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Abstract 
Droughts are a natural phenomenon of water deficit and represent one of the most dangerous natural hazards to human activities; 
accordingly, its understanding and monitoring are vital. For this purpose, long historical series of precipitation and evapotranspiration are 
considered; however, the sources of this observed information on land are usually limited spatially and temporally. The use of 
complementary sources of information, such as reanalysis, is appropriate in areas with scarce information. Thus, we have evaluated the use 
of the reanalysis databases of the eartH2Observe project (WFDEI & MSWEP) in the Magdalena-Cauca river basin in Colombia, through 
the calculation of three drought indicators (SPI, SPEI & WCI). The indices calculated with the in-situ data identified ten drought events of 
great affectation in the basin. By applying statistical and a Bootstrap uncertainty analysis, we evaluated the performance of the reanalysis, 
finding that the use of the MSWEP precipitation product has a good potential for the analysis of droughts in Colombia.   
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Evaluación de datos de reanálisis en el estudio de sequías 
meteorológicas e hidrológicas en la macrocuenca Magdalena-Cauca 

 
Resumen 
Las sequías son eventos naturales de déficit de precipitación que constituyen una de las amenazas naturales más peligrosas para las 
actividades humanas, por lo que su comprensión y monitoreo son de vital importancia. Para esto, se analizan las series históricas de 
precipitación y evapotranspiración, sin embargo, las fuentes de esta información medida en tierra suelen ser limitadas espacial y 
temporalmente. En consecuencia, el uso de fuentes de información complementaria, como los reanálisis, es de gran utilidad en zonas con 
escasez de información. De acuerdo con lo anterior, se evaluó el uso de las bases de datos del proyecto eartH2Observe (WFDEI y MSWEP) 
en la macrocuenca Magdalena-Cauca en Colombia, a través del cálculo de tres indicadores de sequías (SPI, SPEI y WCI). Los índices 
calculados con los datos in-situ identificaron diez eventos de sequía de gran afectación en la cuenca. Finalmente, los reanálisis fueron 
evaluados con base en coeficientes estadísticos y un análisis de incertidumbre tipo Bootstrap. Se encontró un gran potencial en el uso de la 
serie de precipitación del MSWEP para el análisis de sequías en Colombia. 
 
Palabras clave: Earth2Observe; sequías meteorológicas e hidrológicas; MSWEP; SPEI; SPI; WCI; WFDEI. 

 
 
 

1.  Introduction 
 
Droughts are temporary natural events of insufficiency of 

water, manifested in the inability to satisfy the demands of 
human activities and the environment [1]. Beyond this 
definition, droughts are also classified according to their 
impacts on specific sectors [2] and based on the physical 
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processes involved [3] in meteorological, hydrological, 
agricultural, socioeconomic droughts, among others. This 
paper is focused on meteorological and hydrological droughts, 
which solely require hydro-climatic data for its analysis. 

On the one hand, meteorological droughts express the lack 
of precipitation over a region in a given period of time, where 
the deficit is evaluated with respect to average values [2]. On 
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the other hand, hydrological droughts are defined as a 
significant decrease in the availability of water within the 
hydrological cycle [4] (insufficient volumes of surface and 
subsurface water) and are usually associated with scarcity, in 
terms of deficits for human consumption [5]. 

Droughts occurrence has a direct impact on domestic water 
supply, affecting food security, public health and can alter 
economic sectors dependent on water, such as irrigation, 
hydroelectric production, and agro-industry. [6]. This is why 
droughts are considered one of the threats of natural origin of 
priority study, as they represented, in the twentieth century, the 
greatest economic impact of all natural hazards [7]. 

Some of the deficiencies in drought management include 
limited in-situ information and the lack of tools for forecasting 
and monitoring [8]. Therefore, it is urgent to improve regional 
monitoring, the databases used, and the early warning systems 
[1]. 

According to this, in this paper, we have explored the use 
of two global reanalysis databases from the eartH2Observe 
project, in order to consider its use in studies of meteorological 
and hydrological droughts in Colombia, through the 
calculation of drought indicators. From the diverse existing 
indices to describe droughts, we selected three: the 
Standardized Precipitation Index (SPI), the Standardized 
Precipitation Evapotranspiration Index (SPEI) and the Water 
Crowding Index (WCI). These inidices were chosen due to 
their easy application, the absence of restrictions of scale or 
topography, and because they are recommended by the World 
Meteorological Organization (WMO) [9]. 

Besides, in order to assess the influence on the results of 
the use of different sources of information, the uncertainty 
associated with diverse data inputs was quantified. 
 
2.  Case of study 
 

The Magdalena-Cauca river basin (MCRB) is one of the 
most important watersheds in Colombia, due to its physical 
and socioeconomic characteristics. It has a total area of 
273,459 km2, equivalent to 24% of the Colombian territory, 
and concentrates 80% of the GDP and 80% of the Colombian 
population. 

The Andes Mountain Range defines the hydrographic 
system of the MCRB, by forming two valleys, corresponding 
to the Cauca (1,015 km) and the Magdalena River, (1,550 km). 
These rivers drain from south to north to the mouth in the 
Caribbean Sea, at Bocas de Ceniza, as shown in Fig.1. 

Climates in the MCRB are very diverse, due partly to its 
large area, the complex relief, and the considerable altitudinal 
differences. The average annual precipitation (P) in the MCRB 
is around 2,050 mm with maximal values of 260 mm in 
October (Fig.2). The south and middle part of the basin 
experience two periods of high and low rainfall, with wetter 
periods during the months of April-May and October-
November, with a bimodal precipitation regime. In contrast, in 
the northern part of the basin, near the mouth, there is a unique 
wet season in the second half of the year (May-November), 
characteristic of a unimodal rainfall regime. 

 

 
Figure 1. Location of the Magdalena-Cauca river basin in Colombia 
Source: The Authors. 

 
 

 
Figure  2. Average monthly P (mm) and PET (mm) in the MCRB  
Source: IDEAM gauges. 

 
 

 
Figure  3. Distributed maps (based on in-situ data) of annual mean P (mm) 
and PET (mm) in the MCRB 
Source: Interpolation from IDEAM gauges. 
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The average potential evapotranspiration (PET) in the 
MCRB is close to 1,570 mm per year (as shown in Fig. 2, 
monthly distributed). Lower values occur in the upland areas, 
with figures around 880 mm, and maximum values in the 
lowlands, close to 1,900 mm per year (Fig.3). 

 
3.  Data and methods 

 
This section describes the three databases considered, the 

three drought indicators used, and the evaluation approach 
adopted, in order to evaluate the use of global data from the 
eartH2Observe project for drought analysis. 

 
3.1.  Meteorological data 

 
The use of series of at least 30 years as a reference for the 

calculation of climatic anomalies, under the assumption of 
stationary conditions, has been reported in several studies 
[10, 11, 12]. In this sense, the three databases considered in 
this study (summarized in Table 1) were accumulated in 
monthly time steps for the period 1980-2010 (31 years), since 
it corresponds to the current period of the climatological 
normal, defined by the WMO [13]. 

 
3.1.1.  Observed or in-situ time series 

 
In situ information, used as a benchmark was provided by 

the Institute of Hydrology, Meteorology and Environmental 
Studies of Colombia (IDEAM, for its acronym in Spanish). 
It included daily time series of precipitation (905 stations), 
maximum temperature (468 stations), and minimum 
temperature (259 stations), whose location is shown in Fig. 
4. 

These daily time series were pre-processed within the 
eartH2Observe project, considering the amount of missing 
and atypical data. Since the in-situ information comes from 
records for specific stations, we created daily spatialized 
fields for the distributed analysis. For this purpose, daily in-
situ precipitation values (P) were interpolated, using the geo-
statistical method of Kriging with External Drift and taking 
as secondary variable the elevation above sea level from a 
Digital Elevation Model (DEM) of 30 m resolution [14]. 

 
Table 1. 
General characteristics of the databases analyzed.  

 Observed WFDEI MSWEP 
Available 
period 

1934 - 
present 1979 - 2012 1979 - 2017 

Original 
spatial 
resolution 

Gauges 
records 0.5° x 0.5° 0.25° x 0.25° 

Original 
temporal 
resolution 

daily 3-hourly 
daily avg. 

3-hourly 
daily avg. 

Source IDEAM 
gauges 

ERA-Interim, 
CRU and 
reanalysis based 

Gauges, satellite, 
and reanalysis 
based 

Processing 
methods Interpolation Downscaling Downscaling 

Source: The Authors. 
 

 
Figure  4. Location of the precipitation and temperature gauges in the MCRB 
Source: The Authors. 

 
 
Likewise, daily temperature values (T) were interpolated 

using CoKriging, also taking altitude as a secondary variable 
[14]. In this manner, we obtained spatial maps of P and T 
with a spatial resolution of 0.1°, and a total of 2215 cells or 
pixels within the MCRB domain. In both cases, we used 
cross-validation to identify the best interpolation method. 

Due to the simplicity and good performance of the 
Hargreaves equation (in comparison with other evaluated 
evapotranspiration equations) [15], it was used to estimate 
distributed daily potential evapotranspiration (PET), with the 
same spatial resolution, accumulated on monthly basis. 

 
3.1.2.  WATCH Forcing Data Methodology Applied to ERA- 
           Interim (WFDEI) 

 
The eartH2Observe project had two phases of 

development, producing two sets of hydrometeorological 
products. The first one used the meteorological forcing 
dataset WFDEI with spatial resolution of 0.5°, generated by 
bilinear interpolation for the period 1979-2012, at various 
time scales [16]. It includes variables of wind speed at 10 m 
height, atmospheric pressure, temperature at 2 m height, long 
and short wave radiation, precipitation and snow. However, 
in this work snow was not considered. 

The WFDEI dataset was constructed using the EU 
WATCH project methodology [17] from the ERA-Interim 
dataset. This data set is a global meteorological reanalysis 
developed by the European Center for Medium-Range 
Weather Forecast (ECMWF), using a sequential system of 
data assimilation. The data set combines observed data with 
the simulations from a forecasting model, to estimate the 
evolution of the atmosphere globally. Based on this, the 
ECMWF applied a simulation of the global terrestrial water 
cycle in the 20th century through a set of hydrological models 
and their inter-comparison, finally making a correction by 
sequential elevation and by monthly bias [18]. 

According to the meteorological variables of the WFDEI, 
researchers from Deltares in The Netherlands calculated PET 
globally using four different equations: Penman-Monteith, 
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Priestly-Taylor, Hargreaves, and Blanney-Criddle [19]. The 
estimates made with the Hargreaves equation showed the 
greatest similarity with those of the WorldClim PET [20], so 
these were selected for the analysis of droughts in this study. 
 
3.1.3.  Multi-Source Weighted-Ensemble Precipitation  
           (MSWEP) 

 
During the second phase of the eartH2Observe project, a 

second set of hydrometeorological data was prepared for the 
period 1974-2014, with precipitation and snow coming from 
the MSWEP [21] product. The other variables were derived 
from the ERA-Interim dataset, with a series of applied 
corrections [22].  

The MSWEP data set is a distributed global precipitation 
product, constructed from data from ground stations, remote 
sensing with ground radars, information derived from 
satellites and atmospheric models. Its main objective is doing 
hydrological modeling and it is currently available with 
spatial resolutions of 0.25° and 0.1°, for several time scales: 
monthly, daily and sub-daily every 3 hours [21]. 

Created with several sources of information, it follows a 
simple procedure, summarized in four steps: 1) Derivation of 
a climate average corrected by long-term bias, 2) Evaluation 
of several satellite data sets and precipitation reanalysis in 
terms of temporal variability, 3) Long-term climatic average 
was temporarily reduced in a staggered manner, first to the 
monthly time scale, then to the daily time scale, and 4) 
Finally, it was reduced to the 3-hour scale using weighted 
average anomalies of precipitation, derived from the different 
data sets [21]. 

As with the products of the first phase, Deltares calculated 
the daily potential evapotranspiration at a global scale using 
the Hargreaves equation [19].  

 
3.2.  Population data 
 

Gridded population data for the MCRB were created by 
extrapolating the raw census of the target years 1993, 2005, 
and the projections for 2010, from the public information of 
the Department of Statistics in Colombia (DANE, for its 
acronym in Spanish) [23].  

First, we created a base map for the 2005 population, by 
interpolating the census values and incorporating additional 
geographic data, in order to produce weighting matrices for 
determining how to apportion population by pixel. Then, 
assuming that the population is growing with an exponential 
model, the rates of growth were calculated by municipality 
using the 1993, 2005 and 2010 data. Finally, maps of annual 
population were projected throughout the study period, from 
1981 to 2010. 
 
3.3.  Drought indices 
 

Drought indicators simplify information about 
meteorological phenomena as precipitation to understand its 
change over a time period [24]. These indicators assess 

whether a region is experiencing a drought and quantify its 
severity. They are also useful for monitoring and mapping 
regional water supply trends, both temporal and spatial in two 
dimensions.  

Although no indicator is better than another, some indices 
are more appropriate, depending on the region, the type of 
drought to analyze, the available information and the 
objective of the study. The indicators chosen to describe the 
drought at the regional level in the MCRB are described 
below. 
 
3.3.1.  Standardized Precipitation Index (SPI) 
 

Mckee et al. [25] described the SPI as an indicator that 
allows determining the rarity of a drought or an anomalously 
humid event in a particular time scale (e.g. 1, 3, 6, 12, 24, etc. 
months), for any place that has a continuous record of 
precipitation. Since its definition, the SPI has been widely 
used to characterize drought events. The SPI is calculated 
based on a normalization of the rainfall series according to a 
statistical distribution function. The time series used must be 
long-term, with at least 30 years of data and may include 
missing data, as long as they are not statistically 
representative. 

The SPI results are classified using a qualitative scale in 
which positive and negative values correspond to wet and dry 
events, respectively. A drought event is identified when the 
SPI value is equal to or less than -1.0 [25].  
 
3.3.2.  Standardized Precipitation Evapotranspiration Index  
           (SPEI) 
 

The main characteristic of the SPI is that it only requires 
precipitation data to identify different types of droughts 
(depending on the temporal scale used). This can be an 
advantage due to its practicality, but without considering the 
temperature, the results may not correctly represent the water 
balance in a region. In order to have a more robust indicator, 
Vicente-Serrano et al. [26] modified the SPI, by switching 
the precipitation information with the water balance (B = P - 
PET) time series, thus creating the SPEI. 

Instead of analyzing the precipitation series, the SPEI 
evaluates the water balance, understood as the difference 
between precipitation and potential evapotranspiration. 
Compared to the SPI estimation, the SPEI calculations 
require additional information on climatic variables such as 
temperature, radiation, vapor pressure, wind velocity, among  
 
Table 2. 
Categories for the SPI and the SPEI indices 

Categories Index value 
Extremely wet ≥ 2.00 

Very wet 1.50 - 1.99 
Moderately 1.00 - 1.49 
Near normal -0.99 - 0.99 

Moderate drought -1.49 - -1.00 
Severe drought -1.99 - -1.50 

Extreme drought ≤ -2.00 
Source: Adapted from [20, 21] 
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others, for the calculation of potential evapotranspiration, 
depending on the equation chosen. The SPI and SPEI are 
classified using the ranges shown in Table 2.  
 
3.3.3.  Water Crowding Index (WCI) 
 

To define the hydrological drought (as an alteration in the 
water availability), some authors have focused on the 
quantification of the scarcity of water for human 
consumption generated by drought events. Thus, Malin 
Falkenmark has developed a series of analysis of scarcity 
from a hydrological perspective [27], defining the WCI 
according to eq. (1). 
 

𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑊𝑊𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑊𝑊 
(1) 

 
WCI is calculated as the ratio between the population in 

a region (demand) and the annual volume of available water 
(supply), where the availability of water is understood as the 
precipitation that does not return to the atmosphere, e.g.  
surface runoff, available flow in a channel or aquifers’ 
recharge, depending on the scale of analysis [28]. In this 
study, runoff (R) represents the water available, calculated as 
precipitation (P) minus actual evapotranspiration (AET): R = 
P - AET. The AET has been estimated with the Budyko 
equation [29]. 

WCI classification (Table 3) evaluates how many people 
can benefit from each unit of available water, understanding 
a unit of water as one million cubic meters per year. 

 
3.4.  Methodological approach 

 
To evaluate the eartH2Observe reanalysis products, for 

the drought analysis in the MCRB, the P and PET daily 
distributed data were re-gridded using bilinear interpolation 
to a 0.1° spatial resolution and accumulated monthly. Then, 
the distributed monthly values of AET and B were calculated.  

Once the meteorological and demographic inputs were 
produced on the same spatial scale, the next phase consisted 
in calculating the three drought indicators with the three input 
databases (in-situ, WFDEI, and MSWEP). SPI and SPEI 
were calculated at 1, 3, 12 and 24 months, while the WCI was 
annually estimated. With these results, we characterize the 
dry events that the in-situ data set identifies and compare 
their correlation with the WFDEI and MSWEP results, using 
the Root-mean-square error (RMSE) and the Spearman 
correlation (ρ). 
 
Table 3. 
Categories for the WCI index 

Categories Index value 
 [persons / 106 m3 year] 

No stress ≤ 600 
Water stress 600 - 1,000 

Absolute water scarcity ≥ 1,000 
Source: Adapted from [27] 
 
 

The last methodological phase of the study was to 
evaluate the uncertainty of the results, due to the use of 
several different meteorological information sources, 
applying the methodology proposed by Hu et al. [30]. This 
methodology quantifies the uncertainty of the results in terms 
of the bias and confidence intervals (CI), considering the 
impact of the uncertainty associated with the nature of the 
sample, on the uncertainty of the estimated values of the 
indicator. 

For this purpose, we conducted a seasonal re-sampling of 
the meteorological series (P for the SPI, B for the SPEI and 
R for the WCI). This process starts by creating 1,000 random 
subsets from the original series (observed, WFDEI or 
MSWEP), i.e. a random selection of the data of a month (e.g 
Jan1980, Jan1981 …, Jan2010) that comprises a new sample of 
the original size. Then, we calculated the indicators (SPI, 
SPEI or WCI) for each sample, and its results are associated 
with a probability distribution function (DESPI, DESPEI or 
DEWCI). Based on this distribution, the 90% confidence 
interval (CI) of the indicator is estimated. 

At last, we evaluated the CI through the containing ratio 
(CR) indicator [31], which is a ratio expressed as a 
percentage, between the number of observed values within 
the limits of the 90% IC and the total length of the observed 
variable, as shown in eq. (2). 
 

𝑊𝑊𝐶𝐶 =
𝑂𝑂𝑎𝑎𝑂𝑂𝑊𝑊𝑊𝑊𝑎𝑎𝑊𝑊𝑂𝑂 𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑂𝑂 𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑂𝑂𝑊𝑊 𝑃𝑃ℎ𝑊𝑊 𝑊𝑊𝑊𝑊

𝑆𝑆𝑊𝑊𝑊𝑊𝑃𝑃𝑊𝑊𝑂𝑂 𝐿𝐿𝑊𝑊𝑃𝑃𝐿𝐿𝑃𝑃ℎ  𝑥𝑥 100% (2) 

 
4.  Results and discussion 
 
4.1.  Drought events 

 
In this section, we discuss the results for the SPI and the 

SPEI indices in the MCRB at temporal scales of 1, 3, 12 and 
24 months, as well as the annual results for the WCI. All of 
them were calculated first with the in-situ series, to identify 
the most important drought events that have affected the 
MCRB during the analysis period (1980-2010). 

 

 
Figure  5. SPI-1 maps (in-situ) for the selected drought events in the MCRB  
Source: The Authors. 
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Figure  6. Monthly averaged series for the SPI and SPEI (in-situ) in the MCRB corresponding to the scales of 1, 3, 12, and 24 months and the ONI 
Source: The Authors. 
 
 

Ten events were identified as those with the largest 
incidence throughout the MCRB and correspond to the years 
1980, 1982-1983, 1985-1986, 1988, 1990-1992, 1995, 1997, 
2001-2002, 2007 and 2009-2010 (representative months for 
these events are shown in Fig.5). These events were selected 
with a spatial affectation threshold of 40%, that is, when 40% 
of the basin or more had moderate, severe or extreme drought 
conditions (SPI, SPEI ≤ -1.00), according to the national 
recommendations for drought evaluations [32].  

These results are consistent with the historical records of 
hydropower and irrigation affectations associated with 
droughts, which affected the levels of reservoirs and the 
general availability of water in the country. For example, the 
production of hydraulic electricity in the country is affected 
by droughts. The 1992 energy crisis forced the national 
government to take rationing measures with power cuts, and 
even to adopt a daylight-saving time, which is a rare measure 
in countries on the equatorial line [33]. Likewise, there was 
also a reduction in energy production during 1997-1998, 
although there was no need for electricity rationing. 

Fig. 6 shows the SPI and SPEI indices, compared to the 
Oceanic Niño Index values (ONI) [34], where it is clear that 

seven, out of the ten drought events identified, correspond to 
a warm “El Niño” phase of the El Niño-Southern Oscillation 
(ENSO). In Fig. 6, the panels corresponding to the small 
temporal accumulations (i.e. 1 and 3 months) show dry 
oscillating periods (SPI or SPEI below -1), which do not 
always coincide with a period of “El Niño” or negative values 
of the ONI, as in the case of the 1985 and 2001 events. This 
indicates that other climatic phenomena can generate 
droughts in the MCRB as strong as the ENSO does.  

Likewise, the 12 and 24 months panels in Fig. 6 indicate 
that periods with precipitation deficit are continuous, in such 
a way that their effects are aggregated in an annual trend that 
could affect river flows, reservoir levels, and even 
groundwater. Therefore, all periods with dry tendencies are 
consistent with an “El Niño” event. However, despite no 
apparent relationship with the ENSO, the 1985 and 2001 
events continue to be relevant for the 12-month scale. These 
droughts are usually associated with the natural climatic 
variability in the country and effects from a rapid change 
from “El Niño” to “La Niña” phase [35, 36]. 

Due to the annual scale of the WCI, it was necessary to 
average the monthly values of the ONI series. The results  
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Figure  7. Annual series of the WCI (in-situ) in the MCRB and the ONI 
Source: The Authors. 
 
 

 
Figure  8. Maps of the Spearman correlation for the SPI and SPEI indices 
Source: The Authors. 
 
 
identify years with warm (“El Niño”) or cold (“La Niña”) 
trends depending on the average temperature of the Pacific 
Ocean. This limits the analysis of the WCI results and their 
comparison with meteorological drought indicators. 
Nevertheless, Fig. 7 shows a clear correspondence between 
the warm years (ONI > 0) and the increase in the value of the 
hydrological drought indicator averaged within the MCRB, 
mainly for the years 1990-1992, 1997, 2001- 2002 and 2009. 

 
4.2.  Assessment of the reanalysis performance 

 
We also made the calculations presented in section 4.1 

with the two reanalysis datasets: WFDEI and MSWEP. The 
quantification of the efficiency of the reanalysis for 
reproducing the results of the indices calculated with the in-
situ database is described below. 

Through a cross-validation analysis between the 
distributed in-situ indices and the same indicators calculated 
with the two reanalysis datasets for the entire basin, we 
obtained maps of the Spearman correlation coefficient (ρ) 
and for the Root mean square error (RMSE). However, only 
the average values are analyzed below.  

The Spearman coefficient describes the relationship 
between two variables using a monotonic function. For the 
two meteorological drought indicators, SPI and SPEI, the 
MSWEP shows a stronger correlation than the WFDEI (see 
Figs. 8, 9), in all the temporal scales analyzed. None of the 
scales evaluated shows a correlation smaller than 0.5 for any  

 
Figure  9. Mean values of the Spearman correlation for the SPI and SPEI  
Source: The Authors. 
 
 
of the two products analyzed. The largest correlations are 
mainly located on the south of the MCRB, on the mountain 
areas, and along the three branches of the Colombian Andes, 
which can affect the flows in the lower part of the basin. 
Likewise, both products decrease their performance in the 
middle and lower part of the basin, in the areas of flat slopes 
and upstream of the mouth of the Magdalena River. This may 
be due to the spatial scale used. 
 

 
Figure  10. Maps of the RMSE for the SPI and SPEI indices 
Source: The Authors. 
 
 

 
Figure  11. Mean values of the RMSE for the SPI and SPEI indices 
Source: The Authors. 
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Figure  12. Spearman correlation and RMSE for the WCI index 
Source: The Authors. 

 
 
Although both reanalysis datasets have errors with 

respect to the in-situ indicators, Figs. 10 and 11 show that the 
RMSE of the MSWEP (mean 0.61) is much lower than that 
of the WFDEI (mean 0.83). Moreover, the SPEI differences 
are slightly larger than the SPI ones, regardless of the 
reanalysis dataset used. This may be due to the choice of the 
equations for potential and actual evapotranspiration, and the 
regional scale of the analysis. Thus, it is recommended to 
perform further analyses for hydrological droughts with more 
equations for evapotranspiration and with other indices based 
on runoff and streamflow. 

Due to the annual scale of the WCI, it was necessary to 
average the monthly values of the ONI series. The results 
identify years with warm (“El Niño”) or cold (“La Niña”) 
trends depending on the average temperature of the Pacific 
Ocean. This limits the analysis of the WCI results and their 
comparison with meteorological drought indicators, but 
identify the years in which the effects of the drought could 

affect the water supply, according to domestic demand. Fig. 
7 shows a clear correspondence between the warm years 
(ONI > 0) and the increase in the value of the hydrological 
drought indicator averaged within the MCRB, mainly for the 
years 1990-1992, 1997, 2001- 2002 and 2009.  

Likewise, in some years in Fig. 7, there are differences in 
the occurrence of “El Niño”  and the peaks of the WCI. This 
can be associated with the annual analysis scale, the 
magnitude and duration of the event. For example, although 
the droughts of 1980 and 1988 affected more than 40% of the 
basin, it was for a shorter period than three months, which is 
why the annual average does not reflect an extreme 
condition.  

Regardless of the reanalysis dataset considered, the large 
differences identified in the WCI calculations are not equally 
found in the meteorological drought indicators. This is due to 
the order of magnitude of the WCI, since it is not 
standardized, and it magnifies the differences where the 
largest population is concentrated. 

Thus, the analysis confirms that the reanalysis WFDEI 
and MSWEP adequately identify the drought events in the 
MCRB. For the meteorological drought indicators, the 
performance of the products improves as the time scale of 
analysis increases, with an optimum close to the 12 months-
scale of accumulation. In addition, the MSWEP can predict 
correctly temporal and spatial trends of droughts in the 
MCRB, with consistently better correlations and minor mean 
errors than the WFDEI product. Similarly, for hydrological 
droughts, Fig. 12 depicts a better performance for the 
MSWEP, with mean values of the Spearman correlation (ρ) 
around 0.82, a bias below 40% in contrast with the 0.67 and 
45% values of the WFDEI. 

Uncertainty 
 

Figure  13. Maps of containing ratio (CR) of the uncertainty bands for the SPI, SPEI and WCI, calculated with the two reanalysis inputs 
Source: The Authors. 
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Once the results were analyzed with the original inputs, 
we applied in both, the WFDEI and MSWEP products, the 
uncertainty analysis procedure proposed by Hu et al. [30]. 
The precipitation, balance, and runoff distributed time series 
were sampled 1,000 times, calculating the three drought 
indices with each of the Bootstrap sets. 

Fig. 13 shows the containing ratio (CR) maps for the nine 
drought indices evaluated in this study. The top panels 
present the results for the WFDEI and the lower panels, the 
indicators calculated with the MSWEP. These values 
represent the relationship between the number of values of 
the in-situ indicators within the 90% confidence interval (CI) 
limits of the reanalysis indices. 

In general terms, for the SPI and SPEI, the CI calculated 
with the MSWEP contains about 15% more in-situ values 
than the WFDEI, with an average close to 45% of the values 
derived from observations. In the same way, the CR increases 
with the scale of the temporary accumulation for the two 
reanalysis databases, with an optimal value for the 12-month 
accumulation period. This occurs due to the typical periodic 
variability of precipitation and temperature in the MCRB. 

Unlike meteorological drought indices, the WCI 
confidence intervals are highly variable, due to the 
differences in magnitude of populated and rural areas. With 
this condition, the WFDEI confidence bands contain about 
73% of the in-situ values, having better performance in areas 
of low population density. Meanwhile, the MSWEP has a CR 
of 52%, maintaining the trend of better performance in rural 
areas. 

Although there were relatively high values of CR, the CI 
for the WCI are very wide. This hides the real divergence 
between the observed values and the prediction limits of the 
reanalysis. In rural areas for the WFDEI and the MSWEP, the 
CR is up to 45% and 47% higher with respect to the reference 
values, respectively, and in the main cities is up to 81% and 
91%. 

 
5.  Conclusions 

 
In this paper, we evaluated two reanalysis datasets 

(WFDEI and MSWEP) for the study of meteorological and 
hydrological droughts in the Magdalena-Cauca basin, using 
three drought indicators: SPI, SPEI, and WCI. 

Through the calculation of the SPI and the SPEI indices 
with the in-situ series, ten meteorological drought events of 
large incidence at the regional scale were identified in the 
MCRB. Apart from the events of 1985-1986, 1995 and 2001-
2002, which are associated with extremes of seasonal dry 
spells in the country, all the other drought periods were found 
to have a strong Spearman correlation close to -0.70, with a 
lag of 3 months with the warm “El Niño”  phase of the ENSO. 

According to the in-situ WCI results, water scarcity have 
no effect on the basin in terms of hydrological droughts. 
However, this indicator clearly shows the effects of high-
density population, as hot spots in the main cities of the 
MCRB. 

The WFDEI and MSWEP reanalysis databases show 
consistency in the evaluation of drought events in the MCRB. 

For the meteorological drought indicators, the performance 
of the datasets improves as the temporal accumulation 
increases. The 12-month scale represents the best results 
overall, due to the accumulation of meteorological 
conditions.  

For the three indicators selected, the MSWEP can predict 
the temporal and spatial trends, exhibiting higher correlations 
and lower mean errors, compared to the WFDEI results. For 
this reason, the MSWEP product is recommended here to 
further explore droughts not only in the MCRB, but also in 
Colombian regions with limitations to obtain in-situ data 
information. 

Finally, we used the Bootstrap method to evaluate the 
impact of sampling uncertainty on the estimation of drought 
indicators. The results show that although the MSWEP and 
the WFDEI are different products, they follow the same 
trends for the uncertainty associated with the SPI and the 
SPEI estimation, which once again indicates the consistency 
of the results derived from reanalysis data. 

 
Acknowledgments 

 
We are grateful to the Institute of Hydrology, 

Meteorology and Environmental Studies in Colombia 
(IDEAM), the international workgroup of the eartH2Observe 
project, and the eartH2Observe-Colombia team from the 
GIREH research group, for all the collaboration received 
during this research. We also thank the Universidad Nacional 
de Colombia and Colciencias, for their financial support 
through the scholarship “Jóvenes Investigadores e 
Innovadores por la Paz 2017”, that allowed us to conduct the 
work here reported as part of the Master’s research of the first 
author. 

 
References 

 
[1] Hayes, M., Svoboda, M., Wall, N. and Widhalm, M., The Lincoln 

declaration on drought indices, Am. Meteorol. Soc., (April), pp. 485-
488, 2010. DOI: 10.1175/2010BAMS3103.1 

[2] Mishra, A.K. and Singh, V.P., A review of drought concepts, J. 
Hydrol., 391(1-2), pp. 202-216, 2010. DOI: 
10.1016/j.jhydrol.2010.07.012 

[3] Shaban, A., Indicators and aspects of hydrological drought in Lebanon, 
Water Resour. Manag., 23(10), pp. 1875-1891, 2009. DOI: 
10.1007/s11269-008-9358-1 

[4] Nalbantis, G. and Tsakiris, I., Assessment of hydrological drought 
revisited, Water Resour. Manag., 23(April) 2007, pp. 881-882, 2009. 
DOI: 10.1007/s11269-008-9305-1 

[5] Van Loon, A.F., Hydrological drought explained, Wiley Interdiscip. 
Rev. Water, 2(4), pp. 359-392, 2015. DOI: 10.1002/wat2.1085 

[6] Garrido, A., Socio-economic impacts of droughts and economic 
instruments, in: Workshop on Developing and Implementing 
Mitigation and Preparedness Water Scarcity and Drought (WS&D) 
Management Plans Zaragoza ‐ Madrid, Spain, May 6‐9, 2014. 

[7] Mishra, A.K. and Singh, V.P., Drought modeling - A review, J. 
Hydrol., 403(1-2), pp. 157-175, 2011. DOI: 
10.1016/j.jhydrol.2011.03.049 

[8] Rossi, G., Vega, T. and Bonaccorso, B., Methods and tools for drought 
analysis and management. 2006. DOI: 10.1007/978-1-4020-5924-7 

[9] World Meteorological Organization (WMO), Lincoln declaration on 
drought indices an, Lincoln, USA, 2009. 

[10] Arguez, A. and Vose, R.S., The definition of the standard WMO 
climate normal: The key to deriving alternative climate normals, Bull. 



Vega-Viviescas et al / Revista DYNA, 86(211), pp. 268-277, October - December, 2019. 

277 

Am. Meteorol. Soc., 92(6), pp. 699-704, 2011. DOI: 
10.1175/2010BAMS2955.1 

[11] Lins, H.F., Challenges to hydrological observations, WMO Bull., 
57(1), pp. 55-58, 2008. 

[12] Yang, H., Zhang, Y. and Ibrahim, S., Hydrologic remote sensing: 
capacity building for sustainability and resilience. CRC Press, 2016. 

[13] World Meteorological Organization (WMO), WMO guidelines on the 
calculation of climate normals, Geneva, Switzerland, 2017. 

[14] Ramirez-Morales, W., Compilación a la resolución de análisis y en el 
periodo seleccionado de modelación, de la información 
hidrometeorológica observada en superficie proveniente de IDEAM y 
depuración de información de cobertura de suelo y tipo del suelo, 
Bogotá D.C., 2015. 

[15] Hargreaves, G. and Samani, Z.A., Estimating potential evapotranspiration, 
J. Irrig. Drain Engr, ASCE, 108, pp. 223-230, 1982. 

[16] Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J. and 
Viterbo, P., The WFDEI meteorological forcing data set: data 
methodology applied to ERA-Interim reanalysis data, Water Resour. 
Res., 50, pp. 7505-7514, 2014. DOI: 10.1002/2014WR015638 

[17] Harding, R., et al., WATCH: current knowledge of the terrestrial global 
water cycle, J. Hydrometeorol., 12, pp. 1149-1156, 2011. DOI: 
10.1175/JHM-D-11-024.1 

[18] Weedon, G.P. et al., Cration of the WATCH forcing data and its use to 
assess global and regional reference crop evaporation over land during 
the twentieth century, J. Hydrometeorol., 12, pp. 823-848, 2011. DOI: 
10.1175/2011JHM1369.1 

[19] Sperna-Weiland, F., Lopez, P., van Dijk, A. and Schellekens, J., Global 
high-resolution reference potential evaporation, 21st Int. Congr. Model. 
Simul., January, pp. 2548-2554, 2015. 

[20] Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., 
Very high resolution interpolated climate surfaces for global land 
areas, Int. J. Climatol., 25, pp. 1965-1978, 2005. DOI: 
10.1002/joc.1276 

[21] Beck, H.E., Van Dijk, A.I.J.M., Levizzani, V., Schellekens, J. and 
Miralles, D.G., MSWEP: 3-hourly 0.25 global gridded precipitation 
(1979-2015) by merging gauge, satellite, and reanalysis data, pp. 589-
615, 2017. DOI: 10.5194/hess-21-589-2017 

[22] Schellekens, J. and Weiland, F.S., e2o _ dstools Documentation - 
Release 3, 2017. 

[23] DANE, Síntesis del proceso de cierre del censo general 2005, Bogotá 
D.C., Colombia, 2008. 

[24] Nagarajan, R., Drought assessment. Springer, Dordrecht, 2009. DOI: 
10.1007/978-90-481-2500-5 

[25] Mckee, T.B., Doesken, N.J. and Kleist, J., The relationship of drought 
frequency and duration to time scales, AMS 8th Conf. Appl. Climatol., 
January, pp. 179-184, 1993. 

[26] Vicente-Serrano, S.M. Beguería, S. and López-Moreno, J.I., A 
multiscalar drought index sensitive to global warming: the 
standardized precipitation evapotranspiration index, J. Clim., 23(7), 
pp. 1696-1718, 2010. DOI: 10.1175/2009JCLI2909.1 

[27] Falkenmark, M., Lundqvist, J. and Widstrand, C., Macro‐scale water 
scarcity requires micro‐scale approaches: aspects of vulnerability in 
semi‐arid development, Nat. Resour. Forum, 13(4), pp. 258-267, 1989. 
DOI: 10.1111/j.1477-8947.1989.tb00348.x 

[28] Falkenmark, M., Scarcity now massive water the Isn’t it threatening 
add ressed bein, Ambio, 18(2), pp. 112-118, 1989. 

[29] Budyko, M.I., Climate and Life. Xvii, Academic Press, New York, 
1974. 

[30] Hu, Y.M., Liang, Z.M., Liu, Y.W., Wang, J., Yao, L. and Ning, Y., 
Uncertainty analysis of SPI calculation and drought assessment based 
on the application of Bootstrap, Int. J. Climatol., 35(8), pp. 1847-1857, 
2015. DOI: 10.1002/joc.4091 

[31] Xiong, L., Wan, M., Wei, X. and O’Connor, K.M., Indices for 
assessing the prediction bounds of hydrological models and application 
by generalised likelihood uncertainty estimation, Hydrol. Sci. J., 54(5), 
pp. 852-871, 2009. DOI: 10.1623/hysj.54.5.852 

[32] Gómez-Blanco, J.A. and Cadena, M.C., Actualización de las 
estadísticas de sequía en Colombia, Bogotá D.C., 2018. 

[33] Naranjo M.S., Hace 20 años Colombia sufrió el apagón, EL 
COLOMBIANO, Envigado, 12-May-2012. 

[34] NOAA, ONI - Historical El Nino / La Nina episodes (1950-present), 
Cold & Warm Episodes by Season, [Online]. 2018. Available at: 

http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostu
ff/ONI_v5.php. 

[35] Avella, R., Efecto de las sequías sobre la inflación en Colombia, 
Borradores Econ., p. 23, 2001. DOI: 10.32468/be.183 

[36] Hurtado, G., Sequía Meteorológica y sequía agrícola en Colombia – 
Incidencia actual y tendencias – Contrato 223/2012 – IDEAM, Bogotá. 
[en línea].  2012. Disponible en: ww.ideam.gov.co 

 
C. Vega-Vivivescas, received her BSc. in Civil Engineering in 2015, and 
MSc. in Water Resources in 2019, both from the Universidad Nacional de 
Colombia, Bogotá D.C., Colombia. She has experience in aqueduct and 
sewer projects, zoning for flood threats, hydrological modeling and 
knowledge in hydraulic modeling of natural courses, with the main objective 
of applying it in the integral management of water with the formulation of 
ordering plans, prediction models and early warning systems. In addition, 
she worked in the eartH2Observe project in Colombia during the year 2017 
as part of the Research Group on Water Resources Engineering - GIREH. 
ORCID: 0000-0001-7138-0862 
 
E.A. Rodríguez-S., received his BSc. in Civil Engineering in 1990, fron the 
Universidad de los Andes, Colombia, the Sp. in Water Resources Surveys in 
1992, from the International Institute for Geo-Information Science and Earth 
Observation, The Netherlands, the Sp. in Integrated Environmental 
Management in 1996, from the Universidad de los Andes, Colombia, the 
MSc. in Water Resources in 1994, from the International Institute for Geo-
Information Science and Earth Observation, The Netherlands and the PhD. 
degree in Civil Engineering in 2005, from the University of Waterloo, 
Canada. He has more than 20 years of experience in projects related to water 
resources. He specializes in the application of mathematical modelling tools 
and Geographic Information Systems for planning, and management of 
water resources in urban and rural basins. He is currently the coordinator of 
the Research Group on Water Resources Engineering - GIREH from the 
Universidad Nacional de Colombia, Bogotá D.C., Colombia. 
ORCID: 0000-0003-4303-6460 
 

 
 

 

 
Área Curricular de Medio Ambiente 

Oferta de Posgrados 

Doctorado en Ingeniería - Recursos Hidráulicos 
Maestría en Ingeniería - Recursos Hidráulicos 

Maestría en Medio Ambiente y Desarrollo 
Especialización en Aprovechamiento de  

Recursos Hidráulicos 
Especialización en Gestión Ambiental 

Mayor información: 
 

E-mail: acma_med@unal.edu.co 
Teléfono: (57-4) 425 5105 

 

https://orcid.org/0000-0001-7138-0862
https://orcid.org/0000-0003-4303-6460

	1.  Introduction
	1.  Introduction

