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Abstract. We advance a framework for an inferential conception of physical laws, address-
ing the problem of the application of mathematical structures to the relevant structure of
physical domains. Physical laws, we argue, express generalizations that work as rules for de-
riving physically informative inferences about their target systems, hence guiding us in our
interaction with various domains. Our analysis of the application of mathematics to the ar-
ticulation of physical laws follows a threefold scheme. First, we examine the immersion of
the relevant structure of physical domains into mathematical structures. Second, we assess
the inferential power of laws resulting from the mathematical formalism employed in the
immersion step. And third, we provide a suitable physical interpretation for the extant math-
ematical structures obtained from the inferential step. We demonstrate that a deflationary,
empiricist framework for an inferential conception of physical laws delivers both an under-
standing of the mathematical character of physical laws, and a way of responding to some of
the standard philosophical riddles associated with laws.
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1. Introduction

The literature on laws of nature has expanded in various directions. The diversity of
arguments concerning the character of laws makes it difficult to provide a clear-cut
chart to the available positions. A standard map of the debate tells us that three are
the main approaches to laws. First, we find a cluster of theories under the label meta-
physical views. They share the strategy of extending scientific ontology by metaphys-
ical means, adding layers of universals (Armstrong 1983), dispositions (Bird 2007),
or essences (Ellis 2001) to ground laws. Second, a plethora of views are classified as
Humean accounts of several sorts, bringing together approaches as disparate as the
regularity theory (Carroll 1994), supervenience theories (Loewer 1996; Earman and
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Roberts 2005a, 2005b), and the best system account (Lewis 1986). The latter alone
has been further developed in numerous variations, as in the better best system (Co-
hen and Callender 2009), the perspectivalist better best system (Massimi 2018), and
the best system that is best for us (Jaag and Loew 2018). Although with relevant
differences, they all develop one form or another of the claim that laws express regu-
larities of some sort. And third, a trend of nomological eliminativism holds the view
that not only should we do away with the metaphysicians’ laws of nature, but also
dispense with the concept of law in our interpretation of scientific practice altogether.
A common strategy in this respect consists in replacing the role played by laws with
symmetries (van Fraassen 1989) or models (Giere 1988, 1999), both of which, it
is argued, can better perform the tasks that were traditionally attributed to laws in
representing, explaining or predicting phenomena.

Note that the classification above has its own limits, hence failing to accurately
depict the complexities of the debate. We shall concentrate on one such limit, namely:
the fact that views above largely overlook the task of making sense of the mathemat-
ical character of physical laws, leaving unexplained puzzles arising from the contri-
butions of mathematics to the articulation of laws in scientific practice.1 In particular,
we examine issues surrounding the application of mathematical structures to the rel-
evant structure of physical domains in the articulation of laws. This, we submit, will
help us illuminate at least some of the philosophical riddles associated with laws.

Recent work by Dorato (2005a, 2005b, 2005c) and Woodward (2003, 2013,
2017, 2018) has delivered fruitful, although partial, analyses concerning the math-
ematical character of physical laws, setting out the scene for us to advance our pro-
posal.2 On the one hand, Dorato provides an appraisal of the algorithmic conception
that suggests that laws are the software of the universe. Consider the Newtonian
inverse-square law of universal gravitation:

Fgrav = gm1m2/R
2

where m1 and m2 are the masses of two bodies, R2 is the square of the distance be-
tween their centers, g is the gravitational constant, and Fgrav is the resultant force of
gravity. This equation tells us that any two bodies, m1 and m2, exert a force upon each
other that is directly proportional to the product of their masses, varying inversely
as the square of the distance between them, R2. The law correlates the variables and
constant of a mathematical structure with the relevant quantities and structural rela-
tions of specific physical systems, such as the Sun-Earth system, and else. At this point,
the algorithmic view would argue that mathematics-based law statements can best
be conceived as algorithms bridging quantitative data, along with physical constants
and the results of the calculus providing explanations and predictions in science.
Such algorithms expressing laws would constitute the software of reality, in analogy
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to the computer software operating on a computer hardware (Dorato 2005a, p.61).
Laws would enable us to track the probability of one physical system passing from
one physical state to another by means of applying the correct algorithm to specific
properties of phenomena.

On the other hand, the invariance-based account of laws maintains that “[l]aws
are generalizations about repeatable relationships that are invariant over variations
in initial and other sorts of conditions, at least within an appropriate range of such
variations” (Woodward 2018, p.158). Woodward observes that some philosophers
tend to characterize laws in terms of general statements of the form: (x)(F x → Gx),
according to which all x having the property F , it has the property G. Physical laws,
nevertheless, are expressed in terms of differential equations whose peculiarities are
many. They may be ordinary, partial, or non-linear differential equations; some of
them may have solutions, but others may resist any attempt at finding precise solu-
tions for them; and they are open to the influence of initial conditions (Woodward
2017, pp.12–14). Moreover, differential equations expressing physical laws would
yield specific information about their target domain only once additional information
about background assumptions has been provided for a specific scenario, and infor-
mation about supplementary mathematical structure has been added to the original
equation in order to index further physical quantities that are relevant to the domain
under investigation. Recalling Newton’s inverse-square law, the invariance-based ac-
count submits that this law remains invariant under a range of interventions: the
values of the masses m1 and m2 continue to be invariant if the distance R2 changes
over time within certain limits; the known value of the masses can be subject to con-
sideration regardless of background conditions such as the colors of the two bodies
or their internal physical constitution. The latter sort of considerations is irrelevant
for the determination of the final value of the gravitational force, and it is not repre-
sented by additional variables in the formulation of the law statement.

Looking at the intertwining of the philosophy of laws and the philosophy of ap-
plied mathematics, in this article we provide an account of mathematics’ contribu-
tions to the articulation of physical laws. In so doing, we move beyond Dorato’s
and Woodward’s observations. Specifically, we put forward a deflationary, empiri-
cist framework for an inferential conception of physical laws, which casts light on
the application of mathematical structures to the relevant structure of physical do-
mains in the articulation of laws in physics. Our use of the inferential conception of the
application of mathematics (Bueno and French 2018; Bueno and Colyvan 2011) leads
us to label our proposal an inferential conception of physical laws. As will be argued
below, laws are empirical hypotheses expressing regularities of various scopes, serv-
ing as rules for deriving physically informative inferences about their target domains.
The inferential power of physical laws makes them useful tools for guiding our be-
havior with respect to various issues in scientific practice, such as the construction of
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representations, explanations and predictions of various phenomena.3

The structure of our argument is as follows. Section 2 introduces the inferential
conception of the application of mathematics, setting the background for us to outline
an inferential conception of physical laws in Section 3. Following a threefold scheme,
we look into the details of the contribution of mathematics to physical laws in three
respects: first, in Section 4 we examine the immersion of the relevant objects and
structural relations of physical systems into mathematical structures; then in Section
5 we consider the inferential power that mathematical structures bestow on physical
laws; and in Section 6 we assess the challenge of providing a physical interpretation
for mathematical structures expressing law statements, especially in view of surplus
mathematical structure occurring in laws. After summarizing the main morals from
our analysis in Section 7, potential challenges to our framework are considered in
Section 8. We close, in Section 9, with a brief concluding remark.

2. Applying mathematics: an inferential conception

The general problem of the application of mathematics to the sciences has led to the
production of a wide range literature from Wigner’s (1960) seminal article, through
Steiner’s (1998) Pythagoreanism, to a variety of attempts at accounting for the (al-
leged) unreasonable effectiveness of mathematics in the physical sciences by means
of the articulation of some form or another of mathematical platonism (Colyvan
2001; Bangu 2012) or mathematical nominalism (Field 1980 and 1989; Bueno 2016).
A broad construal of this general problem considers how mathematics, whose lan-
guage is abstract and proceeds by means of deductive reasoning, can be so effective
in uncovering features of the physical world.

Problems concerning the application of mathematics to physical science have
been addressed in terms of elaborations of the mapping account, which has found
various formulations in the literature (see Pincock 2004; Bueno and Colyvan 2011;
Nguyen and Frigg 2017; and for a critical appraisal, see Rizza 2013). From this view-
point, mathematical models work like maps by representing features of their target
systems and allowing researchers to use them to investigate the physical world. At
one extreme, we find advocates of isomorphic mapping relations between high-level
mathematical theory and low-level mathematical models, where only the latter are
intended to represent the behavior of actual physical systems (van Fraassen 1980,
1989). According to this proposal, a mathematics-based, low-level model can be used
to express the empirical adequacy of a high-level mathematized physical theory. At
the other extreme, some understand mappings in terms of similarity-based repre-
sentations (Giere 1988, 1999), arguing that mathematical structures (images, toy
models, etc.) work as maps representing relevant structural similarities of their in-
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tended target systems. Whereas the isomorphism-based mapping account establishes
a 1-to-1 correlation between a mathematical structure and its target, the similarity-
based approach picks out similarities between the relevant structural features of the
representation and the relevant structural features of its target physical system.

These forms of the mapping account face several difficulties.4 First, neither iso-
morphism nor similarity deliver a sound criterion for how representation works in
physical science. Second, without substantial additional resources, these proposals
do not provide an account of how relevant features of the target systems are identi-
fied, hence failing to make sense of such criteria as salience and stability of structural
features of specific target systems. Third, these proposals, at least as developed so far
by their advocates, do not account for the pragmatic character of the selection process
of one mathematical structure over another, nor do they accommodate the process
of construction of new mathematical structures in applied mathematics. And fourth,
they currently do not explain the role played by surplus mathematical structure in
scientific reasoning.

A recent development in the debate consists in the elaboration of the inferential
conception of the application of mathematics to physical sciences. The inferential
conception addresses the specificities of the application of mathematical structures
to the relevant structure of physical systems advancing a threefold scheme:

i. Immersion: the first step consists in “establishing a mapping from the physical
(empirical/theoretical) situation to a convenient mathematical structure”;

ii. Inference: the second step consists in “drawing consequences from the mathe-
matical formalism, using the mathematical structure obtained in the immersion
step”;

iii. Interpretation: finally, one interprets “the mathematical consequences that
were obtained in the derivation step in terms of the initial theoretical set-up”
(Bueno and French 2018, pp.52–3).

This framework highlights the main dimensions of the application of mathemat-
ics, from establishing the relevant mapping, through the derivation of appropriate
inferences from the chosen mathematical structure, to providing a physical interpre-
tation for the resultant mathematical structure, hence returning to the initial problem
situation. Among its key aspects, we will consider the following three in our elabo-
ration of an inferential conception of physical laws. First, the inferential conception
of the application of mathematics fully embraces pragmatic criteria involved in the
process of applying mathematics. For establishing the initial mapping, a convenient
mathematical structure is chosen. If two or more mathematical structures are avail-
able for addressing a domain, a selection is made based on pragmatic criteria, such
as simplicity, tractability, and so on. In some cases, if no mathematics is available for
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suitably mapping a given target domain, a specific mathematical formalism can be
built up. Likewise, concerning the target domain, when drawing mappings, scientists
identify the relevant quantities and relations thereof whose salience and stability in-
form us about the structure that is interesting from the viewpoint of the problem
situation. We do not expect mathematical mappings to cover thoroughly a domain,
but only to selectively represent those features that are relevant for the problem at
hand. The goal in the end is this: at least some of the consequences derived from the
mathematics employed in mappings are expected to be physically informative about
the relevant target domain.

A second element of the inferential conception of the application of mathematics
that will become decisive for our account of physical laws has to do with the adoption
of the partial structures approach (da Costa and French 2000, 2003), which provides
a framework for understanding how scientific representation works. From this per-
spective, the mapping from a physical domain to a suitable mathematical structure
can be introduced as follows:5

• Be W the relevant structure of a physical domain which we seek to map;

• Be M the mathematical structure which we implement to map W ; and,

• Be Φ the mapping relation W → M .

Various considerations are in order. First, the mapping Φ(W → M) represents a
kind of morphism which, according to the inferential conception, can take the form
of a partial isomorphism or partial homomorphism. Second, assuming a partial mor-
phism, M may contain more structure than W , or vice versa. And third, the informa-
tion yielded by Φ(W → M) has an open structure, accommodating elements of M ,
which at a certain point we ignore if they have a counterpart in W .

Set theoretically, we express the relation of partial isomorphism or partial homo-
morphism as follows. A partial structure is an ordered tuple 〈D, Ri〉i∈I , where D is
a non-empty set and Ri , i ∈ I , is a family of partial relations. In turn, each partial
relation R can be viewed as an ordered triplet (R1, R2, R3), where R1, R2 and R3 are
disjoint sets, with R1 ∪ R2 ∪ R3 = Dn; and such that

• R1 is the set of n-tuples which we know that belong to R;

• R2 is the set of n-tuples which we know that do not belong to R; and

• R3 is the set of n-tuples for which we ignore whether or not they belong to R.

Hence, by endorsing the partial structures approach, the inferential conception has
the means to make sense of the fact that mapping processes selectively pick out rel-
evant (i.e., salient and stable) features of physical systems from the perspective of a
problem situation, without purporting to implement a full mapping. Moreover, the
theories and hypotheses involved in the application process need not be true, but
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be partially true only, that is, true only relative to a restricted portion of the domain
under consideration, and consistent with accepted claims about the domain of appli-
cation (see da Costa and French 2003).

Yet, a third feature of the inferential conception of the application of mathemat-
ics, which will play a role in our understanding of physical laws, is this: granting the
adoption of the partial structures approach, the inferential conception has the tools
to account for the appearance of surplus mathematical structures in scientific the-
orizing (Redhead 1975). Physical laws routinely involve the appearance of surplus
mathematical structure, which can adequately be identified as R3 above. At some
point, we ignore whether such surplus mathematical structure belong to the set of
relations, R, hence belonging to the mapping Φ(W → M). The inferential conception
clarifies the roles of surplus mathematical structure, according to which, even though
surplus structure may resist physical interpretation, it can still play various roles in
scientific theorizing in general and in the articulation of physical laws specifically.

With these considerations in place, we can now elaborate an inferential concep-
tion of physical laws, returning to the points above as needed.

3. Outlining an inferential conception of physical laws

We outline a framework that accounts for the articulation of laws, particularly in the
context of the application of mathematical structures to physical domains. The ac-
count shall cast light on both mathematics’ applicability and the character of mathe-
matics-based law statements. Here is the threefold scheme for an inferential concep-
tion of physical laws:

i. Immersion in laws: One dimension of the contribution of mathematics to the
articulation of physical laws consists in establishing a mapping from the rele-
vant structure of a physical system (taking into account its objects, properties
and relations) to a suitable mathematical structure.

ii. Inferring form laws: A second dimension of mathematics’ contribution to phys-
ical laws can be identified with the set of inferences that we can derive from
the mathematical formalism employed in the articulation of a law statement.
Along with its representational and expressive capacities, mathematics bestows
inferential power on laws, facilitating the tasks of explaining and predicting
relevant phenomena. Note, at this point, that whether the inferences derived
are physically informative is yet to be decided in the third step.

iii. Interpreting laws: A third dimension of the contribution of mathematics to
laws consists in providing us with a mathematical space of possibilities that
require to pass the test of physical interpretation. That is, we need to work out
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a physical interpretation for the extant mathematical structures resulting from
the inferences derived from the initial mathematical formalism (along with
any other added mathematical structure). In view of this, two separate tasks
are to be undertaken: First, a distinction should be made between physically
informative and physically uninformative mathematical inferences, where only
the former succeeds in receiving an adequate physical interpretation, thereby
yielding relevant information regarding aspects of the phenomena under study.
And second, attention is to be paid to cases in which surplus mathematical
structure occurs in laws, since even though some structures may lack physical
interpretation, they can still play a role in the process of successfully applying
mathematics to mathematics-based law statements.

How do we understand physical laws within this framework? We take this frame-
work to be suitable for a deflationary, empiricist account of laws. If a definition of
physical laws is required, here is one that can neatly be accommodated by the in-
ferential account: physical laws are empirical hypothesis that serve as rules or direc-
tions for deriving physically informative inferences (sometimes along with physically
uninformative ones) about their target domains. The inferential power of physical
laws, which is strengthened by the mathematical formalism employed in each case,
makes them useful tools for guiding our behavior with respect to various physical
domains, hence aiding the construction of representations, explanations, and pre-
dictions of several phenomena, among the tasks routinely associated with laws. In
the next three sections, we examine local scenarios of the application of mathemat-
ical structures to the articulation of laws keeping in mind the suggested threefold
framework. We consider each step in turn.

4. Immersion in laws

The first step of the inferential conception of physical laws consists in the immersion
of the relevant structure of a physical domain into the chosen mathematical struc-
ture. The selection of the relevant mathematics is inherently pragmatic, including
contextual considerations about details imposed by both the target system and the
availability of mathematics at a given time.

When it comes to physical laws, mathematical structures are applied to relevant
aspects of a broad range of empirical/theoretical situations. Following a familiar dis-
tinction, for clarificatory purposes we distinguish between the application of math-
ematics to phenomenological laws and to fundamental laws. Phenomenological law
statements are routinely obtained from directly probing an empirical situation. We
have in such cases robust epistemic access to the situation of interest. By contrast,
fundamental laws are not obtained in this way, and we usually lack straightforward
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access to their targets. They require the introduction of idealizations and surplus
mathematical structure to provide a generalization about their domain. Importantly,
it should be noted that our inferential conception of physical laws does not depend
on there being a sharp distinction between phenomenological and fundamental laws.
Indeed, we are not committed to the claim that physical laws can be accurately classi-
fied in terms of exactly these two types of laws. Rather, the lack of sharp boundaries
between them is more likely to be found in scientific practice. For the time being,
though, we introduce this nomenclature only to highlight features of the application
of mathematics to physical laws that should be examined.

In cases of phenomenological laws, their mathematical structure straightforward-
ly picks out the relevant aspects of physical systems. Consider Hooke’s law:

Fs = kx

Fs is the force needed to compress or extend a spring; k is a constant factor that
is assigned to specific sorts of springs in each application of the formalism to a lo-
cal physical scenario, which ultimately introduces the stiffness of a spring; and x
represents the displacement or change in length of a spring. The equation, in brief,
represents the relevant structure of a physical system, i.e., a spring that is subject to
pressuring or expanding forces, hence expressing a physical law that states an em-
pirical generalization that captures the relevant structural relations embedded in its
target system. For some phenomenological laws, the target system may bear further
physical elements amenable to be identified be means of additional mathematical
variables, as needed. In any case, the mathematical structure employed offers a sim-
plification of the physical situation, indexing only those properties and structural
relations that are relevant to the specific scenario. Naturally, other details of physical
systems go beyond what can or need to be captured by the mathematical structure
expressing a law statement.

More complex, philosophically intriguing scenarios are those of fundamental laws
that only indirectly refer to physical systems through the introduction of a variety of
mathematical idealizations and surplus mathematical structure. Consider the general
form of the time-dependent Schrödinger equation:

iħh
d
d t
|Ψ(t)〉= Ĥ|Ψ(t)〉

where i is an imaginary number, ħh is the reduced Plank constant, and Ψ is the state
vector of a quantum system. A series of difficulties are added in this case. This law
introduces an imaginary number, the reduced Plank constant, and the state vector
of a quantum system, all of which present various difficulties when it comes to per-
forming a mapping from the target physical domain to the mathematical. Imaginary
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numbers, it may be argued, find no counterpart in the world. The equation, indeed,
bears more mathematical structure than the physical structure that we can attribute
to a target system. Be that as it may, the Schrödinger equation provides information
about the wave function of a quantum system evolving in time. To perform applica-
tions of this equation, we need to specify the Hamiltonian for the quantum system,
considering the kinetic and potential energy of the particles constituting the system in
question. Furthermore, as such, it would be inadequate to require for the Schrödinger
equation a 1-to-1 isomorphic conservation of the structural relations exhibited in its
target system. This equation delivers a space of physical possibilities for a quantum
system, which can be adjusted to specific physical scenarios by considering the rel-
evant Hamiltonians in each case. We shall return below to the partial character of
mappings performed by such mathematics-based law statements.

In brief, physical laws, whether they are phenomenological or fundamental, are
only intended to selectively pick out the relevant structural relations of target sys-
tems. It is usually the case that certain physical aspects of the relevant target escape
the domain of interest of mathematical structures expressing laws. And the process of
applying mathematics to the articulation of physical laws, we noted, is pragmatic in
character. Depending on the situation under consideration, we may find that, given
the relevant properties and relations of a target system, it may be the case that one
piece of mathematical structure be more suitable to successfully perform the map-
ping than other pieces of mathematics available at a time. Yet, we may lack a suitable
mathematical structure to map the relevant quantities and relations embodied in the
target at hand, as in the well-documented case of Newton’s introduction of infinites-
imal calculus in classical mechanics. In a different scenario, scientists may have at
their disposal two or more mathematical structures that can be used in the partial
mappings of the phenomena under investigation, the problem being having to find a
criterion (or set of criteria) for choosing one among them.6

5. The inferential character of laws

Recall that the second step of the inferential conception of the application of math-
ematics consists in “drawing consequences from the mathematical formalism, using
the mathematical structure obtained in the immersion step” (Bueno and French 2018,
p.52). This is “the key point of the application process, where consequences from the
mathematical formalism are generated” (Bueno and French 2018, p.53). We shall
show now that the same goes for the inferential conception of physical laws.

Physical laws perform various tasks in scientific practice. It has been widely ac-
knowledged that law statements facilitate the axiomatic presentation of theories in
their domain, occupying a high-level in the structure of scientific theorizing in their
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fields. Likewise, physical laws enhance theoretical and physical unification in the sci-
ences, strengthening intra- and inter-theoretical relations. Cases of this sort abound
in the history of physics, standard examples being the unification of Kepler’s laws
of celestial mechanics and Galileo’s laws of terrestrial motion by means of Newton’s
second dynamical law and the law of universal gravitation; or the Maxwellian unifi-
cation of physical optics, electric and magnetic theories.

What interests us at present is to highlight the inferential power of physical laws.
Mathematics-based law statements work as rules for deriving physically informative
inferences about their target systems. Consider, for instance, the differential equation
that Paul Dirac identified (now called Dirac’s equation), which contains negative en-
ergy solutions (for references and details, see Bueno 2005). The fact that the equation
has such negative solutions is an inferential aspect of the mathematics used in the
formulation of the equation. By embedding the relevant physical situation, involving
energy, momentum and mass, into the suitable mathematical model, the negative
energy solutions result. The crucial issue is then to articulate a physically relevant
interpretation of such solutions, and it was precisely by identifying such an interpre-
tation (after two false starts) that Dirac was eventually able to posit the positron as a
suitable physical interpretation of the negative energy solutions. This takes us to the
next step of our approach.

6. Interpreting physical laws

The third step of the inferential conception of the application of mathematics suggests
interpreting “the mathematical consequences that were obtained in the derivation
step in terms of the initial empirical set up” (Bueno and French 2018, p.53), thereby
establishing a mapping from the resultant mathematical structure to the initial the-
oretical/empirical situation. When it comes to interpreting mathematics-based law
statements, such interpretation takes place at two levels. On the one hand, a partial
mapping is established between the mathematical structure that is chosen to formu-
late a physical law and the relevant structure of its target domain, as was noted in
the immersion step in Section 4 above. And on the other, once inferences allowed
by the mathematical formalism have been derived in the inferential step (Section 5
above), additional partial mappings are to be introduced in order to provide a suit-
able physical interpretation for the extant mathematical structure.

The scope of possible physical interpretations of a mathematically expressed phys-
ical law is ultimately determined by its target domain. Once more, cases of phe-
nomenological laws routinely allow inferences whose interpretation may usually
prove to be straightforward. As in the case of the abovementioned Hooke’s law, in
appropriate contexts, we have robust epistemic access to linear springs, hence deter-
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mining the values for Fs, k, and x . Moreover, applications of Hooke’s law to continu-
ous media and to analogous models of the harmonic oscillator can be developed, in
each such scenario being possible to determine the physical quantities that fill in the
variables and relevant constant.

However, when it comes to providing interpretations of explanations or predic-
tions derived from fundamental laws, things get more complicated. Cartwright (1999)
has famously argued that fundamental laws are simply false when taken literally,
failing to apply directly to the world. Our framework for an inferential conception of
physical laws has the means to accommodate this concern. In fact, the immersion-
inference-interpretation scheme takes into consideration the relevant details involved
in connecting mathematical and physical structures. Consider Cartwright’s example
of Newton’s second dynamical law:

F = ma

To get from the mathematics to their intended target physical domain, we firstly
need to recognize that the equation in question already bears physical interpretation,
i.e., it refers to a certain force, F ; to the mass of a body, m; and to its respective ac-
celeration, a. As an inferential device, this equation enables us to construct various
models that help us bridge the representational gap between a mathematical struc-
ture and the relevant structure of the target physical domain. These models will, in
turn, add further mathematical structures to the initial mathematics-based law state-
ment, including variables indexing additional features of the intended target system
(such as air resistance) that allow one to achieve a more accurate mapping of the
relevant structural relations.

Here is an example: for a body of mass m that is affected by forces F1, F2, F3 and
F4, we have the following diagrammatic presentation that considers the direction of
the forces:

-�

6

?

F2 F3

F4

F1

Forces F2 and F3 affect the horizontal direction. Applying the second law, we
obtain:

ax =
∑︂

Fx/m= F2 + F3/m
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And the same goes for the acceleration along the vertical direction for F1 and F4:

ay =
∑︂

Fy/m= F1 + F4/m

Moreover, the inferential power of the second dynamical law can be employed to
solve physical problems associated with Hooke’s law mentioned earlier, moving now
from the general form F = ma to

F = ma = m · d2 x/d t2 = −kx

where d2 x/d t2 corresponds to the second derivative of the mass of the body with
respect to time and k is the constant of proportionality introduced in Hooke’s law,
this time applied to a model of a linear oscillator.7

In brief, we grant that mathematical statements expressing physical laws can be
given a physical interpretation (as in the cases of the Hooke law, the Schrödinger
equation, or the Newtonian second dynamical law), so long as it is possible to de-
termine their own physical scope, which is given by the physical generalization they
express about a target domain. Regardless of whether they are fundamental or phe-
nomenological, physical laws are intended to refer to their instances. The task we
need to perform is to clarify the initial partial mapping relation (immersion step), to
derive physically informative inferences from the mathematical structures express-
ing the law, and to interpret the extant mathematical structures obtained in terms of
the initial empirical set up. Some inferences may be completed in a few steps, as in
the case of Hooke’s law, whereas other may require longer, more complex inferential
chains before latching onto the relevant structure of a target physical domain.

7. Morals from the inferential conception of physical laws

Thus far, we have outlined a framework for an inferential conception of physical laws,
focusing on various dimensions of the application of mathematical structures to the
relevant structure of physical domains in the articulation of laws. We are aware that
our proposal is broadly programmatic. But we believe it effectively captures some
important features of mathematics’ contributions to the articulation of laws. In what
follows, we highlight some of the benefits of our framework.

The first benefit consists in addressing philosophical riddles that arise from the
application of mathematics to the articulation of physical laws. Standard formula-
tions of metaphysical views, Humean accounts, and eliminativist approaches have
largely overlooked the roles of mathematics in physical laws (see Section 1 above). As
we mentioned earlier, Dorato (2005a, 2005b, 2005c) and Woodward (2017, 2018)
constitute exceptions to this trend: the former sets forth an appraisal of the algo-
rithmic view of laws, whereas the latter examines the fact that most physical laws
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are expressed in terms of differential equations. Our framework moves beyond their
contributions by providing a setting in which a variety of connections between math-
ematical and physical structures can be represented in the context of the formula-
tion and exploration of physical laws. As noted, three dimensions of the application
of mathematics to physical laws are distinguished, namely: the immersion step, in
which a map from the relevant structure of a target domain to a suitable mathe-
matical structure is specified; the inferential step, in which consequences from the
mathematical formalism are derived; and the interpretation step, in which a physical
interpretation is provided for the extant mathematical structure.

A second benefit of our framework consists in setting the groundwork for the de-
velopment of a philosophical conception of physical laws. The inferential conception
embraces the fact that most physical laws are mathematics-based statements. Scien-
tists construct laws and use them as guides about regularities in specific domains.
Such mathematics-based physical laws are not to be assessed in terms of philosoph-
ical criteria concerning the universality, necessity, truth and objectivity of the meta-
physicians’ laws of nature, since it is not clear that such criteria can (or need to) be
met (see van Fraassen 1989). By contrast, our framework acknowledges that physi-
cal laws are contingent, delivering partial truths about their domains. They may turn
out to be false because experiments may reveal unforeseen features of a physical do-
main, or because the mathematical framework employed in their expression can be
revised and corrected. Despite that, as they stand, physical laws provide empirical
hypotheses that express generalizations about the behavior of phenomena in their
domains.

Where does the inferential conception of laws of nature stand on the debate con-
cerning the character of laws? We can only make some brief remarks at this point.
Let us consider the traditional distinction between metaphysical, Humean, and elim-
inativist accounts of laws:

• Against metaphysical views,

• we endorse an empiricist epistemology and its concomitant ontology in our
analysis of physical laws, thereby rejecting the postulation of special entities
to ground the nomic status of law statements.

• Against Humean views,

• we have no quarrel with endorsing the modalities of physical domains, and we
see no need to reduce laws to a non-modal Humean basis.

• Against nomological eliminativism,

• we suggest an account of the physical laws that we find in scientific practice,
hence dispensing with revisionary interpretations of science.

Of course, much more needs to be said about these issues, and we will do so in future
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work. However, for the time being, let this suffice to place the inferential conception
of physical laws in the debate.

A third benefit of an inferential conception of physical laws consists in putting
forward an account of the scope of physical laws that remains close to what we
find in physical science. The adoption of the partial structures approach (Section
2 above) contributes to this goal. Mathematically expressed physical laws abstract
away several aspects of physical domains, introducing idealizations about unreal-
ized (and sometimes in principle unrealizable) physical situations (as in the case of
infinite idealizations). The partial structures approach that underpins our defense of
the inferential conception of physical laws acknowledges the complexities involved
in interpreting physical laws, making sense of the fact that standard textbook for-
mulations of fundamental laws (say, F = ma) should be interpreted as empirical hy-
potheses providing a generalization about a physical domain. Such laws are meant to
serve as rules for deriving inferences and building models of concrete situations once
a suitable additional mathematical machinery (additional variables, functions, and
else) has been added to index new physical information. What matters about funda-
mental laws is that they provide a mathematical space for the realization of physical
possibilities in a domain. To interpret them as literal, first-hand descriptions of spe-
cific physical situations (as Cartwright 1999 suggests) would be to overlook their
roles in the sciences’ inferential practices. The partial structures approach has the
flexibility to accommodate partial mapping relations in cases in which the relevant
physical domain may have more structure than the structure we need to introduce in
the articulation of the respective mathematics-based law statement, as well as cases
in which mathematics-based law statements have more structure than the structure
that is available in the corresponding physical domain.

This consideration leads us to a fourth benefit of our framework: it can account
for the occurrence of surplus mathematical structure in laws. Even though the for-
mulation of some laws requires the introduction of surplus mathematical structure, it
can still be shown that, on the one hand, such laws are physically informative about
relevant phenomena; whereas on the other, the surplus mathematical content plays
heuristic roles, facilitating the solutions of equations and enabling us to derive phys-
ically informative inferences about the relevant domain in each case. The occurrence
of surplus mathematical structure need not entail the view that laws are purely math-
ematical devices, nor the idea that the world is mathematical in character. More will
be said about these benefits in future work.
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8. Counterarguments to our framework, and their responses

We have outlined a framework for physical laws that takes into account the appli-
cation of mathematics. We explore now the way in which our proposal responds to
additional philosophical concerns. One is this. We speak of applying mathematical
structures to the relevant structure of physical domains. We have been explicit about
the pragmatic character of this task, both at the level of selection of a convenient
mathematical structure and at the level of the identification of the relevant struc-
tures of a physical domain. In so doing, a potential challenge to our view would
question whether we can offer a criterion (or set of criteria) for distinguishing be-
tween mathematical and physical structures. This challenge gains momentum once
we consider recent trends in the philosophy of science, particularly in the philoso-
phy of physics and mathematics, where such a distinction has come to be questioned
(Tegmark 2014; Ladyman and Ross 2007). Although we cannot fully address this con-
cern in this article, it should be noted that our empiricist framework for an inferential
conception of physical laws need not endorse ontological commitment to mathemati-
cal and physical structures. It suffices for our purposes to maintain that mathematical
structures are abstract, whereas physical structures are concrete. Structural relations
among physical quantities are partially described by suitably interpreted mathemati-
cal structures. Scientific research typically detects structural relations among physical
properties or quantities, refines one’s access to them, and track them spatiotempo-
rally (Bueno 2019). In the case of laws, this is achieved by exploring their inferential
resources allowed for by suitably interpreted mathematical structures.

A second challenge builds up from the first: it can be argued that we do not
tackle the issue of whether the world comes structured or unstructured (for instance,
whether it is orderly or disorderly, deterministic or indeterministic) as part of the ac-
count we favour of the application of mathematics to the articulation of physical laws.
In response, it should be noted that our empiricist framework remains neutral about
metaphysical presuppositions concerning the structured or unstructured divide re-
garding the world. Whether the world is ultimately (un)structured is a metaphysical
concern that can be run largely independently from the examination of mathematics’
applications to physical laws (and to physical science overall). Moreover, consider-
ations regarding applications of mathematics to physical domains alone would not
suffice to settle such a metaphysical concern.

A third objection against the inferential framework concerns the source of modal-
ity for physical laws. This concern raises a significant issue, as an account of the
source of modality for the nomological status of laws needs to be offered. At present,
it should be clear that our account need not presuppose that the modality grounding
the nomological character of physical laws is mathematical, and thus provides no
constraints on the physical world (except, perhaps, for cardinality considerations).
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Mathematical modality, we take it, involves modal properties of mathematical ob-
jects without, however, the commitment to a metaphysical understanding of these
properties. For instance, assuming classical logic, it is impossible that there is the
greatest natural number, given that positing such an object is inconsistent with the
infinitude of such numbers. This is a modal property of natural numbers, whether
such numbers exist or not. But what matters with regard to physical laws are modal
properties of objects in the physical world rather than features of abstract, causally
inert entities.

In making sense of physical modality, we also emphasize the role played by the
relevant properties (again, understood in non-metaphysical terms). If a table is break-
able it has a modal property: it can break under certain circumstances. This is a fea-
ture of the table that results from the materials that constitute it, and it is not clari-
fied by introducing metaphysical entities, such as universals, dispositions, essences,
possible worlds, and the like. Our account does not posit such entities at all. In fact,
making sense of physical modality in metaphysical terms is a distraction that deviates
one from the real issue, which is to understand the physical possibilities or impossi-
bilities in question, rather than some artificially constructed philosophical regimen-
tation. (We will return to these issues in future work; meanwhile, see Bueno and
Shalkowski 2015 for additional discussion.)

Our approach should not be in tension with accounts of physical modality that do
not invoke extraneous metaphysics. The empiricist framework for laws advanced by
the inferential conception seems compatible with a conception of physical modality
that rests on the invariance of physical domains (Woodward 2018). The invariance
and stability of properties and relations of physical domains are particular features of
such domains, which are not specified in terms of metaphysically contentious entities.
Of course, far more needs to be said about these issues and we will develop further
the details of the empiricist framework of our approach in due course.

A fourth and final objection raises the concern that our inferential conception of
physical laws proposes a return to logical positivism and the Vienna Circle, having
precedents in Neurath and Schlick, or so it could be argued.8 Neurath, for instance,
notes: “With the help of observation statements we formulate laws; according to
Schlick, these laws are not to be seen as proper statements but as directives for finding
predictions of individual courses of events” (Neurath 1983 [1931], p.53, our italics).
Similarities between Neurath’s interpretation of Schlick and the inferential concep-
tion are apparent if we consider that laws are directives for finding predictions. We
have indeed claimed that physical laws are empirical hypotheses that work as rules
for deriving physically relevant inferences about their target systems. Nevertheless,
differences between Neurath’s take on laws and our account are substantial. First,
we do not adopt an instrumentalist attitude toward laws, according to which such
statements lack truth value. In contrast, laws do have a truth value, and are typically
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at best partially true; that is, they are compatible with accepted information about
the domain they are about, without fully describing every aspect of such a domain
(see da Costa and French 2003). Moreover, with the use of the partial structures
framework, the semantic view of theories is favored rather than the syntactic view.
Second, we do not restrict the roles of laws to that of finding predictions; laws enable
us to articulate explanations and unification in science, and they are used in the con-
struction of models, computer simulations, and else, and all of these features can be
understood within an empiricist framework. Finally, nowhere on our account do we
invoke observation statements or protocol statements, which were central to logical
positivism, with the myriad of problems they yield.

9. Conclusion

We have outlined a framework for an inferential conception of physical laws, which
provides both an understanding of mathematics’ contribution to the articulation of
laws and a philosophical conception of the laws that we find in scientific practice,
particularly those laws in physics that are routinely expressed in mathematical terms.
To do so, we have accordingly moved beyond standard metaphysical, Humean, and
eliminativist views on laws. We are more sympathetic to Dorato’s examination of
mathematics’ effectiveness in laws and Woodward’s invariance-based conception, al-
beit there are important differences between the inferential conception and their
views.

Rather than engaging in critical discussions, we have chosen to provide a three-
fold scheme for making sense of the dimensions of the application of mathematical
structures to physical domains in the articulation of laws, namely, the immersion-
inference-interpretation framework. With this, we have aimed to advance a novel
perspective to both address issues surrounding the application of mathematics to
laws, and outline (only schematically) a response to some concerns in the philosophy
of laws of nature related to the structure of the world and modality. Our framework
for an inferential conception of physical laws will be developed in these and other
directions in future work.

References

Armstrong, D. 1983. What is a Law of Nature? Cambridge: Cambridge University Press.
Bangu, S. 2012. The Applicability of Mathematics in Science: Indispensability and Ontology.

London: Palgrave Macmillan.
Bird, A. 2007. Nature’s Metaphysics. Laws ad Properties. Oxford: Oxford University Press.

PRINCIPIA 23(3): 423–444 (2019)



A Framework for an Inferential Conception of Physical Laws 441

Bueno, O. 2005. Dirac and the Dispensability of Mathematics. Studies in History and Philoso-
phy of Modern Physics 36: 465–90.

Bueno, O. 2016. An Anti-Realist Account of the Application of Mathematics. Philosophical
Studies 173: 2591–604.

Bueno, O. 2019. Structural Realism, Mathematics, and Ontology. Studies in History and Phi-
losophy of Science 74: 4–9. DOI: https://doi.org/10.1016/j.shpsa.2018.12.005.

Bueno, O.; Colyvan, M. 2011. An Inferential Conception of the Application of Mathematics.
Nous 45(2): 345–74.

Bueno, O.; French, S. 2018. Applying Mathematics. Immersion, Inference, Interpretation. Ox-
ford: Oxford University Press.

Bueno, O.; Shalkowski, S. 2015. Modalism and Theoretical Virtues: Toward an Epistemology
of Modality. Philosophical Studies 172: 671–89.

Carroll, J. 1994. Laws of Nature. Cambridge, Cambridge University Press.
Cartwright, N. 1999. The Dappled World. A Study of the Boundaries of Science. Cambridge:

Cambridge University Press.
Cohen, J.; Callender, C. 2009. A Better Best System Account of Lawhood. Philosophical Studies

145(1): 1–34.
Colyvan, M. 2001. The Indispensability of Mathematics. Oxford: Oxford University Press.
da Costa, N. C. A.; French, S. 2000. Models, Theories, and Structures: Thirty Years On. Phi-

losophy of Science 67: S116–S127.
da Costa, N. C. A.; French, S. 2003. Science and Partial Truth: A Unitary Approach to Models

and Scientific Reasoning. Oxford: Oxford University Press.
Dieks, D. 2005. The Flexibility of Mathematics. In: G. Biniolo; P. Budinich; M. Trobok (eds.)

The Role of Mathematics in Physical Sciences: Interdisciplinary and Physical Aspects, pp.115–
29. Dordrecht: Springer.

Dorato, M. 2005a. The Software of the Universe. An introduction to the History and Philosophy
of Laws of Nature. Aldershot: Ashgate.

Dorato, M. 2005b. The Laws of nature and the Effectiveness of Mathematics. In: G. Biniolo; P.
Budinich; M. Trobok (eds.) The Role of Mathematics in Physical Sciences: Interdisciplinary
and Physical Aspects, pp.131–44. Dordrecht: Springer.

Dorato, M. 2005c. Why Are (Most) Laws of Nature Mathematical? In: J. Faye; P. Needham;
U. Scheffler; M. Urchs (eds.) Nature’s Principles, pp.55–75. Dordrecht: Springer.

Earman, J.; Roberts, J. 2005a. Contact with the Nomic: A Challenge for Deniers of Humean
Supervenience about Laws of Nature. Part I: Humean Supervenience. Philosophy and Phe-
nomenological Research 71(1): 1–22.

Earman, J.; Roberts, J. 2005b. Contact with the Nomic: A Challenge for Deniers of Humean
Supervenience about Laws of Nature. Part II: The Epistemological Argument for Humean
Supervenience. Philosophy and Phenomenological Research 71(2): 253–86.

Ellis, B. 2001. Scientific Essentialism. Oxford, Oxford University Press.
Feynman, R. 1965. The Character of a Physical Law. London, Penguin Books.
Field, H. 1980. Science without Numbers. A Defence of Nominalism. Princeton: Princeton Uni-

versity Press.
Field, H. 1989. Realism, Mathematics and Modality. New York: Basil Blackwell.
Giere, R. N. 1988. Explaining Science. A Cognitive Approach. Chicago and London: The Uni-

versity of Chicago Press.

PRINCIPIA 23(3): 423–444 (2019)

https://doi.org/10.1016/j.shpsa.2018.12.005


442 Cristian Soto & Otávio Bueno

Giere, R. N. 1999. Science without Laws. Chicago and London: The University of Chicago
Press.

Jaag, S.; Loew, C. 2018. Making Best Systems Best for Us. Synthese, DOI: https://doi.org/
10.1007/s11229-018-1829-1.

Ladyman, J.; Ross, D.; (with D. Spurrett and J. Collier). 2007. Every Thing Must Go. Meta-
physics Naturalized. Oxford: Oxford University Press.

Lange, M. 2000. Natural Laws in Scientific Practice. Oxford: Oxford University Press.
Lange, M. 2009. Laws and Lawmakers: Science, Metaphysics, and the Laws of Nature. Oxford:

Oxford University Press.
Lange, M. 2017. Because without Cause. Non-Causal Explanations in Science and Mathematics.

Oxford: Oxford University Press.
Lewis, D. 1986. Philosophical Papers, Volume II. New York: Oxford University Press.
Loewer, B. 1996. Humean Supervenience. Philosophical Studies 24(1): 101–27.
Massimi, M. 2018. A Perspectival Better Best System Account of Lawhood. In: W. Ott; L.

Patton (eds.) Laws of Nature, pp.139–57. Oxford, Oxford University Press.
Neurath, O. 1983. Philosophical Papers 1913-1946. Vienna Circle Collection, Volume 16. New

York: Kluwer, D. Reidel Publishing Company.
Nguyen, J.; Frigg, R. 2017. Mathematics is not the Only Language in the Book of Nature.

Synthese, DOI: https://doi.org/10.1007/s11229-017-1526-5.
Pincock, C. 2004. A New Perspective on the Problem of Applying Mathematics. Philosophia

Mathematica 3(12): 135–61
Pincock, C. 2012. Mathematics and Scientific Representation. Oxford: Oxford University Press
Psillos, S. 2012. Anti-Nominalistic Scientific Realism: a Defence. In: A. Bird; B. Ellis; H. Sankey

(eds.) Properties, Powers, and Structures. Issues in the Metaphysics of Realism, pp.63–80.
New York and London: Routledge.

Redhead, M. 1975. Symmetry in Intertheoretical Relations. Synthese 32: 77–112.
Rizza, D. 2013. The Applicability of Mathematics: Beyond Mapping Accounts. Philosophy of

Science 80(3): 398–412.
Roberts, J. 2008. The Law-Governed Universe. Oxford: Oxford University Press.
Steiner, M. 1998. The Applicability of Mathematics as a Philosophical Problem. Cambridge, MA,

London, England: Harvard University Press.
Tegmark, M. 2014. Our Mathematical Universe. My Quest for the Ultimate Nature of Reality.

London: Penguin Books.
van Fraassen, B. 1980. The Scientific Image. Oxford: Clarendon Press.
van Fraassen, B. 1989. Laws and Symmetry. Oxford: Clarendon Press.
Wigner, E. 1960. The Unreasonable Effectiveness of Mathematics in the Natural Sciences.

Communications on Pure and Applied Mathematics 13: 1–14.
Woodward, J. 2003. Making Things Happen. A Theory of Causal Explanation. Oxford: Oxford

University Press.
Woodward, J. 2013. Laws, Causes, and Invariance. In: S. Mumford; M. Tugby (eds.) Meta-

physics and Science, pp.48–72. Oxford: Oxford University Press.
Woodward, J. 2017. Physical Modality, Laws, and Counterfactuals. Synthese, DOI: 10.1007/

s11229-017-1400-5.
Woodward, J. 2018. Laws: An Invariance-Based Account. In: W. Ott; L. Patton (eds.) Laws of

Nature, pp.158–80. Oxford: Oxford University Press.

PRINCIPIA 23(3): 423–444 (2019)

https://doi.org/10.1007/s11229-018-1829-1
https://doi.org/10.1007/s11229-018-1829-1
https://doi.org/10.1007/s11229-017-1526-5
10.1007/s11229-017-1400-5
10.1007/s11229-017-1400-5


A Framework for an Inferential Conception of Physical Laws 443

Notes
1A second limit of the standard classification is that it does not naturally accommodate

recent attempts at accounting for the nomological status of law statements in terms of coun-
terfactual analysis (Lange 2000, 2009, 2017), measurements (Roberts 2008), and invariance
(Woodward 2013, 2017, 2018).

2In the physics literature, Feynman (1965) provides a well-known study of the mathemati-
cal character of physical laws. He argues that most physical laws are mathematical statements
providing physical information in a concise and precise manner. A reason for the contribution
of mathematics to the articulation of laws is given by the plasticity with which mathemati-
cal structures express large amounts of information routinely involved in the description of
complex physical situations (Dieks 2005). Feyman points out that the contribution of mathe-
matics to the articulation of laws has come to be pervasive: “the more laws we find, and the
deeper we penetrate nature, the more this disease persists. Every one of our laws is a purely
mathematical statement” (Feynman 1965, p.39). Clearly, this cannot be taken literally, given
that a physical law is meant to describe the physical world rather than just relations among
mathematical objects. From this, however, the literature has gone farther, some contending
that the formulation of physical laws is mathematical in character because reality is either
ultimately mathematical (Tegmark 2014) or physical-mathematical at once (Psillos 2012).
For an examination of problems for realist interpretations of mathematical structures, see
Bueno (2019).

3We assume that physics is a reliable source of information about physical laws. Although
philosophical reflection can undertake the task of clarifying issues about laws, it is not the
role of philosophers, qua philosophers, to uncover the purportedly true laws of nature about
which the laws of physics are to be deemed mere approximations. Our analysis will focus on
common cases of laws of physics, such as, Hooke’s law, the second dynamical law in clas-
sical mechanics, Newton’s inverse-square law of universal gravitation, and the Schrödinger
equation in quantum mechanics.

4See Bueno and French 2018 and Bueno and Colyvan 2011 for references and further
details.

5For further details, see Bueno and French 2018, and Bueno and Colyvan 2011. In these
paragraphs, we only refer to those aspects that will become central to our framework for an
inferential conception of physical laws.

6This was the case in the early formulation of quantum electrodynamics, in which two
mathematical formalisms were provided: one by Feynman’s diagrams, as a tool for calculat-
ing particle interactions, and another by Schwinger and Tomonaga’s equations for describing
interacting electrons and photons. In this case, a decision was made in favor of Feynman’s
mathematical techniques in view of its tractability, intuitiveness, and convenience for provid-
ing understanding of the relevant structural aspects of the phenomena.

7A similar analysis can be found in Giere 1988, p.68.
8We thank Roman Frigg for pointing out this concern to us.
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