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ABSTRACT. In this paper, some multilinear operators associated to
certain sublinear integral operators are introduced. These operators in-
clude the important operators in harmonic analysis, such as Littlewood-
Paley operators, Marcinkiewicz operators and Bochner-Riesz operator.
The good A inequalities for the multilinear operators are obtained.
Using this result, the boundedness of the multilinear operators on
Lebesgue spaces are obtained.
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RESUMEN. En este articulo se introducen algunos operadores asociados
con ciertos operadores integrales sublineales. Estos operadores incluyen
operadores importantes en andlisis atmonico, tales como los operadores
de Littlewood-Paley, los operadores de Marcinkiewicz y el operador
de Bochner-Riesz. Se obtienen las buenas desigualdades A para estos
operadores multilineales. Usando este resultado, la acotacién fe estos
operadores multilineas se obtiene para los espacios de Lebesgue.

1. Introduction and Notations

As the development of the singular integral operators, their commutators and
multilinear operators have been well studied (see [1]-[7], [15]. In [3], [6], CHEN
and COHEN proved the good A inequalities for the multilinear singular integral
operator, and the boundedness of the multilinear operators on Lebesgue spaces
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are obtained. It is known that the singular integral operators are the linear oper-
ators. The Littlewood-Paley operators, Marcinkiewicz operators and Bochner-
Riesz operator are the important sublinear operators in harmonic analysis. The
purpose of this paper is to introduce some multilinear operators associated to
certain sublinear integral operators, the operators include the Littlewood-Paley
operators, Marcinkiewicz operators and Bochner-Riesz operator. And we prove
the good A inequalities for the multilinear operators. Under this result, we get
the boundedness of the multilinear operators on Lebesgue spaces.

First, let us introduce some notations (see [2], [8], [15], [16]). Throughout
this paper, @ will denote a cube of R™ with sides parallel to the axes. For any
locally integrable function f, the sharp function of f is defined by

#
7 (x) Zg}; |Q|/ If(y) — fqldy,

where, and in what follows, fq = Q| [, f(2)dz. It is well-known that (see
[8][16])
o)~ sup ind o [ [70) =l
QI

zEQ ceC

We say that f belongs to BMO(R") if f# belongs to L>(R™) and ||f||symo =
||f#]|L=. For 0 < 8 < 1, the Lipschitz space Ag is the space of functions f
such that

Iflls, = sw  [APp@)] /1 < o,
xz,h € R"
h#0

where AF denotes the k-th difference operator (see [15]). Set, for 1 < p < oo
and 0 < pu < n,

1 l/p
Mapl)e) = sup (ot [ )

we denote M,.(f) = M, ,(f) if p = 0, which is the Hardy-Littlewood maximal
function when r = 1.

2. Theorems

In this paper, we will study a class of multilinear operators associated to
some integral operators, whose definition follows.

Let m; be the positive integers(j =1,---,1), m1 +---+m; = m and A; be
the functions on R™ (j =1,---,1). Set

Rnyr (A o) = A5(@) = 3 D As{)(w — )"

|| <m
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Let Fy(z —y) be defined on R™ x [0, 4+00). Set

R = [ Fa =) )y,

Hé:l R 41(Aj2,y)

Fv A (f)(z) = — Fi(z —y)f(y)dy
Rn [z =y
and
Hl‘: ijJrl(A’; Z, y)
et = [ SRS R ) )y
|lz—y|>e |J) - yl
for every bounded and compactly supported function f. Let H,|| - || be the

Banach space H = {h : ||h|| < oo} of functions h, and assume that for any
fixed z € R™, Fi(f)(x), Ft‘f‘;""’A’(f)(a:) and F* 41 (f)(2) may be viewed as

a mapping from [0,4+00) to H. Then, the multilinear operators associated to
F; are defined by

TAv A () (@) = |F T () @),

T A (f) (@) = (IF M () @)l
and T2 A () (2) = Sup,s o T4 A1 f)(z), where F} satisfies: for fixed § > 0,
IFi(z =yl < Clz —y[™"

and
|Fi(y —2) = Fi(z —2)|| < Cly — 2|°fx — 2| " 7°

if 2|y — z| < |x — z|. We define T'(f)(z) = ||F:(f)()|]-

Note that when m = 0, 7414 is just the commutator of T and Ay, ---, 4,
(see [1], [10]-[13], [18]). While, when m > 0, it is a non-trivial generalization
of the commutator. It is well known that commutators and multilinear opera-
tors are of great interest in harmonic analysis and have been widely studied by
many authors (see [3]-]7]). The purpose of this paper is to prove the good A
inequalities for the multilinear operators T 1’""A’; using this result, the bound-
edness for the multilinear operators 7414 on Lebesgue spaces are obtained.
In Section 4, some applications of Theorems in this paper are given.

Now we state our results as follows:

Theorem 1. Let D*A; € BMO(R") for all a with |o| =mj andj=1,--- 1.
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(a) Suppose 1 < r < p < o0, then there exist vo > 0 such that, for any
0<y<~0and X >0,

{a: € R": TAv A (f)(x) > 3,

I D 1% A4llsmo | My(f)(x) <A

l
j=

1 \Jasl=m;
< Oy'{z e R T A (f) (@) > AY;
(b) T4 is bounded on LP(R™) for 1 < p < oc.

Theorem 2. Let 0 < 3 < 1 and D*A; € Ag for all a with |a| = m; and
J=1,

(1) Suppose 1 < r < p < oo, then there exist vo > 0 such that, for any
0<y <~ and >0,

|{x € R : TAv A (f)(z) > 3\,

I[I{ > 1IDYAlls, | Mipp(f)(@) <A

l
j=

1 \Jagl=m;
< Oy[{w e R™: T A(f) (@) > AY;

(2) 744t is bounded from LP(R™) to LY(R™) for 1 < p < n/If and 1/p —
1/q=18/n.

3. Proofs of Theorems

To prove the theorem, we need the following lemmas.

Lemma 1 (see [15]). Let 0 < 8 < 1,1 < p < oo, then

1
6] ~sup—/ Ib(z) — bldz ~
et SToTEvTN A @

1 1 Y/
(= bx) —bgPdz) .
sup IQIW"<|QI/Q| () = bel ””)

Lemma 2 (see [6]). Let A be a function on R™ and D*A € L9(R™) for all
a with |a] = m and some g > n. Then

1/q
1
|Ron(A;2,9)| < Clz —y[™ <m o )|DaA(Z)|qu> :
’ z,y

lo|=m
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where Q(z,y) is the cube centered at x and having side length 5v/n|z — y|.
Lemma 3 (see [2]). Let 0< pu<n, 1 <r<p<n/pand1l/qg=1/p—p/n,
then
M (e < ClIf] Lo

Proof of Theorem 1(a). Without loss of generality, we may assume | = 2. By
the Whitney decomposition, {z € R™ : T/ *2(f)(z) > A} may be written as
a union of cubes {Q} with mutually disjoint interiors and with distance from
each to R™ \ |J, Qr comparable to the diameter of Q. It suffices to prove the
good A estimate for each Q. There exists a constant C' = C'(n) such that for
each k, the cube Q) intersects R™ \ Ui Qr, where Q. denotes the cube with
the same center as Q and with the diam Q) = C diam Qj. Then, for each k,
there exists a point xg = zo(k) € Qr such that

T4 (f) (o) < A

Now, we fix a cube Q. Without loss of generality, we may assume there exists
a point z = z(k) with

I D ID*Ajllsro | My(£)(2) <A

2
Jj=

L \Jal=m;

Set Q;, = Qr and write f = f, + fo for f = fX@k and fo = fXR"\é,c' We turn
to the estimates on f; and fs.

The estimates on f;. Choose ¢ € O such that p(z) = 1 for z € Q,,

p(x)=0for z ¢ 5k, |p(z)] <1 for all z, and |p(z)| < C’(diam@k)_k" for any
multiindex a with |a| < m. Define

ALW) = Ry (4100 = 3 (D" AD)0u ()% 0,2 | (1)

la|=m.
and

AL) = R [ 4200 = X (D" A, ()02 | ol

|al=m2
Then, for x € Qy,
T2 (f)(2) = T (1) ().

Similar to the proof in [6], we obtain

ID* A llza < € > (1D Avllmaiol @il for [a] = m,

la|=m1

1D AS I < C 37 |IDAa|5aro Q|7 for |a] = my

|a|=m2
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and
T2 ()l < H ( > IID(’A}OIILG) fllze
lor|=m;
for 1/r=1/p+2/q < 1, thus, for n > 0,

[{z € R": T2 (f1)(w) > pAY| = [{z € R™: T (1) (2) > mAY|

IA

()"

9 T
T )| < cmn [H( > |DaAf||Lq) ||f1||m}

la|=m;

IN

j=1 |a|=m;

CmA)™ [H ( ) IID“AJ-IIBMO> Mp(f)(z)] Q70 /rr2/0)

< CONTON Q] < CHv/n) Q-

The estimates on f>. Let H = H(n) be a large positive integer depending
only on n. We consider the following two cases:

Case 1. diam(Qy,) < ¢ < Hdiam(Qy). Let

Ar@) = @) - Y i,(DaAn 2

|a|=m
and

() = Aoe) — YD (D Ao)g, <o,

|a|=m2
then F/42(fy)(z) = F{2 2 (f,)(x). Set

Ft(

Ki(z,y) = W

HRmJJrl A]ax y)

Choose ¢ € Qy with zg € R"™\ Uy Q- Following [6], we have, for z € Q,

Ak

FES@I= [ )~ Ko, Sy

[ Kiwow) )y + / K (0, 9) f(4)dy + F{42(f) (o)
R(z) R(zo)

= I+ IT+I1IT+1V.
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where R(u) = {y € R" : diam(Q) < |u — y| < hdiam(Q)}. Now, let us treat
I, Il and III, respectively. For I, we write

Fi(z — y) Fy(zo — >
I / ( R, (A%, ) £ (4)dy
|lz—y|>e |J? - y|m |x0 - y|m H
k k Fy(zo —y) k
+ (le (Al 3L, y) - Rm1 (Al 7205 y)) 7mRm2 (AQ 3L, y)f(y)dy
|lz—y|>e |x0 - y|
k k Fy(zo —y) k
+ - (Rms (A352,y) — Ry (A3 %0,)) Wle(Aﬁxoay)f(y)dy
r—y|>e
’mz A 3 - e
|z—y|>e |z — y|

|(¥1\—m1

_ Ry (A5; 0, y) (w0 — )™ Fy(zo — y)} x DAY (y) f (y)dy
|zg — y|™

(Ak —y)*2
/ |: m1 15 %, y)(,f y) Ft(x—y)
|lz—y|>e |z —yl

|a2\

_le(Al;fco,y)(xo —y)*
lzo — y|™

1 (x —y)ortos
: Ty R (FE T
Z ma arlas! lz—y|>e |{E - y|m (

la1|=m1, |az|=m

Fy(zo — y)} x D2 A5(y) f(y)dy

(zo —y)* 1t

VT o yﬂ x D 4] (y) D A (3) £ (4)dy
|900 y|

=h+DL+Is+ 14+ Is + L.
By Lemma 2 and the following inequality, for b € BMO,

b@: = bq.| < Clog(|Q2|/|Q1])[[bl[Bao for Q1 C Q2,

we get, for v > 1,

By (Ajiz,y) < Cle—yl™ 3 (ID°Allsa0 + (D" Ay geg) — (D 4;)q))
|a|=m
< Cule—y™ Y 1D 4llsao.

|al=m

On the other hand, by the formula (see [6]):

1
Rm]‘ (A‘I;,J?,y) - ij (A§7m05y) = Z Eijf\G\(D6A§7xa$0)(x - y)9

|9|<WLj
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and Lemma 2, we obtain, similar to the proof of [6],

2
||11]] <CH ( Z |D(’Aj||BMO)

el =

> |z — o] | 91:0|‘S

, _
X v + fy)ldy
; /”6<|xy|<2”+15 (Iw—yl”+1 Ix—yln”) )

2
H( > ||DaAj||BMO)

o=

X ; (277 +2779) ((2”*%)" /ﬂngu+1€ |f(y)|dy>
H ( Z ||DO{Aj||BMO> My(f)(z) < Cyx;

o=

2 %)
LIl < DA, u2/ |2 = o d
i< e]] ( oy j||BMo) S [ Rl

2

<ol

j=1

( > ||D“Aj||BMo) M (f)(z) < CyMIs]| < CyA;

la|=m;

|z —y[™ lzo — y|™

CECS /

o [=my [

x| Ry (A5 2,y)|| D AT (y)]| £ (y)|dy

I
+C Y /l | |Rm2(A'5;fc,y)—Rmz(A'S;xo,y)lH( .
r—yY|>€

\a1|=m1

— Y FR@—y)  (wo—y)* Fi(zo —y) H

y)* Fy(wo — y)|||
|zg — y|™

x DAY (y)|| £ (y)ldy

H ( > ||D“Aj||BMO) Mp(f)(2) < CyA;

o=

[[I5]] < CvyA;

sl < C© /
|lz—y|>e

lai|= m1,|a2\
(zo — y)alJrath(xo -y
lzo — y|™
thus, ||I]| < CyA.

(z —y)M 2 Fi(z —y)
|z —y[™

H 1D A ()] | D2 AL )] £ () ldy < A,
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For IT and I1I, note that, for y € R(z),
|z —y| < Hdiam(Qy),
we get, similar to the proof of [6],

F x
”””</R<> [1Felwo = ”HmmJ A%z, 9) | £ (y)Idy

|zo — y|™

0 D / M”Ft(%—y)IIID“A’f(y)IIf(y)Idy

|zg — y|™2

mi Ak; ) o
v 3 Bl -l AR )y

|zg — y|™

> /x_y>g||Ft(x0_y)|||D“1A’f(y)IID"2A’§(y)IIf(y)Idy

|ar|=m1, |az|=m2
<O\
III1]] < CyA.

For IV, since = ¢ |J,, Qk, we have |[IV|| < A. Thus, for x € Q,

sup [T/ (fo)(2)] < CyA+ A
e~diam(Qy)

Case 2. ¢ > Hdiam(@k). Let @5 denote the cube with the same center as
Q. and with the diam Qf = e. Set

As(x) = Ai(z) — > i'(DaAl) Cz®
lal=m

and

A5(a) = Apla) = 3 (D Ag)gs -,

|a|=ma

then, similar to the proof of Case 1, to get

sup T2 (fy)(2)] < CyA+ A
e>Hdiam(Q,)

Thus, we have shown that for z € Qy,

T4 (f2)(x) < CyA+ A
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Now, choose 7 such that Cvyy < 1, let n = 1 and combine the estimates on f;
with fo, to get

{a: € Qu : T2 (f)(x) > 3,

2

[T X ID%Ajllsmo | My(f)(z) < A

J=1 \laj|=m;
< [z € Qi : T2 (f1)(2) > 2 — CyAY|
+ [{z € Qi : T2 (f2)(x) > A+ CyA}|
<Oy |{x € Qi : TA2(f1)(2) > A} < O |Qxl-

(b) follows from (a) and Lemma 3. This completes the proof of Theorem 1.

Proof of Theorem 2(1). Without loss of generality, we may assume | = 2.
By the Whitney decomposition, {z € R™ : T2"*2(f)(z) > A} may be written
as a union of cubes {Qx} with mutually disjoint interiors and with distance
from each to R™\ |J,, @« comparable to the diameter of Q. It suffices to prove
the good A estimate for each Q. There exists a constant C' = C(n) such that
for each k, the cube Qy, intersects R™ \Uj Qx, where Qk denotes the cube with
the same center as Q and with the diam Q) = C diam Q. Then, for each k,
there exists a point xg = zo(k) € Qr such that

T (f) (o) < A,

Now, we fix a cube Q. Without loss of generality, we may assume there
exists a point z = z(k) with

II > 1D A, | Mosp(f)(2) < A
J
Set Q) = C:Qj and write f = f; + fo for f1 = fX@ and fo = fXRn\@n We turn
J J
to the estimates on f; and fs.
The estimates on f;. Choose ¢ € C* such that ¢(z) = 1 for z € @j,
o(z) =0 for x ¢ Qj, |o(x)] <1 for all z, and |p(z)| < C(diaméj)"o‘| for any
multiindex a with |a| < m. Define

2

1 \|al=m;

AL = By [ A1) = Y0 (D A0, (0% 0,2 | - ol0)

la|=m1
and

AS) = B [ A20)— Y0 (D420, ()% 0.2 | ol

la|=m2
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Then, for x € Qy,
T2 (fi) (@) = T (f1) ().
Similar to the proof in [3][6], we obtain

ID*Af||za < C Y7 [ID*Ail[3, Q4" for |a] = m
|a|=m1
and o
IDAL||La <C Y [[D*As||5,1Qp |14 for |af = m,.
|a|=m2
Taking 1/r =1/p+2/q < 1, we get, for n > 0,
A%

[{z € R : T2 (f1)(2) > pA}| = [{z € R": T T (1) (2) > mAY|

2 T
< Oy ||TAT A (fl)HLT <O [H ( 3 ||DaA;<’||Lq) ||f1||Lp]
i=1 \la|=m;,
2 r o
< CmNT [H( > ||D(*Aj||m) Mzﬁ,pm(z)} QP 2/
J=1 \|a|=m;
< CHN TN QL < Cly/n) |Qul-

The estimates on f>. Let H = H(n) be a large positive integer depending
only on n. We consider the following two cases:

Case 1. diam(Qy,) < ¢ < Hdiam(Qy). Let

Aife) = @)= Y (D Ar)g, -

|a|=m1
and
1
Aj(@) = Az(2) = 3 (D" Az)g, -,
la|=m2
then TA42(f,)(z) = T2 (f,)(2). Set
2
Fi(x,
Ki(z,y) = ﬁ H Ry 1(Af52,y).
j=1

Choose zg € Qj, with =g € R™\ Uy Qx- Following [6], we write, for x € Q,

k k
FA17A2

S OEI= [ )~ K ) 0

[ Kiwow) )y + / K (0, 9) f(4)dy + F{42(f) (o)
R(z) R(zo)

= J+JJ+JIJT+JJJJ,
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where R(u) = {y € R" : diam(Q) < |u — y| < hdiam(Q)}. Now, let us treat
J, JJ and JJJ, respectively. By Lemma 2 and the following inequality, for
b € Ag and the cube Q = Q(xo,d),

1
[b(z) —be| < @/QIIbIIAﬁIw—ylﬁdy < [1bl] g (J2 = wo| + ),

we get

| R, (A¥;2,9)| < Z 1D 4|5, (|2 — y| + d)™s 5.

lee|=m;

On the other hand, by the formula (see [6]):

1
Rm]‘ (A?,J?,y) - ij (A;€7m05y) = Z Eijf\G\(D9A§7xa$0)(x - y)e

|9|<WLj

and Lemma 2, we obtain, similar to the proof of [3][6] and Theorem 1,

2
< CTI D2 ID%45ll4, | 1@k
j=1

lor|=m;
> |z — o] |z — zo|°
2 — 40 — 40
X g v + |f(y)|dy
=1 /”6<|x—y|§2"+1e <|x —y[mtt o - y|n+6)

<cII [ X 1p~ajlis,

J=1 \|a|=m;

— — v — v 1
x Y pP(27 (120w 4 9= (926) )(W/ i If(y)ldy>
r—y|<2¥Tle

v=1

2

2
< CH Z [[D* A5, | M2pp(f)(2) < CyA.

=1 \Jal=m;
For JJ and JJ.J, note that, for y € R(x),

|z —y| < Hdiam(Qj),
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we get, similar to the proof of [3], [6],

F T
[RARTTIE /R()”t 0= ”H|Rm, o)l F )l dy

|zo — y|™

o 3 MHE(%—y)IIIDalA’f(y)IIf(y)Idy

|zg — y|™m2

k'{E
pS / o (4520 D 7, 3y — )1 5017 )y

|zg — y|™

i > /|x—y|>5 ||y (z0 — y)||| D AY (y)|| D> A5 ()| £ (v)|dy

lai|=m1, |az|=m2
CyA;
[|JJJ]| CyA.
For JJJJ, since x ¢ |J;, Qx, we have |[|JJJJ|| < A. Then, for z € Q,

sup TS0 (fo) ()] < CyA+ A
e~diam(Qy)

<
<

Case 2. ¢ > Hdiam(Q}). Let Q5, denote the cube with the same center as
Q1 and with the diam Qf = ¢. Set

1
Ai() = M) - Y LD Ag; 0
lo|=m1
and )
A5(x) = As(z) — > (D% A2)q; - 2%,
|a|=mz

then, similar to the proof of Case 1, we get

sup T2 (fo) ()] < Cyd+ A
e>Hdiam(Q;)

Thus, we have shown that for z € Qy,
T4 (fo)(x) < CyA+ A

Now, choose 7 such that Cvyy < 1, let n = 1 and combine the estimates on f;
with fo, we get

2
2 € QT (f)@) >3\ [T | D IDYA4ll4, | Mesp(f)(@) < 7A

3=1 \Jaj|=m;
{z € Qu: T (f1)(x) > 2X — CyAH + [{z € Qi : T2 (f2)(2) > A+ CyAY|
Cy'|{x € Qi : TA 2 (f1)(2) > A} < Cy"[Qyl-

(2) follows from (c) and Lemma 3. This completes the proof of Theorem 2.

<
<
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4. Applications

Now we give some applications of Theorems in this paper.

Application 1. Littlewood-Paley operators. Fixed § > 0 and p > (3n +
2)/n. Let 9 be a fixed function which satisfies:

(1) fR” ¥(z)dr =0,
(2) o) <O+ =)=,
(3) ¢z +y) — (@) < Clyl (1 + [x) ="+ when 2[y| < |z;

We denote that I'(z) = {(y,t) € R?™" : |[x — y| < t} and the characteris-
tic function of I'(z) by xp(s). The Littlewood-Paley multilinear operators are

defined by
o) 1/2
s = (IR n@ee)
1/2
SA()(@) = [ /] . A )P o ]
and

G @) = [ [ () i e i ] -

where l
- Ry.a1(Ajsx,
e - [ L= . Ly
R™ Y|
ITj—; Bony1(4j52,2)

FA)wy) = [ R ey — )z

and ¢y (x) = t7"p(x/t) for t > 0. Set Fi(f)(y) = f * 1+ (y). We also define that
oo 1/2
s = ([TIRO@EY)

1/2
Su(f) () = ( /] () ) 2 )

ul)) = ( [ () mowres )/

which are the Littlewood-Paley operators (see [17]). Let H be the space

H= {h R = (/OOO |h(t)|2dt/t>1/2 < oo}

and
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1/2
H = {h: [|h]| = <//R+ |h(y,t)|2dydt/t”+1> < oo},
+

then, for each fixed x € R", FA(f)(z) and FA(f)(x,y) may be viewed as the
mapping from [0, +00) to H, and it is clear that

9o (H@) = IFA D@, g6(f)(@) = [IF() @],
SHN@) = [xeaE D@ )l| Se(H)@) = [[xew B @)

or

and
nu/2
g;f(f)(a:)z‘ (ﬁ) FtA(f)(may) )
nu/2
@ = || (=) W)

It is easily to see that g;?, S;Z‘ and glf satisfy the conditions of Theorem 1 and
2 (see [10][12-13]), thus the conclusions of Theorem 1 and 2 hold for g}, S;;‘
and g;‘.

Application 2. Marcinkiewicz operators. Fixed Fix A > méax(1,2n/(n+2))
and 0 < 0 < 1. Let Q be homogeneous of degree zero on R™ with

/sH Q(a")do(2") = 0.

Assume that Q € Lips(S™~1!). The Marcinkiewicz multilinear operators are

defined by
) 1/2
i = ([T IR n@rE)
1/2
W) () = [ /1. IFtA(f)(:v,y)IQfﬁ;]
and

nA 1/2
uf(f)(x)=[/ Lo 1) |Ff<f><:c,y>|2§,i’f§] ,

where

A - [1j—1 By (Aj:2.9) Q@ —y)
e = /|| o=y o=yt W

and

! N .
O R Y O

ly—=z|<t |y - Z|m/ |y - Z|n_1
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Set
Fy(f)(x) = /l Mf(y)dy;

z—y|<t |£L' - y|n71
We also define that

and

(@) = ( /. (ﬁ) |Ft<f><y)|2i%’f§>l/2,

which are the Marcinkiewicz operators (see [18]). Let H be the space

S 1/2
H= {h Al = (/0 |h(t)|2dt/t3> < oo}
1/2
H= {h: Ih]| = (//R+ |h(y,t)|2dydt/t”+3> < oo}.

Then, it is clear that
pa(N)(@) = IFA (@) me()(@) = [|F) @),
18 (N)@) = [xea D@ ms(H)@) = |[xrwF () ©)]]

or

and
ni/2
u (7)) = H(ﬁ) FAN )|
ni/2
() = H (=) 0w

It is easily to see that pg, ug and uj satisfy the conditions of Theorem 1 and
2 (see [10][12]), thus Theorem 1 and 2 hold for ug, pg and u4l.
Application 3. Bochner-Riesz operator. Let § > (n — 1)/2, Bf(f)A(f) =
(1 —2[¢1?)5 f(&) and Bf(z) = t " B°(z/t) for t > 0. Set
[Tj—1 B, 1(4552,9)
Fuf)@) = | == e Bl — ) fw)dy,

The maximal Bochner-Riesz multilinear operator are defined by

Bi.(f)(x) = sup B3 (f) ()]
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We also define that

Bs(f)(x) = sup B () ()]

which is the maximal Bochner-Riesz operator (see [14]). Let H be the space
H = {h :||h]| = sup |h(t)| < oo}, then
>0

Bl (N)(@) = [1Bs(N)@)l, BI(f)(x) = 1B} (f)(@)]l-

It is easily to see that B(‘é* satisfies the conditions of Theorem 1 and 2, thus
Theorem 1 and 2 hold for Bg‘*.
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