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ABSTRACT. For a principal ideal domain R, we find the number of homomorphisms
from R/(r) to R/(s), seen as modules or algebras over R. We determine also the
number of R-module homomorphisms between two finitely generated R-modules.
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RESUMEN. Para R un dominio de ideales principales, encontramos el número de
homomorfismos de R/(r) to R/(s), vistos como módulos o álgebras sobre R. También,
determinamos el número de R-homomorfismos de módulos entre dos R-módulos
finitamente generados.
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1. Introduction

In an abstract algebra course, at undergraduate level, it is common to ask students to find
the number of homomorphisms from Zm to Zn, considering these as groups and as rings.
They are usually asked for specific values of m and n. However, it is possible to give a
precise answer for arbitrary m and n. See for example [2], where this problem is solved
in general by using elementary group theory. In the same spirit, in [4], the number of
homomorphisms between two dihedral groups is determined.
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In [1], to determine the number of homomorphisms from Zm to Zn, previous knowl-
edge from group theory or ring theory is not assumed, except for the definition of group
and ring homomorphism. With respect to number theory, some elementary facts on congru-
ences are used which can be found on any introductory book such as [5]. Also, although
the results are basically the same as those in [2], the proofs are more basic.

Now, in this article, in analogy to [1], we determine the number of homomorphisms
from R/(r) to R/(s) when R is a principal ideal domain by viewing R/(r) and R/(s)
first as R-modules and then as R-algebras. In both cases, we give precise answers. Using
the decomposition of finitely generated modules over a principal domain as a product of
cyclic modules, we also determine the number of homomorphisms of R-modules between
two such modules, generalizing what we had found for cyclic modules.

It is possible to have an infinite number of R-module homomorphisms. However, as in
[1], we get a finite number of R-algebra homomorphisms.

2. Module homomorphisms

Let R be a principal ideal domain and r, s ∈ R, r, s 6= 0. Consider R/(r) and R/(s) as
R-modules and let ϕ : R/(r)→ R/(s) be a map. If ϕ is an R-module homomorphism,
then for x+ (r) ∈ R/(r),

ϕ(x+ (r)) = xϕ(1 + (r)),

so ϕ(x+(r)) = x(a+(s)) = xa+(s), whereϕ(1+(r)) = a+(s). So, the homomorphism
is determined by its value ϕ(1 + (r)) in 1 + (r). Hence, we only need to find the values of
a+(s) ∈ R/(s) such that the function ϕ(x+(r)) = xa+(s) is a module homomorphism.

If ϕ(x+ (r)) = ax+ (s) is such an R-homomorphism, then

0 + (s) = rϕ(1 + (r)) = ra+ (s),

hence ra ∈ (s). Conversely, suppose ϕ(x+(r)) = xa+(s) with ra ∈ (s). If x1 +(r) =

x2 + (r), then x1 − x2 ∈ (r), and x1a− x2a ∈ (s), since ra ∈ (s). Hence,

ϕ(x1 + (r)) = x1a+ (s) = x2a+ (s) = ϕ(x2 + (r)),

so ϕ is well defined. Also,

ϕ(x+ y + (r)) = (x+ y)a+ (s) = ϕ(x+ (r)) + ϕ(y + (r)),

and
ϕ(z(x+ (r))) = ϕ(zx+ (r)) = zϕ(x+ (r)),

for all z ∈ R, and all x+ (r), y + (r) ∈ R/(r). Therefore, ϕ is an R-module homomor-
phism. Thus, we have established the following lemma.

Lemma 1. The function ϕ : R/(r)→ R/(s) is an R-module homomorphism if and only
if ϕ(x+ (r)) = xa+ (s) with ra ∈ (s).
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Let homR(R/(r), R/(s)) denote the abelian group (with the usual sum of functions) of
module homomorphisms from R/(r) to R/(s). We can give to homR(R/(r), R/(s)) the
structure of anR-module by defining (zϕ)(x+(r)) = z ·ϕ(x+(r)), for z ∈ R. Now, s|ra
if only if h | a, where h gcd(r, s) = s. Let f : homR(R/(r), R/(s)) → R/(gcd(r, s))

given by
f(ϕ) =

a

h
+ (gcd(r, s)).

This is an R-isomorphism of modules. Let d = gcd(r, s). First we see that the f does
not depend on the selection of the a. If ϕ(1 + (r)) = a+ (s) = a′ + (s), then s | a− a′.
Since s = hd, we have that d | (a− a′)/h = a/h− a′/h. So a/h+ (d) = a′/h+ (d).

Now, consider ϕ1, ϕ2 ∈ homR(R/(r), R/(s)), with ϕ1(x + (r)) = a1x + (s) and
ϕ2(x + (r)) = a2x + (s). Then (ϕ1 + ϕ2)(x + (r)) = (a1x + (s)) + (a2x + (s)) =

(a1 + a2)x+ (s). Hence

f(ϕ1 + ϕ2) =
a1 + a2
h

+ (d) =
(a1
h

+ (d)
)
+
(a2
h

+ (d)
)
= f(ϕ1) + f(ϕ2).

Also, for z ∈ R, (zϕ)(1 + (r)) = z(a+ (s)) = za+ (s). So

f(zϕ) =
za

h
+ (s) = z

(a
h
+ (s)

)
= zf(ϕ).

Thus f is an R-module homomorphism.

Theorem 1. For all r, s ∈ R; r, s 6= 0;

homR(R/(r), R/(s)) ≈ R/(gcd(r, s))

where the set of module homomorphisms homR(R/(r), R/(s)) is endowed with the natu-
ral module structure (operations in the codomain).

Proof. We just need to show that the homomorphism f , defined as above, is bijective. Thus,
suppose that ϕ ∈ ker f . Then

a

h
∈ (d), d = gcd(r, s) and this implies that s = dh | a.

Therefore, ϕ(1+(r)) = a+(s) = (s), and ϕ is the zero homomorphism, i.e., ker f = {0}.
So, f is injective. Finally, to see that f is surjective, take any element k+ (d) and define ϕ
by ϕ(1 + (r)) = kh+ (s). Then,

rkh = rk
s

d
=
r

d
ks ∈ (s),

and by Lemma 1, ϕ ∈ homR(R/(r), R/(s)). Furthermore, f(ϕ) =
kh

h
+ (d) = k + (d),

showing that f is onto. This proves that f is an R-isomorphism of modules. 2

A nice consequence of this theorem is that the number of homomorphisms is the same
in both directions.

Now, we look at what happens when r = 0 or s = 0. When r = 0 and s 6= 0, the
condition in Lemma 1 is always satisfied since r = 0, and thus ra = 0 ∈ (s) is always true,
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so every ϕ(x+(r)) = xa+(s) is a homomorphism. Then, the map ϕ 7→ ϕ(1+ (r)) from
homR(R/(r), R/(s)) to R/(s) is surjective, but also is an R-module homomorphism
that is injective since the homomorphisms are defined by its value in 1 + (r). Hence
homR(R/(r), R/(s)) ≈ R/(s). So, in this case the formula in Theorem 1 above holds if
we take gcd(0, s) = s.

When r 6= 0 and s = 0, the condition in Lemma 1 means that ra = 0, then a = 0,
since r 6= 0. Hence, there is only one homomorphism, the trivial one. So, the symmetry
fails.

Finally, when r = s = 0, R/(r) ≈ R/(s) ≈ R. It can be easily checked that
homR(R,R) ≈ R, since homR(R,R) consist of all the functions x 7→ ax, for a ∈ R.

Now, for the proof of Theorem 1, it is enough for R to be a GCD, that is, an integral
domain in which any two nonzero elements have a gcd. As for the case where r or s is
0, it is enough to have an integral domain. For instance, this theorem applies to unique
factorization domains, since they are GCD domains. It also applies to Bezóut domains
— domains in which every finitely generated ideal is principal — because they are GCD
domains, though not necessarily UFDs.

Theorem 1 tells us what happens to homR(M,M ′) when M,M ′ are cyclic modules.
From here, we can generalize to the case when M,M ′ are finitely generated modules.
In this case, say M ≈ Rm × R/(r1) × R/(r2) × · · · × R/(rk) and M ′ ≈ Rn ×
R/(s1) × R/(s2) × · · · × R/(sl) for some m,n ≥ 0 and r1, r2, . . . , rk, s1, s2, . . . , sl
nonzero and nonunits (see [3, p. 225]). Of course, we can change R to R/(0) and
get M ≈ R/(r1) × R/(r2) × · · · × R/(rk) × R/(rk+1) × · · ·R/(rk+m) and M ′ ≈
R/(s1)×R/(s2)× · · · ×R/(sl)×R/(sl+1)× · · · ×R/(sl+n), where ri = 0 for i > k

and sj = 0 for j > l. Hence

homR(M,M ′) ≈ homR(

k+m∏
i=1

R/(ri),

l+n∏
j=1

R/(sj))

≈
k+m∏
i=1

l+n∏
j=1

homR(R/(ri), R/(sj)).

Now, looking at the different cases, we can conclude that

homR(M,M ′) ≈ [

k+m∏
i=1

l∏
j=1

R/(gcd(ri, sj))]×Rmn.

But
∏k+m
i=1

∏l
j=1R/(gcd(ri, sj)) can be reduced, since ri = 0 for i > k, and therefore

k+m∏
i=1

l∏
j=1

R/(gcd(ri, sj)) ≈ [

k∏
i=1

l∏
j=1

R/(gcd(ri, sj))]× [

l∏
j=1

(R/(sj))
m].

Thus we have



Lecturas Matemáticas, vol. 37 (2) (2016), pp. 107-113 111

Theorem 2. Let R be a principal ideal domain and let M,M ′ be finitely generated
R-modules. Then

homR(M,M ′) ≈ [

k∏
i=1

l∏
j=1

R/(gcd(ri, sj))]× [

l∏
j=1

(R/(sj))
m]×Rmn

where M ≈ Rm×R/(r1)×R/(r2)×· · ·×R/(rk) and M ′ ≈ Rn×R/(s1)×R/(s2)×
· · · ×R/(sl) with m,n ≥ 0 and r1, r2, . . . , rk, s1, s2, . . . , sl nonzero and nonunits.

3. Algebra homomorphisms

The R-algebra homomorphisms are not required to preserve identity and the 0 homomor-
phism is allowed.

Suppose that s 6= 0 and that s is not a unit, consider R/(r) and R/(s) as R-algebras,
and let ψ : R/(r) → R/(s) a map. If ψ is an R-algebra homomorphism, then ψ is also
an R-module homomorphism, so ψ(x+ (r)) = xa+ (s) for some a ∈ R with ra ∈ (s).
Thus, in the same way as for homomorphisms of R-modules, we need to find the values of
a+ (s) ∈ R/(s) such that ψ(x+ (r)) = xa+ (s) is a homomorphism of R-algebras.

Also

a+ (s) = ψ(1 + (r)) = ψ((1 + (r))2) = a2 + (s),

so a2 − a ∈ (s). We will see that these necessary conditions, ra ∈ (s) and a2 − a ∈ (s),
are also sufficient for a function ψ : R/(r)→ R/(s) to be a homomorphism ofR-algebras.
Thus, suppose ra ∈ (s) and a2 − a ∈ (s). We already know that ψ is well defined, and
also that ψ is an R-module homomorphism, since ra ∈ (s). Also, since a2 − a ∈ (s) then
xya2 − xya = xy(a2 − a) ∈ (s), so

ψ((x+ (r))(y + (r))) = xya+ (s) = xya2 + (s) = ψ(x+ (r))ψ(y + (r)).

Therefore ϕ is an R-algebra homomorphism. We have proved the following lemma.

Lemma 2. The function ϕ : R/(r) → R/(s) given by ψ(x + (r)) = xa + (s) =

(x+ (s))(a+ (s)), a ∈ R is an R-algebra homomorphism if and only if

ra ∈ (s),

a2 − a ∈ (s).

To find the number of such a+ (s) that satisfy these conditions, which are equivalent
to r(a+ (s)) = 0 + (s) and (a+ (s))2 − (a+ (s)) = 0 + (s), we need to prove the next
theorem.
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Theorem 3. Let f1(x), f2(x), . . . , fk(x) ∈ R[x], and for any s ∈ R, s 6= 0, let N(s)

denote the set of x+ (s) ∈ R/(s) such that

f1(x+ (s)) = 0 + (s)

f2(x+ (s)) = 0 + (s)

...

fk(x+ (s)) = 0 + (s).

If s = s1s2 where gcd(s1, s2) = 1, then |N(s)| = |N(s1)×N(s2)|. Furthermore, if s is
not a unit, let s = u

∏
pα be a factorization of s with u a unit, then |N(s)| = |

∏
N(pα)|.

Proof. Since we are in a principal ideal domain, (s1) + (s2) = (gcd(s1, s2)) = (1) = R.
Then, by the Chinese Remainder Theorem (see [3, p. 131]) the map x 7→ (x+(s1), x+(s2))

fromR toR/(s1)×R/(s2) is a epimorphism. This induces the isomorphism θ : R/(s1)∩
(s2)→ R/(s1)×R/(s2), given by θ(x+ (s1)∩ (s2)) = (x+ (s1), x+ (s2)). Of course,
(s1) ∩ (s2) = (s1s2) = (s).

Now, for x + (s) ∈ N(s), θ(x + (s)) = (x + (s1), x + (s2)) ∈ N(s1) × N(s2),
then θ(N(s)) ⊆ N(s1)×N(s2). Also, for (y1 + (s1), y2 + (s2)) ∈ N(s1)×N(s2), let
x+(s) = θ−1(y1 +(s1), y2 +(s2)). So, x+(s1) = y1 +(s1) and x+(s2) = y2 +(s2);
it follows that x + (s) ∈ N(s). Hence N(s1) × N(s2) ⊆ θ(N(s)). We conclude that
θ(N(s)) = N(s1)×N(s2).

But θ is a bijection, thus when restricted to N(s) we get a bijection from N(s) to
θ(N(s)) = N(s1)×N(s2). Hence |N(s)| = |N(s1)×N(s2)|.

By repeatedly applying this argument to the prime factorization of s, we obtain that
|N(s)| = |N(u)

∏
N(pα)|, but clearly |N(u)| = 1, so we have the second assertion of

the theorem. 2

Now, we use this theorem with the polynomials f1(a) = ra and f2(a) = a2 − a by
first finding the number of solutions for some pα, with p prime and α > 0 an integer, and
then using the last part of Theorem 3.

Let p be a prime element in R and α > 0 an integer, then a(a− 1) = a2 − a ∈ (pα)

has two solutions 0, 1. This is so since gcd(a, a− 1) = 1, just one of them can be divisible
by p, then gcd(pα, a) = 1 or gcd(pα, a − 1) = 1. If gcd(pα, a) = 1, then pα|a − 1, so
a+ (pα) = 1 + (pα). In the other case, pα|a, so a+ (pα) = 0 + (pα).

But, f1(1 + (pα)) = r(1 + (pα)) = 0 + (pα) if and only if pα|r, while 0 + (pα) is
always a solution. Thus, the system

ra = 0 + (pα),

a2 − a = 0 + (pα)

has two solutions if pα|r; otherwise, it has only one solution.

Now, if s = upα1
1 pα2

2 · · · pαn
n is a prime factorization of s, with u a unit, the number of

solutions to f1(a) = 0 + (pαi
i ) and f2(a) = 0 + (pαi

i ) is two if pαi
i |r, and one, if pαi

i 6 |r.
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So the number of solutions is 2`, where ` = |{i : pαi
i |r}| is the number of elements in the

set {i : pαi
i |r}.

Theorem 4. Let s = upα1
1 pα2

2 · · · pαn
n be a prime factorization of s. The number of

algebra homomorphisms ψ : R/(r)→ R/(s) is 2`, where ` = |{i : pαi
i |r}|.

In the case that s is a unit, clearly the only homomorphism is the zero homomorphism.

And if s = 0, then R/(s) ≈ R, since f(1)2 = f(1), f(1) = 0, 1, because in R these
are the only two solutions to x2 − x = 0. Now, if r = 0, we get two homomorphisms the
zero homomorphism and the identity. And, if r 6= 0 the fact that rf(1) ∈ (s) implies that
f(1) = 0, so we only have the zero homomorphism.
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