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ABSTRACT 

The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different 

types of noise that commonly accompany these signals can hide valuable information for diagnosing 

disorders. The paper presents an experimental study to remove the noise in ECG signals using the 

Discrete Wavelet Transform (DWT) theory and a set of thresholds filters for efficient noise filtering. For 

the assessment process, we used ECG records from MIT-BIH Arrhythmia database (MITDB) and 

standardized noise signals (muscle activity and electrode-skin contact) database from the Noise Stress 

Test database. In addition to the ECG signals a white Gaussian noise present in electrical type signals 

was added. Furthermore, as a first step we considered baseline wander and power line interference 

reduction. The metrics used are the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), 

the Percent Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Results 

reveal that there is not a single combination of filtering thresholds (function and value) to minimize all 

types of noise and interference present in ECG signals. Reason why an ECG denoising algorithm is 

proposed which allows choosing the appropriate combination (function-value) threshold, where the SNR 

values were the maximum and the error values were the minimum. 

Keywords: ECG signal, denoising, DWT, filtering threshold. 

 

 

RESUMEN 

La señal del electrocardiograma (ECG) es una bio-señal usada para determinar la salud cardiaca. Sin 

embargo, diferentes tipos de ruidos que acompañan a estas señales pueden esconder valiosa información 

para el diagnóstico de desórdenes cardiacos. Este artículo presenta un estudio experimental para remover 

el ruido en señales ECG usando la teoría de la Transformada Discreta de Wavelet y un set de umbrales 

de filtro para un eficiente filtrado. Para valorar el proceso, usamos los registros de la base de datos de 

arritmias del MIT-BIH (MITDB) y las señales de ruido estandarizadas (actividad muscular y contacto 

con el electrodo) desde la base de datos Noise Stress Test. También, a las señales ECG se les sumo 

señales de ruido Gaussiano blanco, presentes en señales del tipo eléctrico. Además, como primer paso 

consideramos la minimización de la desviación de la línea base y la interferencia de la línea de potencia. 

Las métricas usadas son Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the Percent 

Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Los resultados revelan 

que no hay una simple combinación de umbrales de filtro (función y valor) para minimizar todos los 

tipos de ruido e interferencias presentes en señales ECG. Por esta razón, se propone un algoritmo de 

filtrado, éste permite escoger la apropiada combinación (función-valor) del umbral, donde se maximice 

el valor de SNR mientras que se minimicen los valores de error. 

Palabras clave: señales ECG, filtrado, DWT, umbral de filtrado. 
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1. INTRODUCTION 

 

The electrocardiogram monitors the electrical activity of the heart. The signal is a non-stationary bio- 

signal, and its amplitude is in the millivolts order (1-10 mV) with an activity in a low-frequency range 

(0.5 - 50) Hz. It is well known that ECG signals are commonly accompanied by different types of noise 

hindering the accuracy of ECG analysis (Alfaouri & Daqrouq, 2008). Several studies presented methods 

for minimizing the noise in ECG signals. Sörnmo & Laguna (2005) proposed some techniques for Power 

Line Interference (PLI) cancellation, such as linear and nonlinear filters, estimation-subtraction 

techniques and band-stop filters. Singh, Kumar, & Kumar (2014) denoised the ECG signal employing 

Discrete Wavelet (DWT), consisting of a set of threshold filters for PLI and BW interferences, and 

wideband stochastic noise. As metrics, they used the Mean Squared Error (MSE), SNR, and PRD, and 

better results were obtained applying the Daubechies and Symlet Mother Wavelet Transforms (MWT). 

Awal, Mostafa, Ahmad, & Rash (2014) used the DWT and the modified S-median thresholding 

technique, and as metrics the MITDB (Moody & Mark, 2001), MSE, RMSE, the improved SNR, and 

PRD. Results were good in the presence of Gaussian and color noise using a soft threshold, and results 

were moderate in the presence of wandering baseline line, artefact motion, and electrode movement. 

Overall, the ECG denoising process is a complex task due to the diversity of noises present in ECG 

signals, the low SNR values, the morphological changes in the ECG signals, different types of 

arrhythmias and the measurement in medical emergency conditions (Alfaouri & Daqrouq, 2008; 

Tompkins, 2000). 

This work presents an experimental study on ECG signal denoising using the MITDB from 

Physionet (Goldberger et al., 2000). The filtering threshold is composed by a function and a value 

(Donoho, 1995). A set of experiments was conducted using a DWT with the MWTs (Daubechies and 

Symlet wavelets), a set of standard filtering threshold values (see Table 1), and threshold functions (see 

Table2). To the ECG records we added the noises muscles activity (“ma”) and electrode-skin contact 

(“em”) from the NSTDB (Moody & Mark, 2001), and the additive white Gaussian noise (“wn”), using 

appropriate software. SNR, MSE, RMSE, PRD and the Euclidian norm, also known as the L2Norm, were 

used as metrics. In the Materials and Method Section we presented the database, the Wavelet theory, the 

threshold functions and values, while the results and their performance using threshold benchmarks are 

presented and discussed in the Results and Discussions Section. Finally, the main findings are 

summarized in the Conclusions Section. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Databases 

From MITDB, 10 ECG signals were analyzed in the experimental phase, namely 100, 102, 103, 105, 

106, 117, 118, 121, 123 and 202. Their main characteristics are respectively a duration of 30 minutes, a 

sampling frequency of 360 Hz, an 11 bits resolution and a 680,000 samples length. In all cases the 

signals were modified with three types of noise, “ma”, “em” and “wn”, at SNR = 10 dB. Figure 1 shows 

the original ECG103 signal and the noise signals “ma”, “em” and “wn”, while Figure 2 depicts the 

ECG103 record with the three types of noises and their visual effects of signal deformation over the 

ECG signal. 
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(a) (b) 

  
(c) (d) 

Figure 1. ECG original and noise signals: (a) ECG103, (b) “ma”, (c) “em”, and (d) “wn”. 

 

   
(a) (b) (c) 

Figure 2. ECG103 record segment with considered noises at a SNR of 10 dB: (a) “ma”, (b) “em”, and 

(c) “wn”. 

 

2.2. Discrete wavelet transform (DWT) 

DWT works with discrete signals defined as: 

 

𝐷𝑊𝑇(𝑠, 𝜏 ) = 2
−𝑠
2  ∑𝒙[𝑛] Ψ∗ (2−𝑠𝑛 −  𝜏) (1) 

 

where, x[n] is the discrete time signal, Ψ∗ is the complex conjugate of the analyzing wavelet function 

(Ψ[n]), s and 𝜏 are the dilation and location parameters respectively (Addison, 2005). 

DWT uses two filters, a low (LPF) and a high pass filter (HPF) to decompose the signal into 

different scales. The LPF outputs are called approximation coefficients (cA) and the HPF outputs are 

named detail coefficients (cD). Figure 3a depicts the ECG103 record decomposition in LPF and Figure 

3b depicts the HPF filters by using DWT Symlet at fifth level. The ECG signal sampling frequency from 

MITDB signals is 360 Hz, and Figure 3a exhibits the 0-180, 0-90, 0-45, 0-22.5 and 0-11.25 ranges in Hz 

for the 1st, 2nd, 3th, 4th and 5th component, corresponding to low frequencies decomposition. Figure 

3b exhibits the 180-360, 90-180, 45-90, 22.5-45 and 11.25-22.5 ranges in Hz for the 1st, 2nd, 3rd, 4th 

and 5th components, corresponding to high frequencies decomposition. 
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(a) (b) 

Figure 3. Decomposition of the ECG103 signal using DWT Symlet 5 at 5th level: (a) LPF, 

decomposition levels 1, 2, 3, 4 and 5, and (b) HPF, decomposition levels 1, 2, 3, 4 and 5. 

 

The inverse discrete wavelet transform (IDWT) is given by: 

 

𝐼𝐷𝑊𝑇(𝑠, 𝜏 ) = 𝐴∑∑𝐷𝑊𝑇(𝑠, 𝜏) Ψ∗ (2−𝑠𝑛 −  𝜏) (2) 

 

where A is a constant that do not depend of x[n], and IDWT is the reconstructed signal (Addison, 2005). 

 

2.3. Wavelet threshold theory 

Wavelet denoising involves threshold filtering in which coefficients below a specific threshold value 

are set to zero. Two aspects must be considered, the threshold value (𝜆) and the threshold function (Wj). 

Table 1 shows some threshold functions, where Wj are the coefficients at decomposition j level; the α 

value is a real number which can be adjusted freely and depend on the results reached on the denoising 

process. Table 2 shows some of the threshold values (λ), where N is the signal length and some 

parameters are in the characteristics column. For the s-median threshold value, the parameter b value is 

defined by a set of values that vary according to the noise to be minimized (-113, -120, -122 and -86 for 

“wn”, “ma”, “em” and composite noises respectively; Awal et al., 2014). 

 

Table 1. Wavelet threshold functions (Wj). 

Function Formula Condition 

Hard (Donoho, 1995) Wj = Wj 

Wj = 0 

if |Wj | ≥ λ 

if |Wj | < λ 

Soft (Donoho, 1995) Wj = sgn(Wj)(|Wj- λ | ) 

Wj = 0 

if |Wj | ≥ λ 

if |Wj | < λ 

Garrote (Jing-yi et al., 2016) Wj = Wj – (𝜆2/Wj) 

Wj = 0 

if |Wj | ≥ λ 

if |Wj | < λ 

Semisoft (Jing-yi et al., 2016) Wj = sgn(Wj)(|Wj- Tλ | ) 

Wj = 0 

if |Wj | ≥ λ 

if |Wj | < λ 

Neighboring (Singh et al., 

2014) 
Wj = Wj(1– (𝜆2/𝑊𝑗2)) 

Wj = 0 

if |Wj | ≥ λ 

if |Wj | < λ 

Jing (Jing-yi et al., 2016) Wj = sgn(Wj)(|Wj| - λ /(𝑒𝑥𝑝3[α(|Wj|- λ)] / λ) 

Wj = 0 

if |Wj | ≥ λ 

if |Wj | < λ 

 

2.4. ECG denoising scheme 

Figure 4 shows the general scheme of the analysis, in which it is shown that the ECG signals from 

MITDB pass through a preprocessing stage (PLI and BW minimization). The noises “ma”, “em” and 

“wn” were added to partial ECG records. Then, DWT transformed the ECG signal into components 
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being the result of passing the signal through respectively low and high pass filters in a decomposition 

stage. Thereafter, we selected the MWT and the depth level we want to arrive to minimize the noise 

frequencies. Ultimately, we tested the different threshold sets (function and values), and finally, the 

IDWT (re-composition stage) was applied to rebuild the total ECG signal. 

 

Table 2. Wavelet threshold values (λ j). 

Function Formula Features 

Sqtwolog (Donoho, 1995) λ j = σ j √2 log(𝑁𝑗) σ j = median(|Wj|)/06745 

Minimaxi (Donoho, 1995) λ j = σ j (0.39 + 0.19 log2 Nj) 

λ j = 0 if Nj < 32 

σ j = median(|Wj|)/06745 

Georgeiva (Georgeiva et al., 

2016) 
λ j = σ j √2 log(𝑁𝑗)/µj µ = max (|Wj|) 

Alfauri (Alfauri et al., 2016) 
λ j = C√

𝜎(𝑋(𝑛))𝑁𝑗

𝜎 𝑗
 

C = 5 

x(n) noise signal 

S-Median (Awal et al., 2014) 
λ j = 

𝜎 𝑗 √2 log(𝑁𝑗) 

𝑆𝐿𝐾+𝑏
 

where SLK = 2𝐿−(𝐾/𝐿) 

B  tuning factor 

L  deepest level 

K  level of λ 

 

 

Figure 4. ECG denoising scheme for experimental study of threshold values and functions. 

 

From the general scheme, we know the original signal x[n] and the noise signal q[n], variables 

expressed by the next expression. 

 

xn[n] = x[n] + q[n] (3) 

 

where xn[n] is the noise signal. Considering these variables, Table 3 shows the metric parameters used 

to measure the quality of the noise reduction. 

 

Table 3. Metric parameters. 

Metrics Formula 

SNR 
10 log10 

∑ 𝑥[𝑛]2𝑁−1
𝑛=1

∑ (𝒙[𝑛]−𝒙𝑑[𝑛])2𝑁−1
𝑛=1

 

MSE 1/N (∑ (𝒙[𝑛] − 𝒙𝑑[𝑛])2𝑁−1
𝑛=1 ) 

RMSE 

√1/N (∑ (𝒙[𝑛] − 𝒙𝑑[𝑛])2
𝑁−1

𝑛=1
) 
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PRD 
√
∑ (𝒙[𝑛]−𝒙𝑑[𝑛])2𝑁−1
𝑛=1

∑ 𝑥[𝑛]2𝑁−1
𝑛=1

 * 100 

NormL2 

√∑ 𝑥[𝑛]2
𝑁−1

𝑛=1
 

where xd[n] is the signal without noise. 

 

2.5. Denoising process 

Generally, the most common sources of noise are PLI, BW interference, motion artifacts, electrical and 

muscles activity (“ma”); instability of electrode-skin contact (“em”) and white noise (“wn”) (Tompkins, 

2000; Georgieva & Tcheshmedjiev 2013). In our analysis noise was treated separately for PLI and BW 

as extrinsic noises, and the “ma”, “em” and “wn” noises were treated as intrinsic noise. Table 4 shows 

the ECG proposed signal denoising algorithms. 

 

Table 4. ECG signal denoising process algorithm 

Step Description 

1 The ECG signals are obtained from MITDB 

2 PLI Identification (by using Fast Fourier Transform, FFT), BW interference identification 

by base line wandering. The “ma”, “em” and “wn” identified as an ECG signal with 

distortions around its characteristics (see Fig. 1). 

3 Apply the DWT and a selected MWT at corresponding level, to obtain the cA and cD 

coefficients. For PLI we minimized the cD coefficients at 2nd level. For BW we minimized 

the cA coefficient at 8th level. For the intrinsic noise, we minimized the cA coefficients at 

7th and 8th levels and the cD coefficients at all levels. 

4 Use a set of thresholds (function and value) to obtain the filtering coefficient. 

5 Use the IDWT to obtain the denoised signal xd[n]. 

6 Apply the metrics to find results. 

7 Back to step 4 to select a new filter; repeat this until to complete the threshold set. 

8 Back to step 3 to select a new MWT, repeat this until completing the MWT set. 

9 Tabulate the data. 

10 Choose the better results. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. PLI denoising 

Figure 5 shows the PLI minimization stage (PLI marked in red ellipse, middle signal), and its minimizing 

results (marked in red ellipse, lower signal). The best result obtained, was applying Symlet 8 at 2nd level 

(MWT) and the process suggested in Table 4. Figure 6 shows a benchmarking between the threshold 

(value/function) set, sqtwolog/hard (sqt/h); minimaxi/hard (min/h); Georgeiva/hard (Geo/h) and 

sqtwolog/semisoft (sqt/semi). The results show that the threshold pair (min/h) has the higher SNR value 

(Figure 6a). Figure 6b depicts the lowest PRD values for all ECG records (100,102,103, 105, 106 and 

202), revealing the existence of a minimum difference between sqt/h and min/h threshold combinations. 

Before applying the PLI minimization method it is necessary to verify the existence of the PLI 

interference, because some ECG records as 117, 118, 119, 122 and 123 did not present this interference. 
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Figure 5. PLI denoising for ECG103 record: (a) original signal (on top), PLI identification by using 

Fast Fourier Transform over the signal (signal at 60Hz, red ellipse) (in middle), and the PLI 

minimization (signal minimization, red ellipse) (on bottom). 

 

  
(a) (b) 

Figure 6. Benchmarking between thresholds (values/functions) for PLI minimization, (a) SNR, (b) 

PRD. 

 

3.2. BW minimization 

BW interference is a low frequency signal, less than 1 Hz (Sörnmo & Laguna, 2005). Figure 7 shows 

the baseline wandering (red line) over the ECG103 register. We experimented with Daubechies and 

Symlet, mother wavelets. The best results were obtained was using the Symlet 8 at 8th level and the 

process suggested in Table 4. 

 

 

Figure 7. ECG103 record with BW interference. 
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Figure 8a shows the BW minimization for the ECG103 record considering the use of a threshold 

set. The best result was obtained using the sqtwolog/soft combination (top figure); the red ellipse over 

the ECG signals shows the BW presence when we used the other threshold combinations. Figure 8b 

shows the benchmarking process for BW minimization of ECG 100, 102, 103, 105, 106, 202, 117, 118 

119, 122 and 123 records (x axis). The L2N was respectively determined for the original signal and for 

the denoised signal obtained after application of the threshold combination. When the threshold with 

sqtwolog value and soft function were used (minimum distance, red signal) yielded the best results. 

 

  
(a) (b) 

Figure 8. ECG103 BW minimization by using a threshold set, from top to bottom: sqtwolog/soft, 

minimaxi/soft, Georgeiva/soft and sqtwolog/semisoft (red ellipse shows BW interference). 

 

3.3. Intrinsic noise minimization 

Figure 9a shows the ECG103 denoising results when we added ma noise at SNR=10 dB. We can see the 

signal morphology comparison between the denoising signals, where the best result was for the 

sqtwolog/hard threshold. These results in the bar Figure 9b shows the benchmarking where the SNR 

(highest), RMSE and PRD (lower) values when we used the sqtwolog/hard threshold. 

 

  

(a) (b) 

Figure 9. ECG103 ma denoising using a set of thresholds: (a) signal comparison; and (b) metric 

benchmarking (normalized values). 

 

Figure 10a shows the ECG103 denoising results when the em noise was added at SNR=10 dB. This 

figure enables comparison of the signal morphology, and at naked eyes no substantial changes are 

observable. In the bar chart (Figure 10b), the benchmarking shows the SNR (heighted value) and the 

RMSE and PRD (lower values) for sqtwolog/hard threshold combination. For smedian/hard 
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combination, the morphology signal appears clearer. In generally terms we could said that all threshold 

combinations could help the process of removing this type of noise. 

  
(a) (b) 

Figure 10. ECG103 em denoising using a set of thresholds: (a) signal comparison; (b) metric 

benchmarking. 

 

Figure 11a shows the ECG103 denoising results for wn noise at SNR = 10 dB. We can see the signal 

morphology comparison, where the first three combination methods (sqtwolog/hard, minimaxi/hard and 

Georgeiva/hard) could favorably assist in trimming noises. In the bar chart (Figure 11b), the 

benchmarking shows the SNR (highest values) for minimaxi/hard combination, and the RMSE and PRD 

(lower values) for sqtwolog/hard combination, and according the morphology of the signal the 

Georgeiva/hard combination give a clear signal. We could conclude that the three before mentioned 

approaches could be used to remove or minimized the considered types of noise. 

 

  
(a) (b) 

Figure 11. ECG103 wn denoising: (a) signal comparison; (b) metric benchmarking. 

 

 

4. CONCLUSIONS 

 

The experimental study presented herein enables choosing the best combination of threshold values and 

threshold functions from DWT theory for the noise reduction of ECG signals using a proposed algorithm. 

We used ten ECG signals obtained from the MITDB and the noises from NSTDB, both database from 

Physionet. The method used treated the denoising process according to the noise characteristics. 

Extrinsic interferences, as PLI, were minimized using Symlet 8 at the 8th level with a threshold using 

sqtwolog / hard combination (value and function), where the detail coefficients of the second level were 

minimized. BW was minimized using Symlet 8 at 8th level with a threshold using sqtwolog / hard 

combination, where the approximation coefficients at the eighth level were minimized. For intrinsic 

noise minimization, the best results were obtained when we used the same mother wavelet, with a 
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threshold using sqtwolog / hard combination for “ma” and “em” noises, and minimaxi / hard 

combination for “wn” noise, where all detail coefficients and the two last approximation coefficients 

were minimized. As conclusion, we can say that for ECG signals, with intrinsic and extrinsic noises, the 

best way using the wavelet transform theory is to have a tool that permits to choose the adequate 

threshold combination (function & value). 
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