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Resumen. Consideramos una extensión de la derivada usual, llama-
da la Ω–derivada y desarrollamos algunas de sus propiedades. Nuestro
resultado principal es una generalización del teorema fundamental del
cálculo que es aplicable a integrales de Riemann–Stieltjes cuyos inte-
gradores son continuos y estrictamente crecientes.

1. Introduction

In this article we consider an extension of the ordinary derivative, which
we call the Ω–derivative, and develop some of its properties. The Ω–derivative
(the derivative with respect to Ω) is defined in [3]. We give a somewhat simpler
definition, and our approach is more elementary than the approach taken in
that paper. In particular,we don’t use any measure theoretic concepts, and
we consider the Riemann–Stieltjes integral rather that the Lebesgue–Stieltjes
integral. The relationship between the Ω–derivative and the ordinary derivative
is analogous to the relationship between the Riemann–Stieltjes integral and
the Riemann integral. Our main result is a generalization of the Fundamental
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Theorem of Calculus that applies to Riemann–Stieltjes integrals in which the
integrator is continuous and strictly increasing.

2. The Ω–derivative

We begin with the definition of the Ω–derivative, cf. [3, p. 619–620].
Definition 1. Suppose f and Ω are real-valued functions defined on the same
open interval (bounded or unbounded) and that Ω is continuous and strictly in-
creasing. Suppose x0 is a point in this interval. We say that f is Ω–differentiable
at x0 if

ĺım
x→x0

f(x)− f(x0)
Ω(x)− Ω(x0)

exists.

If this limit exists we denote its value byDΩf(x0),which we call the Ω–derivative
of f at x0.

Of course, if Ω(x) = x, then the Ω–derivative of f is the usual ordinary
derivative of f . Notice that if f ′(x0) and Ω′(x0) both exist and Ω′(x0) 6= 0,
then

DΩf(x0) = ĺım
x→x0

f(x)− f(x0)
Ω(x)− Ω(x0)

= ĺım
x→x0

[f(x)− f(x0)] / (x− x0)
[Ω(x)− Ω(x0)] / (x− x0)

=
f ′(x0)
Ω′(x0)

.

Examples

1. If f(x) = c (c a constant), then

DΩf(x0) = ĺım
x→x0

c− c
Ω(x)− Ω(x0)

= 0

2. If f(x) = Ω(x), then

DΩf(x0) = ĺım
x→x0

Ω(x)− Ω(x0)
Ω(x)− Ω(x0)

= 1.

Thus, Ω is Ω–differentiable.
3. Let f(x) = x2/3 and Ω(x) = x1/3. Then

DΩf(x0) =
f ′(x0)
Ω′(x0)

= 2x1/3
0 , x0 6= 0.

Also, by direct calculation, DΩf(0) = 0, so

DΩf(x0) = 2x1/3
0 , for allx0.

4. In general, if f(x) = xp and Ω(x) = xq, p ∈ R and q > 0, then

DΩf(x0) =
p

q
xp−q

0 , x > 0.
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Theorem 1 If f is Ω–differentiable at x0, then f is continuous at x0.

Proof.

ĺım
x→x0

f(x)− f(x0) = ĺım
x→x0

f(x)− f(x0)
Ω(x)− Ω(x0)

· [Ω(x)− Ω(x0)]

= DΩf(x0) · 0 = 0,

since Ω is continuous at x0. �X

3. Ω–derivative rules

Theorem 2. Suppose f and g are both Ω–differentiable at x0.Then f + g, fg,
and cf (c a constant) are each Ω–differentiable at x0. Their Ω–derivatives are
as follows:

1. DΩ(f + g)(x0) = DΩf(x0) +DΩg(x0)
2. DΩ(fg)(x0) = DΩf(x0)g(x0) + f(x0)DΩg(x0)
3. DΩ(cf)(x0) = cDΩf(x0)

The proof can be obtained simply by mimicking the proof for the corre-
sponding results for ordinary derivatives, so we omit it.

Theorem 3. If f(x) = (Ω(x) + c)n
(c a constant), n ∈ N, then

DΩf(x0) = n (Ω(x0) + c)n−1
.

(As usual, here we interpret 00 as 1.)

Proof. We give a proof by induction. For n = 1, the result follows easily from
previous results. Next, assume that the formula is true for n ∈ N. If we let

g(x) = (Ω(x) + c)n+1 = f(x) (Ω(x) + c) ,

then, using the rule for the Ω–derivative of the product of two functions, we
have

DΩg(x0) = n (Ω(x0) + c)n−1 (Ω(x0) + c) + (Ω(x0) + c)n · 1
= (n+ 1) (Ω(x0) + c)n

,

which is what we needed to show.

4. Maximum and minimum values

Definition 2. We say that f is Ω–differentiable on an open interval if it is
Ω–differentiable at every point in the interval.

Theorem 4. Suppose f is Ω–differentiable on the interval (a, b). If f has a
relative maximum or a relative minimum at x0 ∈ (a, b), then DΩf(x0) = 0.
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Proof. Suppose f has a relative maximum at x0 ∈ (a, b). Then there exists a
number δ > 0 such that

f(x0) ≥ f(x) whenever a < x0 − δ < x0 < x0 + δ < b.

Therefore, if x0 − δ < x < x0 we have

f(x)− f(x0)
Ω(x)− Ω(x0)

≥ 0,

since Ω is strictly increasing. Letting x→ x−0 , we see that we must have

DΩf(x0) ≥ 0.

Similarly, if x0 < x < x0 + δ, then

f(x)− f(x0)
Ω(x)− Ω(x0)

≤ 0 .

Letting x→ x+
0 , we see that we must have

DΩf(x0) ≤ 0.

It follows that
DΩf(x0) = 0.

The proof for a relative minimum is similar. �X

If f and Ω are differentiable at x0 and Ω′(x0) 6= 0, then this result follows
from the corresponding standard calculus result, since

DΩf(x0) =
f ′(x0)
Ω′(x0)

.

However, as the following example illustrates, our result doesn’t require either
f or Ω to be differentiable at x0.

Example. Let f(x) = x2/3 and Ω(x) = x1/3. Then f has a relative minimum
at x = 0 and DΩf(0) = 0.

Proposition 1. Suppose f is Ω–differentiable at x0 and that DΩf(x0) > 0.
Then there exists a number δ > 0 such that

f(x) < f(x0) < f(y) whenever x0 − δ < x < x0 < y < x0 + δ.

A similar result holds if DΩf(x0) < 0.
Proof. Since f is Ω–differentiable, for every ε > 0 there exists a δ > 0 such that∣∣∣∣ f(x)− f(x0)

Ω(x)− Ω(x0)
−DΩf(x0)

∣∣∣∣ < ε whenever 0 < |x− x0| < δ.

Choosing ε = 1
2DΩf(x0) we obtain

f(x)− f(x0)
Ω(x)− Ω(x0)

>
1
2
DΩf(x0)
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for 0 < |x− x0| < δ. The result now follows easily, since Ω is strictly increasing.

5. Mean value type theorems

Theorem 5. Suppose f is continuous on the closed interval [a, b] and Ω–
differentiable on the open interval (a, b). If f(a) = f(b), then there exists a
number x0 ∈ (a, b) such that DΩf(x0) = 0.

Proof. If the minimum and maximum points of f both occur at the endpoints a
and b, then f is a constant function andDΩf(x0) = 0, for all x0 ∈ (a, b). If one of
the minimum or maximum points of f occurs at x0 ∈ (a, b), thenDΩf(x0) = 0,
by Theorem 4. �X

Example. Let f(x) = x2/3 and Ω(x) = x1/3. Then f(−1) = f(1) andDΩf(0) =
0.

Theorem 6. Assume f and g are both continuous on the closed interval [a, b]
and Ω–differentiable on the open interval (a, b). Then there exists a number
x0 ∈ (a, b) such that

[f(b)− f(a)]DΩg(x0) = [g(b)− g(a)]DΩf(x0).

Proof. Apply the previous theorem to the function

h(x) = [f(b)− f(a)] g(x)− [g(b)− g(a)] f(x). �X

Theorem 7. Assume f is continuous on the closed interval [a, b] and Ω–
differentiable on the open interval (a, b). Then there exists a number x0 ∈ (a, b)
such that

DΩf(x0) =
f(b)− f(a)
Ω(b)− Ω(a)

.

Proof. Let g = Ω in the previous theorem. �X

If Ω is differentiable on (a, b), this result follows from the Generalized Mean
Value Theorem, but our result doesn’t require this assumption.

Example. Let f(x) = x2/3 and Ω(x) = x1/3. Then

f(8)− f(−1)
Ω(8)− Ω(−1)

= 1

On the other hand,
DΩf(x0) = 2x1/3

0 = 1
for x0 = 1

8 ∈ (−1, 8).

Proposition 2.

1. If DΩf(x) ≥ 0, for all x in an open interval, then f is increasing on
that interval.
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2. If DΩf(x) ≤ 0, for all x in an open interval, then f is decreasing on
that interval.

3. If DΩf(x) = 0, for all x in an open interval, then f is constant on that
interval.

Proof. Consider the following equation

f(x2)− f(x1) = [Ω(x2)− Ω(x1)]DΩf(x0)

which holds for any x1 < x2 in the interval and some x0 ∈ (x1, x2). The
proposition follows immediately, since Ωis strictly increasing. �X

Example. Let f(x) = x3/5 and Ω(x) = x1/3. Then

DΩf(x) =
9
5
x4/15 ≥ 0

Thus, f(x) = x3/5 is increasing on (−∞,∞).

6. The fundamental theorem of calculus for the Riemann–Stieltjes
integral

Definition 3. Let f be a function defined on an open interval I. We say that
F is an Ω-antiderivative of f on I, if

DΩF (x) = f(x), for all x ∈ I.

We will denote by R(Ω) the set all Riemann–Stieltjes integrable functions
with respect to Ω, where Ω is a continuous, strictly increasing function on a
closed, bounded interval [a, b].

Theorem 8. Let f ∈ R(Ω).The function

F (x) =
∫ x

a

f(t) dΩ(t), x ∈ [a, b],

is continuous on [a, b]. Moreover, if f is continuous on [a, b], then F is an Ω-
antiderivative of f on (a, b). Proof. By the Mean Value Theorem for Riemann–

Stieltjes integrals, for anyx 6= y ∈ [a, b], we have

F (y)− F (x) = c [Ω(y)− Ω(x)] , for some c ∈ [m,M ],

where m = ı́nf {f(x) : x ∈ [a, b]} and M = sup {f(x) : x ∈ [a, b]}.Since Ω is
continuous on [a, b], this implies F is continuous on [a, b]. If f is continuous on
[a, b], then we can replace c, in the equation above, byf(z), for some z between
x and y. The remainder of the theorem follows if we divide both sides of the
equation above byΩ(y)−Ω(x) and let y → x. (Note that since f is continuous
f(z)→ f(x) as y → x.) �X
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Theorem 9. Let f ∈ R(Ω).Suppose F is continuous on [a, b] and an Ω-
antiderivative of f on (a, b). Then∫ b

a

f(x) dΩ(x) = F (b)− F (a).

Proof. Let P = {x0, x1, x2, . . . , xn} be a partition of [a, b]. By Theorem 5, there
exists tk ∈ [xk−1, xk] such that

F (xk)− F (xk−1) = f(tk) [Ω(xk)− Ω(xk−1)]

It follows that,

F (b)− F (a) =
n∑

k=1

F (xk)− F (xk−1) =
n∑

k=1

f(tk) [Ω(xk)− Ω(xk−1)]

Therefore,

F (b)− F (a) = ĺım
‖P‖→0

n∑
k=1

f(tk) [Ω(xk)− Ω(xk−1)] =
∫ b

a

f(x) dΩ(x) �X

Example. Let f(x) = x2/3 and Ω(x) = x1/3. Then

DΩf(x) = 2x1/3, for all x.

Therefore, ∫ b

a

2x1/3 dΩ = b2/3 − a2/3

Note that if a = 0 or b = 0 or a < 0 < b, then this is equal to the improper
Riemann integral ∫ b

a

2x1/3Ω′(x) dx =
∫ b

a

2
3
x−1/3 dx.

Remark. The authors have discovered many other applications of the Ω–
derivative to elementary calculus and differential equations. For example, we
are able to prove a version of Taylor’s theorem for the Ω–derivative as well as
several results related to ordinary differential equations. We hope to be able to
publish some of these results in the near future.
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