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ABSTRACT. This paper presents a concise history of the uses of multi-
sets in disguised forms which have eventually led to the formalization of
multiset theory, and a systematization of representations of multisets
and operations under multisets.
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RESUMEN. Se presenta una historia concisa de los usos encubiertos
de los multiconjuntos que han conducido finalmente a la formaliza-
cién de la teoria de los multiconjuntos y a una sistematizaciéon de sus
representaciones y a las operaciones entre ellos.

Introduction

Set theory was discovered (or invented) by GEORG FERDINAND LUDWIG
PHILIP CANTOR (1845-1918), a German Mathematician. In post-Sputnik era,
besides numerous publications appearing in the core area of set theory, one can
hardly come across a book in other areas of mathematics which does not begin
with some discussion of set theory. In fact, set theory has eventually become
the language of science.

*This paper was presented as a part of inaugural lecture organized by the Senate, Ahmadu
Bello University, Zaria on 20th September 2006
fCorresponding author.
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CANTOR’s concept of a set:

“By a ‘set’, we are to understand any collection M of definite
and distinct objects m of our intuition or thought (which will
be called the ‘elements’ of M) into a whole.”

Accordingly, one of the underlying assumptions of Cantorian set theory dic-
tates that no element shall be allowed to appear more than once. The collection
{a,b,b, c} consequently becomes a set only after deleting the repeated elements
viz, {a,b,c}. Indeed, this aspect of Cantorian set theory did not go hand in
hand with the requirements of various other sciences in seeking mathematical
formulation of some of the challenging problems. For example, repeated roots
of polynomial equations, repeated observations in statistical samples, repeated
hydrogen atoms in a water molecule, HoO, etc. need to be counted for attain-
ing adequacy and exactness. The concept of multiset ensues once the repeated
elements are admitted in a set.

A multiset (mset, for short) is an unordered collection of objects (called the
elements) in which, unlike a standard (Cantorian) set, elements are allowed to
repeat. In other words an mset is a set in which elements may belong more than
once and hence it is a non-Cantorian set. KNUTH [Knu 81, p. 636] notes that
“despite frequent occurrences of multisetlike structures in mathematics, there
is currently no structured way to deal with multisets” and similar observations
have been voiced by many others.

It is gratifying to note that during the recent years a sizeable number of
papers, specially dealing with the development of the theory of multisets, have
appeared and, not very surprisingly, some of the outcomes turned out to be
exceedingly vexing. In part, it conforms to CANTOR’s resolute insistence on
not admitting repeated elements in a set.

One is tended to believe that time is getting ripe to have a clearer per-
spective of CANTOR’s compassion for delimiting himself to the development
of set theory in its simplest form, called the standard or crisp set theory. In
our opinion, a convergent view point of multitude of researches that have gone
into developing a comprehensive theory of multisets dictates that it should be
CANTOR'’s fascinating theory of infinity that could not have straightforwardly
got through in the generalized cases, such as multisets.

Over the years, besides sporadic evidences of applications of mulisets in
Philosophy, Logic, Linguistics and Physics, a good number of them witnessed
in mathematics and computer science which have led to the formulation of a
comprehensive theory of multisets.

In this paper, we endeavour to present some of the history of multisets, a
systematization of various approaches toward formalizing the concept of muliset
and operations under multisets.



A SYSTEMATIZATION OF FUNDAMENTALS OF MULTISETS 35

Some early history of multisets

The concept of multiple-membership collection is as old as the concept of
number itself. For example, evidences of representing a number by a collection
of tally marks or units are found in the work of the Babylonians (200 B.C.),
Egyptians (3500 - 1700 B.C) and Greeks (see [Hal 84, p. 132] and [Ifr 85] for
details). KNUTH [Knu 81, p. 23] notes that enumeration of permutations of a
set was known in ancient times and historically the first known document is
the Hebrew Book of Creation (C. 100 A. D.), followed by the Indian Classic
Anuyogadvara-sutra (C. 500 A. D.); and the corresponding results for multiset
seems to have appeared first in another Indian Classic Lildvati of BHASCARA
AcHARyA (C. 1150). He further notes that KiRcHER (C. 1650, pp. 5-7)
correctly gave the number of permutations of multiset {m.C,n.D} for several
values of m and n, though without revealing his method of calculation except
when n = 1. A generalization of the rule for enumerating the permutations
of multiset appeared in PRESTET’s Elémens de mathématiques (Paris 1675,
351-352), and later in JOHN WALLIS’ Treatise of Algebra, 2 (Oxford 1685, pp.
117- 118). It is heartening to note that, by exploiting DOMINIQUE FLOATA’s
work done in 1965, KNUTH [Knu 81, pp. 24-31], presents a good number of
significant results on multiset permutations.

An early reference to multiset is also found in the work of MARIUS NiI-
ZOLIUS (1498-1576), cf. [Ang 65] and [Sin 94]. “It is not perhaps clear whether
Nizolius’ multitude comes closer to ‘class’ or ‘heap’...But Ni1zoLIUS" multi-
tudines, might still be heaps in the sense of QUINE or GOODMAN” ([Ang 65,
pp. 319-320)).

In [Bri 87, p. 1], it is noted with ‘emphasis’ (rightly, we think), which is
missing in [Bli 91, p. 330]: “... attempting to ‘make sense’ of Boole’s alge-
bra of Logic that multisets do have a history, and... that honour should go to
GEORGE BOOLE’s [1854] Laws of Thought’. HAILPERIN [Hai 86] has justified
(by introducing signed heaps) that BOOLE’s Laws of Thought may be inter-
preted as a treatise dealing with multisets. However, on the question whether
BoOLE himself had this interpretation in mind, BRINK [Bri 87, p. 2] notes that
“Hailperin is silent on this point, but strong evidence comes from another quar-
ter: at least one eminent 19th century Logician read BOOLE in precisely right
way, and that was CHARLES SANDERS PIERCE”. BRINK in [Bri 78, p. 294]
notes that “the axiom system for Boole’s original system is an axiom system
for signed heaps”.

CANTOR himself, in his first (1895) definition of a set, defines the cardinality
M* of a set M as a collection of ‘units’ (one unit for each element of M),
admitting repetitions (for details, see [Hal 84, pp. 128-142] and [Can 55, p.
11])

DEDEKIND, in his 1888 masterpiece “Was sind und was sollen die Zahlen?”
(“The nature and meaning of numbers”, English translation, cf. [Bli 91, p. 80])
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introduces the notion of msets. He considers a non-injective function ¢ from
the set ¥ (with n elements) onto the set ¢(X) (with m elements) to conclude
that n is also the number of elements in ¥(X) counted in this sense, while the
number of its actually different elements is m. DEDEKIND remarks: “In this
way, we reach the notion, very useful in many cases, of systems [sets] in which
every element is endowed with a certain frequency number which indicates
how often it is to be reckoned as element of the system”. In fact, DEDEKIND’s
approach has been found to be the most fundamental.

WEIERSTRASS defines real numbers as certain msets of rational numbers
in which finitely many repetitions are allowed. For example, the quantity
m = 3.141... can be identified with a multiset containing the number 1 with

1
multiplicity 3, the element — with multiplicity 1, the element — with mul-

tiplicity 4, etc. (see [Hal 84, p. 134]; [Bli 91, pp. 325-326]; and JOURDAN’s
observations in [Can 55, p. 16-18] for details).

[Whi 33] is indeed the first place where msets receive a substantive mathe-
matical treatment, particularly in terms of algebra of characteristic functions
of sets and subsequently, that of ‘generalized’ sets (sets whose characteristic
functions are integer valued). He cites “chains in analysis situs” in which “each
element is counted any number of times” [Whi 33, p. 412].

The appendix B, entitled Ars combinatoria, of [Wey 49] is another rich place
where msets receive utmost vindication, in theoretical as well as applied direc-
tions. WEYL defines mset as a set with an equivalence relation defined on it.
Equivalent elements are said to be “in the same state” (“in the same sort” in
[Mon 87]). [Wey 49, pp. 238-239] notes: “... electrons may be in this or that
position; atoms in a molecule may be N, He, Li, ... atoms.... no artificial
differences between elements are introduced by their levels ... and merely the
intrinsic differences of states are made use of ...”. Weyl applies these concepts
to a variety of problems in physics, chemistry and genetics: for example, in
physics, “Two individuals in the same ‘complete state’ (no further refinement
is possible) are indiscernible by any intrinsic characters although they may not
be the same thing” [Wey 49, p. 245]. [Wey 49, p. 238] notes: “... one has
to distinguish between equal (= of the same kind) and identicals”. Thus, an
aggregate is identified by its distinct states which is precisely the concept of
multiset.

RADO [Rad 75] defines an mset to be any cardinal-valued function whose
nontrivial domain (the collection of elements not mapped to zero) is a set. The
class of msets is called the cardinal module, like “a module over the semi-group
of all cardinals” (p.135), An mset f represents a family of sets o = (x;);es just
in case f(x;) equals the number of times x; occurs in « (that is, f(z) = [{i €
I:z; =z} for all ). RADO also makes use of signed msets (functions which
may have negative cardinal values).
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PARKER-RHODES [Par 81, p. xiii] observes that “... there exists no branch
of mathematics in which a third parity-relation, besides equality and inequality,
is admitted”. PARKER-RHODES [Par 81] develops a theory of “sorts” (collec-
tions of indistinguishables), an elaborate mathematical system, and applies it
to explicate some fundamental problems of physics. “Copies of elements be-
have as identicals when they appear as elements of different classes, but as a
plurality (each of them contributes to cardinality) when they are elements of
the same class” (p. 7). Elements of multisets conform to the Parker-Rhodes
principle of indistinguishables. However, the system of PARKER-RHODES is
a radical departure from classical mathematics because of its triparitous na-
ture (objects may be identical, distinct or twins). The underlying idea lies in
treating equality and identity as different relations.

In course of formalizing category theory, CORCORAN [Cor 80, 199-201] in-
troduces msets, for example, Sgla,bl2.1 = [a,b]31, where S, = the successor
function of a.

MEYER and MACROBIE [MM 82] make use of multisets in the study of
relevant implication by way of reckoning how often a premise is repeated in the
course of derivation.

The principle of indistinguishability of [Par 81] has been re-emphasized in
[Wil 03]. WILDBERGER argues that two physical objects are either different or
they are the same (or equal) but separate or they are coinciding (and identical).
He takes the example of a water molecule with two hydrogen atoms, say H'
and H? and one oxygen atom say O and concludes that H' and O are obviously
different (and, for that matter, H? and O are different), however H! and H?>
are the same but separate, while H' and H' are coinciding and identical.

WILDBERGER [Wil 03, p. 3], by taking some examples from the real world,
such as “...to a shopkeeper, any two dollar coins are equal even if their years
of minting are different, where as a coin collector would regard them essentially
different, etc.”, proposes some very innovative conclusions like “the notion of
equality is often a relative one”, “traditional mathematics works with the im-
plicit assumption that all objects exist uniquely in some ideal sense” and “relies
heavily on equivalence relation”, etc., which, for the time being, appear to us
only a contrived idea.

Theory of multisets

Introduction. As to the development of a formal (axiomatic) theory of mul-
tisets, despite having voiced by a number of authors [Sin 94], [FBL 73], for ex-
ample), their disagreement with CANTOR’s insistence on disallowing repeated
elements in a set, nothing substantial came through for a considerable period of
time. [Lak 76], inspired by RADO’s remark that “there is no axiomatization for
msets” during his 1974 London Mathematical Society lecture entitled “ Multi-
sets and multicardinals” , is known to be the first axiomatization of multiset
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theory. In [Lak 76], function (like VON NEUMANN’s axiomatization) is taken
as primitive. Lake admits: ‘... It might be though desirable to have an axiom-
atization which does not go via functions, such an axiomatization ... could be
conveniently written out using z €, y (intended to stand for “z belongs to y
precisely z times’, p. 325). This is the approach taken in [Bli 89], the most
recent and sustained work on this line. Unlike many other formalizations of
non-Cantorian set theory, BLIZARD [Bli 89] formulates a formal theory of msets
as a conservative extension of standard set theory”. BUNDER [Bun 87|, using
BCK-linear logic (weakened first-order logic), develops an elementary theory
of msets (infact, finite msets). [Bli 91] provides an exhaustive survey of the
literature dealing with the development of the theory of msets.

The term multiset as KNUTH [Knu 81, p. 36] notes, was first suggested by
N. G. DE BRULIN in a private communication to him. Owing to its aptness, it
has replaced a variety of terms viz. list, heap, bunch , bag, sample , weighted
set , occurrence set and fireset (finitely repeated element set) used in different
contexts but conveying synonimity with mset.

As mentioned earlier, elements are allowed to repeat in an mset, finitely in
most of the known application areas, albeit in a theoretical development infinite
multiplicities of elements are also dealt with (see [Bli 93], [Mon 87], [Hic 80],
[Lak 76], [Rad 75] and [Eil 74], in particular).

The number of copies [Bri 87, p. 5] prefers to call it ‘multiples’) of an element
appearing in an mset is called its multiplicity. Moreover, multiple occurrences
of an element in an mset are treated without preference (perhaps to retain
the force of classical concept of identity). We mention [Par 81] for an earliest
extensive treatment of indistinguishability of repeated elements without any
preference, and [Mon 87] and [Wil 03] for an alternative treatment.

The number of distinct elements in an mset M (which need not be finite)
and their multiplicities jointly determine its cardinality, denoted by C(M). In
other words the cardinality of an mset is the sum of multiplicities of all its
elements. An mset M is called finite if the number of distinct elements in M
and their multiplicities are both finite, it is infinite otherwise. Thus, an mset M
is infinite if either the number of elements in M is infinite or the multiplicity of
one or more of its elements is infinite i.e., C(M) > Ry. The root or support or
carrier of an mset M, denoted by M™* is the set containing the distinct elements
of M. The elements of the root set of an mset are called the generators of that
mset.

A considerable amount of efforts have also gone into the study of msets
with negative multiplicities (see [Bli 90], [Hai 86], [Rei 86], [Rad 75], [Eil 74],
[Whi 33], [Wil 03], in particular).



A SYSTEMATIZATION OF FUNDAMENTALS OF MULTISETS 39

Representations of mset
1. Multiplicative form

Following MEYER and MCROBBIE [1982], the use of square brackets to rep-
resent an mset has become almost standard. Thus, an mset containing one
occurrence of a, two occurrences of b, and three occurrences of ¢ is notation-
ally written as [[a, b, b, c,c,¢,]] or [a,b,b, ¢, ¢, ¢, ] or [a,b,¢,]123 or [al,b?,c®] or
[al, b2, ¢3], depending on one’s taste and convenience.

2. Linear form

WILDBERGER [Wil 03] puts forward a linear notation for multisets which
seems quite innovative, especially when negative multiplicities (integral as well
as rational) are to be dealt with, for example, the mset M = [a, b, c]1 2,3 can be
written as M = [a] 4 2[b] + 3[¢]. Similarly, a rational mset can be represented.

For example,

2 1
N = Z05) - 518,

In order to accommodate negative multiplicities round brackets are used: (a)
in an mset stands for negative of a; for example,

[2747 (5)7 (5)74] = [2] + 2[4] - 2[5}'

In the same place, the distinction between the terms ‘element’ and ‘object’
occurring in an mset is made explicit as follows:

Each individual occurrence of an object x in an mset A is called an element
of A. Thus in the linear notation of M above, b, for example, is an object
appearing twice, and every occurrence of b is an element of M. It follows that
the distinct elements of an mset are the objects. An object is an element if its
multiplicity is unity.

Further, the following notations used in [Wil 03, pp. 5-6] to represent data
structures of set, ordered set, multiset and list, are quite instructive:

A collection containing z, y, z, ... is denoted by {zyz...} or {zy_z...} if
it is a set; {x,y,z2,...} if it is an ordered set; [zyz...] = [zy-2_...] if it is a
multiset; and [z,y, z,...] if it is a list.

Note that a list is an ordered sequence of elements with repetitions allowed,
whereas an mset is a sequence with its ordering stripped off.

3. Multiset as a sequence

A multiset can also be represented as a sequence in which the multiplicity
of an element equals the number of times the element occurs in the sequence,
which is exactly Dedekind’s ‘frequency-number’. The idea is to construct an
mset as a sequence (a function with domain , the set of natural numbers) and
ignore the ordering of its elements, which can be done by taking all permuta-
tions of the domain of the sequence.
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4. Multiset as a family of sets

A multiset can also be represented as a family of sets, which is altogether a
generalization of the idea of a sequence described above. Thus, the family of sets
F ={F;}, i € I, where F;, = F}, if i = j, which identifies a repeated element,
represents an mset. Clearly, such a family F' is a function: I — {F;|i € I},
which in turn, is a sequence if I = Ng.

5. Multiset as a numeric-valued function

Representation of an mset as a numeric-valued or cardinal-valued function
abounds, especially in the application areas. Formally, an mset is just a map-
ping from some ground or generic or universal set into some set of numbers.
For example, an mset « = [z, Y, z]1.2,3 is a mapping from a ground set S to X,
the set of natural numbers with zero, defined by

1, if t=2x
2, if t=
OES S
3, if t==z
0, for all the remaining t € S.

In general terms, for a given ground set S and a numeric set T, we call a
mapping a : S — T,

aset, if T'={0,1};

a multiset, if T'= N, the set of natural numbers;

a signed multiset (or, hybrid/shadow set) if T' = Z, the set of integers;
a fuzzy (or hazy) set if T =[0,1] C R, a two—valued Boolean algebra.

6. Multiset as a generalized characteristic function

Similar to the representation of a set by its characteristic function (function
whose range is {0, 1}), a multiset or hybrid set is determined by its generalized
characteristic function (whose range is the set of integers, positive, negative or
zero), see [Whi 33] for details.

Operations under Mset. [Knu 81] can be considered as the earliest ref-
erence describing intuitively properties of msets in a sufficient detail. During
the recent years, a good number of papers ([Lak 76], [Hai 86], [Hic 80], [Bli 89],
[Wil 03], and others) have appeared. We endeavour to present an overview of
various approaches in this regard. We will adhere to function—approach and
use Dom(f),Ran(f) to denote the domain and range respectively of a given
function f.

Definition 1. Multiset. Let D = {z1,%2,...,%;,...} be a set. An mset A
over D is a cardinal-valued function i.e., A: D — X ={0,1,2,...} such that for
x € Dom(A) implies A(z) is a cardinal and A(x) = ma(z) > 0, where ma(z)
denotes the number of times an object x occurs in A, i.e., a counting function
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of A. The set D is called the ground or generic set of the class of all msets
containing objects from D.

An mset A can also be represented by the set of pairs as follows:

A= {(ma(z1),21),...,(malz;),z;),...}
or
A={ma(z1) z1,...,malx;) x;,...}

Relatedly, an mset is called ‘regular’ or ‘constant’ if all its elements occur with

the same multiplicity. Also an mset is called ‘simple’ if all its elements are the
same, for example, [z]3 is a simple mset containing x as its only object.

Definition 2. Dressed epsilon symbol, €,. The symbol €, was first
introduced by SINGH & SINGH [SS 07]. For any object x occurring as an
element of an mset A i.e., ma(z) > 0, we write © €, A, where €, (dressed
epsilon is a binary predicate intended to be ‘belongs to at least once’, as € is
‘belongs to only once’ in the case of sets). Thus, ma(xz) = 0 implies x € A,
and z E’i A implies ‘x belongs to A at least k times’, however 2 €* A means ‘z
belongs k times to A’. The mset for any ground set D is called empty, denoted
by @ or [ ], if mg(x) =0 for all x € D.

Further, in order to make our presentation concise, we shall follow some
terminologies introduced in [Hic 80, pp. 212-213]: A(z) denotes the number
of copies of z, including z itself, belonging to Dom(A), which is exactly the
Dedekind’s frequency number.

Definition 3. Equal msets. Two msets A and B are equal or the same,
written as A = B, iff for any object z € D, ma(x) = mp(x) or A(z) = B(x).
Equivalently, A = B if every element of A is in B and conversely. Clearly,
A =B = A* = B*, however the converse need not hold.

Definition 4. Multisubsets (or msubsets, for short). Let A and B be two
msets, A is an msubset or a submultiset of B, written as A C B or B D A, if
ma(z) < mpg(z) for all z € D. Also, if A C B and A # B, then A is called a
proper submset of B. An mset is called the parent in relation to its msubsets.

It is easy to see that C is antisymmetirc i.e., AC Band BC A= A=DB,
and it is a partial ordering on the class of msets defined on a given generic
domain. Clearly, @ is a submset of every mset.

Note that the terms ‘element’ and ‘object’ are being distinguished through-
out, and coincide if a generic set is in consideration. We wish to emphasize
that introduction of €, greatly enhance the language of msets. For example,
A C B stands for

V2Vk(z € A= 2 €k B).
Relatedly, a ‘whole’ msubset of a given mset contains all multiplicities of com-

mon elements; while a ‘full’ msubset contains all objects of the parent mset
and accordingly, every mset contains a unique full msubset, called its root set.
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Clearly, for any two msets A and B, if A C B and Dom(A) = Dom(B), then
A is a full msubset of B.

Definition 5. Similar msets. Two msets A and B are said to be ‘cognate’
or similar if Vz(x € A = = € B), where z is an object. Thus, similar msets
have equal root sets but need not be equal themselves.

Definition 6. Ordered pair of two mset terms. Ordered pair of two mset
terms w and v, denoted by [u,v], can be defined as follows:

[u,v] = {u,v}ifu # v, and [u, v] = {[u]2} ifu = v.

Here, [u] is written as {u}, and (u,v) is actually the ordered pair set, where
set (u) stands for v = @V VaVn(r €” u = n = 1), though z itself may be an
mset term(see [Bli 89, pp. 42-44], for details).

Definition 7. Power multiset. In Cantorian spirit, the power multiset of a
given mset A, denoted by $(A) to distinguish it from the symbol p(A) used for
power set of A, is the multiset of all submultisets of A. For example, let A =
[1‘7 y]2,1 = [CL‘, €, y]‘ Then, H(A) = [@, {:L‘}, {x}, [.Z‘]g, {y}7 {LL‘, y]’? {:L‘7 y]’? [‘T7 y]2,1]‘
In this sense, C(H(A)) = 264 for any mset A.

However, as has been voiced by many researchers in the area of msets and
their applications (see [Hic 80, p. 213] and [Bli 89, p. 45|, in particular), there
is no ‘good’ reason for admitting repeated elements into a power multiset.
Hence, a power multiset needs to be called a power set only and denoted by
©(A). Accordingly, for A = [x,y]2 1, and hence C(p(A)) < 21 which implies
that Cantor’s power set theorem: C(A) < C(p(A)) fails. However, for finite
msets, Cantor’s theorem holds for power mset (see [Bli 89, p. 45], for related
inherent difficulties if the mset in consideration is infinite).

Definition 8. Union (U ), intersection (N) and addition or sum or
merge (+) or W. Let A and B be two msets over a given domain set D.

1. AU B is the mset defined by
maup(z) = ma(z) Ump(z) = maximum(ma(z), mp(x)),

being the union of two numbers. That is, an object z occurring a times in A
and b times in B, occurs maximum(a,b) times in A U B, if such a maximum
exists; otherwise the minimum of (a, b) is taken which always exists.

It follows that for any given mset x there exists an mset y which contains
elements of elements of x, where the multiplicity of an element z in y is the
maximum multiplicity of z as an element of elements of x along with the above
stipulation on the existence of such a maximum. We denote this fact by y = Uz.

Clearly, Dom(Uz) = U{Dom(A), A € z} and that the multipliticity of z in y
is the maximum of its multiplicities as an element of elements of z, if it exists,
otherwise, the minimum is taken.

For example, if A =1[2344], B=1[1433] then AUB =[123344].
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Also, it follows that for a finite mset x, the maximum multiplicity of elements
of elements of x always exists. However, for certain infinite sets like z =
{y, [y]2, [U]3, - - .}, the maximum multiplicity of elements of elements of x does
not exist, and hence x = U{y}. It is obvious by definition of the union that
multiplicity of any y €  # @ is irrelevant to Uz, and hence Ux = Uz* (see
[Bli 89, pp. 48-49], for details).

2. AN B is the mset defined by
manp = ma N'mp = minimum(ma (z), mp(x),

being the intersection of two numbers.

That is, an object x occurring a times in A and b times in B, occurs
minimum(a, b) times in A N B, which always exists.

In general, for a given mset 2, Dom(Nz) = N{Dom(A) : A € z} and z Nz
implies that the multiplicity of z is the minimum of its multiplicities as element
of elements of x.

For example, if A =[33344], B=[1433], then AN B = [334]. Note that
for any mset x, we have Nz C Uz.

3. A+ B or AW B is the mset defined by mayp(x) = ma(zx) + mp(z), for
any x € D, direct sum of two numbers.

That is, an object x occurring a times in A and b times in B, occurs a + b
times in AW B.

For example if A = [1122444], B = [1233] then AWB = [11122233444].
Clearly, C(AW B) = C(AUB)+ C(AN B). Note that if « be an infinite mset,
then the multiplicity of some mset z € Wz may not be finite. In that case,
the multiplicity of z in x is used, For example, if z = {{z}, [2]2,[2]5...} then
Wz = Uz = {z} (see [Bli 89, p. 51], for details).

4. Some Properties holding for mset operations (see [Knu 81, p. 636];
[Bli 89, p. 53], in particular).
(i) Commutativity: AwB=BWA ,AUB=BUA, ANB=BNA.
(ii) Associativity:
AW (BYWC)=(AWwB)W(C,
AU(BUC)=(AUB)UC,
AN(BNC)=(AnB)NnC.
(iii) Idempotency:
AUA=A,ANA=AbutA”WA#A.

In fact, as it has been suggested recently (see [Wil 03, p. 9], in par-
ticular), in order to obtain a linear combination of msets, kA may be
interpreted to denote the sum of k number of A’s, where k is a natural
number.
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(iv) Identity laws:
AU =A AN@ =02, Aug=A.
(v) Distributivity:

AW (BUC)=(AWB)U(AW(),
AYBNC)=(AwB)N(AW0),
Au(BNC)=(AUB)N(AUC),
AN(BUC)=(ANB)U(ANCQC)

The proof of all these identities follows from the interpretation of U, N and W
of two natural numbers as maximum, minimum and (direct) sum respectively.
It is easy to see that W is stronger than both U and N in the sense that neither
nor distributes over W, whereas W distributes over both U and N. Also,

Nr CUxr C Wx.
It is promising to observe that multiset operations form a “realm” [Wil 03, p.
9].
Definition 9. Difference and complementation. Let A and B be two
msets over D, and B C A, then ma_p(x) = ma(x) — manp(z), for all x € D.

It is sometimes called the arithmetic difference of B from A. Note that even
if B C A, this definition holds good.

It can be seen quickly that some of the consequences of the aforesaid defini-
tion are disturbing [Hic 80, p. 214].

For example, if A = [a,blas and B = [a,b]2 3 then A — B = [abl22 C B,
contradicting the classical law: (A — B)N B = @.

In order to define the complement, we follow PETROVSKY [Pet 97, pp. 3-4]:

Let & = {A;, As, ...} be a family of multisets composed of the elements of
the generic set D. Then, the maximum multiset z is defined by

m,(x) = rjlg%(mA(x) ,

for all z € D and all A € & Now, the complement of an mset A, denoted by
A, is defined as follows:

A=7—-A={mx(z) x| mzg(x) =mz(x) —ma(z),Vz € D}.

It is understood that some new operations like arithmetic multiplication,
raising to the arithmetic power, direct product, raising to the direct power,
defined by PETROVSKY, can be gainfully exploited for further research.

Definition 10. Functions between msets. The underlying assumption in
defining a function between msets has been invariably not to allow mapping of
identical elements to non-identical elements and hence, it amounts to defining
the function between their root sets, which is just the classical definition of a
function.
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The function f : A — B is an injection iff

(i) f: A* — B* is an injection, and
(i) Vz(z € A* = ma(z) <mp(f(2))).

The function f: A — B is a surjection iff

(i) f: A* — B* is a surjection, and
(ii) Vz(z € A* = ma(z) > mp(f(2))).

The function f: A B is a bijection iff

(i) f: A* — B* is a bijection and
(i) Vz(z € A* = ma(z) = mp(f(2))).

For example, f : [z]s — [z]10 is an injection, f : [z]s — [y]s iS a surjection,
and f : [z,y]6.2 — [*,y]s.4 is neither an injection nor a surjection. For various
other details, see [Bli 89] and [Hic 80].

Note that some of the consequences of the aforesaid definitions are conflicting
with some fundamental theorems of the classical set theory.

1. Having defined functions between msets as above, it can be proved that
Cantor’s theorem does not hold, there is no injection from A — p(A), see
[Hic 80, p. 215].

2. Msets of equal cardinality need not have a bijection between them. For
example, [a,b]; 2 and [a, b, ¢] both contain three elements, but there can be no
bijection between them because the objects and their multiplicities are different
in the domain and the range of any such function. In the other words, there
is no bijection between their root sets viz: f : {a,b} — {a,b,c} can not be a
bijection.

3. Schroder-Bernstein theorem fails (see [Hic 80, p. 215] and [Bli 89, p.
47]). Let A = [x1,22,...]246,... and B = [yo,¥1,Y2,---]1,3,5,.. The function
f : Ax — Bsx defined as f(z,) = y, makes f : A — B an injection so that
A < B. The function g : Bx — Ax defined by ¢g(y,) = n+1 makes g: B — A
an injection so that B < A. But there cannot be a bijection h : A — B since all
multiplicities in A are even and that in B are odd. Note that < is the standard
dominance relation.

Definition 11. Multiset ordering. It seems really surprising that the semi-
nal work of KNUTH [Knu 73, pp. 213-214, 241-242], related to multiset order-
ings and their applications, has escaped the attention of most of us until quite
recently. According to KNUTH:

“Multiset u; dominates po if both pq and po contain the same
number of elements and the K" largest element of j; is greater
than or equal to the K'" largest element of uso for all K (p.
214).
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“If @ and b are multisets of m numbers each, we say that
a < b iff aAb = a (equivalently, aVb = b, the largest element
of a is less than or equal to the smallest of b). Thus aAb <
aVvb’ (p. 241).

“An n't level ‘cascade distribution’ is a multiset ...” (p.
299).

In fact, on a serious note, it is out and out a pioneering work on multiset
ordering and its applications. However, [DM 79] is the earliest reference known
to introducing multiset ordering and using it for proving termination of pro-
grams and term rewriting systems. In fact, it has served as a basis for host of
orderings introduced in this context. We endeavour to outline the Dershowitz-
Manna multiset ordering as follows:

Let S be a set equipped with a partial ordering < (irreflexive and transitive
relation or, equivalently, a transitive but not an equivalence relation). Let
M (S) be the set of all the finite msets M on S, and let < be the associated
(induced by <) mset ordering on M (S). It is easy to see that each M is an
mset with a finite carrier viz; {z € S : M(x) # 0}.

The Dershowtiz-Manna ordering. M < N if there exist two msets X and
Y in M(S) satisfying:

(i) {}#XCN,
(i) M=(N-X)+Y,
(i) (Vy € Y)(Fz € X)[y < z]

In other words, M < N if M is obtained from N by removing none or at least
one element (those in X) from N, and replacing each such element x by zero or
any finite number of elements (those in Y'), each of which is strictly less than
(in the ordering <) one of the elements x that have been removed. Informally,
we say that M is smaller than N in this case. Similarly, > on M(S) with
(S, >) can be defined.

For example, let S = ({0,1,2,...} = XN), then under the corresponding
multiset ordering > over N, the mset [3 3 4 0] is greater than each of the
following msets: [34],[32211140]and [33 33 22]. The empty set { } is
smaller than any multiset.

It is also easy to observe that:
[(Vy)(y e N)= (Fz)(x € M Az >y)]= M > N.

For various ramifications of the Dershowitz-Manna ordering, see [JL 82] and
[Mar 89], in particular.
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