the double 

integral in Equation 7.  At late times t1 behaves 

as t1(x’) ≈ ∆t, and t1 - t’ ≈ ∆t, so Equation 7 

becomes: 
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Figure 7. Graphical representation of ω versus (1/ω)

ω
 

 

Where m stands for matrix and f for fractures. S 

is the storativity (øµct), Tf is transmissibility for 

the fractures and ηf the diffusivity as a function 

of time [13].   

During radial flow (late time) ∆t is independent 

of x’ and t’ then Equation 18 becomes: 
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Applying the solution presented by Abousleiman 

et al. [9] for the double integral of Equation 19 

we have: 

h
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The injected fluid volume Vi is defined as the 

product of the average injection rate and closure 

time [7], then: 
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Multiplying and dividing Equation 21 by tc and 

combining it with the concept of apparent 

closure time (i.e. Equation 6): 

25
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The derivative of Equation 22 with respect to F
2
 

is: 
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Then, during radial flow a plot of ∆P versus F
2
 

on a log-log graph is a straight line of a slope of 

unity and the derivative has a slope equal to 

zero. The permeability is calculated by 

extrapolating this horizontal straight line until it 

intercepts the y axis, similarly to the TDS 

technique: 
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On the log-log plot the pressure and pressure 

derivative have the same value when F
2
 is equal 

to the unity.  Then, the unit slope line must 

intercept the horizontal line at F
2
 = 1 at the value 

of (F
2
×∆P’)R.  In other words, combining the 

equations for pressure derivative and pressure 

difference it is possible to determine that the 

straight line, which corresponds to the radial 

flow in the pressure difference, has a slope equal 

to unity and its intercept corresponds to the value 

of (F
2
×∆P’)R.  The equation of this straight line 

is: 

( ) RRRw PFFPP )'( 22 ∆×−=                           (25) 

Where (Pw)R is the value of Pw that corresponds 

to F
2
 read at any point on the radial flow portion. 

Pressure derivative [2], [14] is more sensitive to 

time change than the pressure function and is not 

affected by the value of the reservoir pressure.  

Then, if the bottomhole pressure curve is 

incorporated to the diagnostic plot and the 

derivative is estimated in function of Pw instead 

of ∆P, the average reservoir pressure can be 

calculated using Equation 25.  This means, 

Equation 25 allows for the calculation of average 

reservoir pressure without the need of guessing 

reservoir pressures as it was required before.  

For verification of average reservoir pressure, 

the radial flow portion of the pressure difference 

plot must lay on a unit slope crossing F
2
 at the 

value of 1 and (F
2
×P’w)R. 

 

 

3.3      Special Cases 

 

3.3.1 Comparison of ω with the one obtained by 

the TDS technique at the minimum point of the 

trough 

Tiab and Donalson [14] obtained the following 

relationship at the minimum point of the trough: 
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tmin (in hours) is the time coordinate of the 

minimum point of the trough on the pressure 

derivative curve. 

Combining Equations 13 and 27 gives: 
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Combining Equations 29 and 26 yields: 
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3.3.2      The beginning and base of the trough 

are difficult to observe 

Engler and Tiab [15] developed the following 

equation for the intersection point of the infinite 

acting line and the unit slope of the transition 

period: 

Dxt
= 
1

λ                                                           (31) 

Where x stands for the intersection point and 

time is expressed in hours.  Combining Equation 

31 with Equations 11 and 6, the intersection 

point of the unit slope line at intermediate times 

and the radial flow line gives: 

2
2

616850 x

c

wt F
kt

rc
= 







φµ
λ                                (32) 

Another useful equation developed by Engler 

and Tiab [15] relates the value of λ and ω at the 

beginning of the radial flow: 

3

)1(5

Dt
 = 

ω
λ

−
                                                     (33) 

The combination of Equations 33, 11, and 6 

gives: 

2
3

2

7106.31
Frc

kt 
 =

wt

c

φµ

λ
ω −×−                                (34) 

 

3.4      Step-by-step procedure 

 

The following step by step procedure is 

recommended for the determination of 

permeability (k), average reservoir pressure (Pr), 

storativity ratio (ω), and interporosity flow 

coefficient (λ). 

Step 1 - Following a mini-falloff test, acquire, 

compute and prepare the following required 

input parameters: 

• Pressure and time data pertinent to both the 

injection and the fall off periods of the test. 

• Injection flow rate q, and the total volume of 

the fluid injected into the fracture, Vi. 

• Reservoir fluid viscosity, µ; fracture height, 

h; Pumping time, tp; wellbore radius, rw; and 

formation compressibility, ct. 

Step 2 - Convert the time data into shut in time 

intervals (i.e. ∆t). 

Step 3 - Identify and determine the closure 

pressure and the closure time.  The method 

applied here for calculating closure pressure and 

closure time is referred to the one developed by 

Jones and Sargeant [5] 

Step 4 - Compute the radial flow time function 

F
2
: 

2
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Step 5 - Compute the pressure derivative with 

respect to the dimensionless time function with 

the following equation: 
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                                                                        (36) 

 

Step 6 - Plot the bottomhole pressure and its 

derivative on the same log-log plot. 

Step 7 - Identify radial flow and calculate 

reservoir pressure with Equation 25. 

Step 8 - With the estimated reservoir pressure, 

calculate pressure difference and plot it in the 

same logarithmic plot with the pressure 

derivative and bottomhole pressure.  Verify the 

value of reservoir pressure tracing a straight line 

of unit slope crossing F
2
 = 1; radial flow must 

overlay on this straight line. 

Step 9 - The derivative curve would show a 

trough at intermediate times.  This is a 

characteristic of a naturally fractured reservoir.  

Read the values of F
2
1, F

2
2, F

2
3, and F

2
x at the 

beginning, base, end of the trough, and 

intersection point between unit slope at 

intermediate times and radial flow respectively.  

These characteristic points correspond to the  
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inflection points in the pressure difference curve 

and, because of noise, can be read more 

accurately from the pressure difference curve 

(Figure 5). 

Step 10 - Estimate the formation permeability, k, 

from the infinite acting radial flow line on the 

pressure derivative curve using Equation 24. 

Step 11 - Calculate the interporosity flow 

coefficient by Equations 14 and/or 32.  In the 

case that more than one equation could be 

applied to the analysis, use them for verification 

purposes as well as for a better setting of 

characteristic points. 

Step 12 - Calculate the storativity ratio with: 

• Equation 12 and Figure 6, Equation 15, 

and/or Equation 16 for the beginning of 

the trough;  

• Equation 13 and Figure 7, Equation 17, 

Equation 26, and/or Equation 30 for the 

base of the trough; and  

• Equation 34 for the end of the trough.  

  

In the case that more than one equation could be 

applied to the analysis, use them for verification 

purposes as well as for a better setting of 

characteristic points. 

 

 

4.       FIELD EXAMPLE 

 

This example is taken from Benelkadi and Tiab 

[2]. This is a calibration test applied to an oil 

well from TFT field (Algeria).  The purpose of 

this job is to collect information about leak-off 

characteristics of the fracturing fluid.  

Determination of the fracture dimensions 

(fracture half length and average fracture width) 

and estimation of the fracture geometry model is 

also accomplished by means of interpretation 

and analysis from mini-fracture test.  The test 

was performed by pumping 5000 gallons (119 

bbl) of linear gel at an approximate rate of 13 

bbl/min (pumping time was 9.1 min). The 

bottomhole pressure decline was monitored for 

57 minutes. 

 

 

Other parameters are: 

φ = 9.00 % µ = 0.355 cp h = 32.8 

ft 

Vi = 119 bbl tp = 9.1 min rw = 0.25 

ft 

ct = 7.112×10
-5
 psi

-1
 

 

Step-by-step procedure: 

Steps 1 and 2 - The information pertinent to 

these steps is reported above. 

Step 3 – Determine closure pressure and closure 

time. 

Following the procedure suggested by Jones and 

Sargeant [5], Figure 8 permits the identification 

of Pc = 3208.76 psi and ts =1.23 min then tc 

=1.23+9.1=10.33 min.  These values are close to 

the ones reported by Benelkadi and Tiab [2], Pc 

= 3210 psi and tc = 10.43 min. 

Step 4 and 5 - Compute F
2
 and F

2
×Pw'. 

Step 6 - Plot bottomhole pressure and its 

derivative on the same logarithmic plot as shown 

in Figure 9. From this Figure the following data 

can be read: 

(F
2
×Pw')R = 2550 psi (F

2
)R = 0.066543 

(Pw)R = 2511.81 psi 

 

 

ts=1.23 min

Pc=3208.76 psi

tc=1.23+9.1=10.33 min

ts=1.23 min

Pc=3208.76 psi

tc=1.23+9.1=10.33 min

ts=1.23 min

Pc=3208.76 psi

tc=1.23+9.1=10.33 min

 

Figure 8.  Plot for estimating closure pressure and 

closure time, Field example 
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Figure 9.  Pressure and pressure derivative plot, Field 

example 

 

Step 7 - Identify radial flow and calculate 

average reservoir pressure with Equation 25. 

psiP 84.2341)2550)(0666543.0(81.2511 =−=  

Step 8 - With the estimated average reservoir 

pressure, calculate pressure difference and plot it 

in the same logarithmic plot.  Verify the value of 

reservoir pressure. 

Step 9 - Read the values of F
2
1, F

2
2, and F

2
3. 

Despite the fact that it is possible to identify the 

inflection point in the pressure difference curve, 

the behavior on the derivative shows wellbore 

storage effects. 

From Figure 10 read: 

F
2
3 = 0.096 F

2
x = 0.11 

 

 

100

1000

10000

0.01 0.1 1

Dimensionless time function, F
2

P
re

s
s
u

re
 a

n
d

 p
re

s
s
u

re
 d

e
ri

v
a
ti

v
e
, 

p
s
i

■ Pw

▲ F
2
×P'w

● ∆P

F
2
3 = 0.096

F
2
x = 0.11

 

Figure 10.   Diagnostic plot, Field example 

Step 10 – Use Eq. 24 to calculate the formation 

permeability: 

mdk 22.12
)2550)(33.10)(8.32(

)355.0)(119(
105.2

5 =×=  

Step 11 - Calculate the interporosity flow 

coefficient: 

Calculation of λ with Equation 14: 

4
25

6
1070.2

)33.10)(22.12(

)096.0()25.0)(10112.7)(355.0)(09.0(
105.2

−
−

×=
×

×=λ

 

Step 12 - Calculate the storativity ratio. 

Calculation of ω with Equation 34: 

100.0
)096.0()25.0)(10112.7)(355.0)(09.0(

)33.10)(22.12)(1070.2(
106.31

25

4
7 =

×

×
×−=

−

−
−ω

 

Table 1 summarizes the estimated values of ω, λ, 

Pr, and k for the field Example. It is important to 

notice that both methods complement each other, 

allowing a robust methodology for the 

interpretation of the naturally fractured reservoir 

from a mini-falloff data.   

 
Table 1.  Summary of Results 

Example P , 

psi 
k, md ω λλλλ 

2350 12.4 - - 
Benelkadi and 

Tiab [2] 

 

 

F2 Procedure  

 

2342 12.22 0.1 2.70×10-4 

 

5.      CONCLUSIONS 

1. Mini-fracture treatment can be used as an 
effective tool to identify the presence of natural 

fractures and determine reservoir properties, 

such as permeability, storativity ratio, 

interporosity, and average reservoir pressure. 

2. The average reservoir pressure can be 
calculated from the proposed technique.  It is 

calculated from characteristic points in the 

diagnostic plot in an accurate and 

straightforward procedure. 

3. A set of alternative equations for estimating 
permeability, storativity and interporosity for 
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special cases is presented.  The combination of 

all the equations that have been presented here 

permits a complete analysis of the system, using 

equations for verification purposes and for 

identification of the different flow regimes and 

characteristic points. 

4. The technique presented is analogous to the 
Tiab’s Direct Synthesis technique.  From a single 

log-log plot it is possible to identify 

characteristic points in order to estimate 

reservoir properties. 

5. The main limitation of this technique is that in 
the absence of a trough, due to wellbore storage 

effects, it is not possible to estimate λ and ω. 

 

 

6.      NOMENCLATURE 

 

A dummy variable 

B dummy variable 

b dummy variable 

F(t) time function, dimensionless 

F
2
×∆P pressure derivative respect time function 

F2 

g gravity 

h formation thickness, ft 

k permeability, md 

P, p Pressure, psi 

ql(x,t) leakoff intensity 

Qo injected rate, bbl/min 

rw wellbore radius, ft 

t time, min 

tc closure time, min 

tp pumping time, min 

t’ leakoff exposure time of the fracture 

element, min 

v velocity 

V ratio of the total volume of the medium 

to the bulk volume of the system, ft3 

Greek Symbols 

φ porosity, fraction 

η dummy variable 

ρ density 

ρ(h) density as function of depth 

ω storativity ratio, dimensionless 

λ interporosity flow coefficient, 

dimensionless 

χ factor for apparent time = 16/π
2
 

µ viscosity, cp 

Subscripts 

b bulk/breakdown pressure (fracture 

pressure) 

D dimensionless quantity 

f fracture 

H maximum horizontal 

h minimum horizontal 

i injected 

m matrix 

max maximum 

r reservoir 

R radial flow 

w wellbore 

x intersection point between radial flow 

and unit slope line at intermediate 

times/x axis 

y y axis 

z z axis 

1 beginning of the trough 

2 base of the trough 

3 end of the trough 
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