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This work focuses in analyze the mechanical behavior of a vertical axis wind turbine Blade, which 
is constituted by a natural composite material of “Palma de Lata” and binder, constituents for which its 
mechanical properties are obtained through mechanical tests and literature references. This study was made 
under the wind conditions of the colombian “Cañon del Chicamocha”, whose aerodynamic loads (pressures) 
were obtained in previus studies. The Design was made base on the layers layout of the composite, from 
stress distribution analysis the critical regions to reinforce the blade were found. At last, the behavior of the 
reinforced Blade was verified, obtaining in the “Palma de Lata” laminated a feasible alternative to be used 
in the wind turbines design.
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El presente trabajo se enfoca en analizar el comportamiento mecánico de un álabe de aerogenerador de 
eje vertical, el cual está constituido por material natural compuesto de Palma de Lata y aglomerante, 
constituyentes para los cuales se obtuvieron sus propiedades mecánicas por medio de ensayos mecánicos y 
referencias de literatura. Este estudio se realizó bajo las condiciones de viento del Cañón del Chicamocha 
colombiano, cuyas cargas aerodinámicas (presiones) fueron obtenidas en estudios previos. Se realizó el 
diseño del álabe basado en la disposición de capas del material compuesto, a partir del análisis de las 
distribuciones de esfuerzos se hallaron las regiones críticas para reforzar el álabe. Finalmente, se verificó el 
comportamiento del álabe reforzado, obteniendo en el laminado de Palma de Lata una alternativa factible 
para ser usada en el diseño de aerogeneradores.
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Introduction

Composite materials are one of the most important 
research topics of recent times, this has been due to 
the great utility of fiberglass and carbon composites 
in an appreciable amount of engineering applications, 
in addition the study of composite materials has an 
inherent complexity to their structure, manufacture 
and anisotropy presented [1]-[3], which makes it an 
area of interest for research.

Ecological and sustainable ideas have significantly 
impacted the advancement of science, wanting to 
narrow the gaps that still exist between nature and 
technology, thanks to the desire to reduce the impact 
of pollution and reduce the amount of solid waste 
[4],[5]. A controversial example is observed in wind 
turbines [6], one of their main construction materials 
being fiberglass composites that are potential 
contaminants of water, affecting marine fauna [7] 
and presenting problems such as reduced properties 
or obsolescence when recycled [8]. As shown in [9] 
one of the desired alternatives for the handling of 
synthetic compounds is to prevent the production of 
waste; therefore, if the use of synthetic raw material is 
reduced by replacing it with biodegradable materials 
[10], both solid waste and the contamination inherent 
in the manufacture of artificial compounds would be 
significantly reduced [11]. This project proposes as 
an alternative the use of tin palm (Bactris Guineensis) 
as a replacement for synthetic fibers for applications 
with low loads, so that organic materials are used for 
their manufacture.

The Tin Palm is found in regions of South America 
[12] and is used to obtain drinks with a high content 
of antioxidants [13] and wines, its stem has been used 
in reinforcements of old constructions but few studies 
[14], [15] and [16] have focused on the mechanical 
characterization of the Tin Palm, consequently, it 
became necessary to study the mechanical behavior 
of this palm and thus take the first steps to design 
structural elements that take advantage of this raw 
material. 

One of the best known applications for composite 
materials are wind turbines, these have gained 
popularity worldwide because of their ability to 

generate “clean” energy with wind currents. However, 
most of the global electrical energy still has a fossil 
origin which worsens the current situation of climate 
change due to the greenhouse effect generated by 
these energy sources. In addition, because turbines 
are built with these materials, they carry with them 
a problem that goes against their purpose with the 
environment. 

In Colombia by 2010 more than 25% of the energy 
produced in the country was of fossil origin [17], 
which is not bad compared to some countries that 
have a much higher percentage in this category, 
however, the goal according to scientists is to reduce 
carbon emissions into the air as soon as possible, 
which means that the target for the value shown is 
0%. 

This work investigates the behavior of the Palma de 
Lata as a structural material for blades of vertical 
axis wind turbines. With the purpose of contributing 
from the academy in the sustainable development of 
the country and in such a way to contribute with its 
economic, cultural and social development.

Materials and methods

Finite Element Analysis

The Finite Element Method (FEM) [18] is a 
numerical technique used to solve problems with a 
high degree of complexity, for which it is difficult to 
solve analytically. The method has, therefore, great 
application in engineering problems [19], [20].

In this work was studied the behavior of a H-Rotor 
type wind turbine blade using F.E.M, with the 
aerodynamic profile DU06W200 was studied by [1] 
for the wind conditions of the Chicamocha Canyon 
of Colombia, the design of the blade adds an internal 
stiffener based on the results obtained in [21].

Galerkin Method

There are several methods to solve a finite element 
problem, in this work is used the Galerkin method 
which is commonly used by finite element software 
such as ANSYS. This method is based on looking for 
the solution by means of test functions, to the system 
of linear equations. KU = F describing Hooke’s law, 
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where the term U is the vector of displacements, F 
the vector of equivalent forces and K the stiffness 
matrix of the material.

In (1) the variational formulation is shown, in which 
a solution must be found. uh ∈ Vh what if ∀ v ∈ Vh is 
fulfilled (1).

Properties of the study material

To define the matrix of elasticity of an anisotropic 
material it is necessary to know the 36 constants, 
which allow to define the law of three-dimensional 
Hooke, in the case of orthotropic materials due to 
the symmetry previously mentioned, the constants 
are reduced to 12 to define the elastic problem.

The tensorial form of Hooke’s law of elasticity in a 
solid can be written as:

Where the terms ,  y  represents the stress, deformation 
and stiffness tensors of the material respectively.

This law can be represented in terms of the elasticity 
tensor 
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have already occurred. 

The maximum three-dimensional stress criterion is the maximum value found between the 
following relationships [25], in the case of normal stresses: 
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Being  the normal effort in direction 1, 2 o 3, y  the 
resistance of the material in the same direction as the 
stress, whether it is tensile or compressive. If σi is 
less than zero, the compressive strength is used.

For shear forces:

Where  is the absolute value of the shear force in 
directions 12, 13 o 23 and  is shear resistance in the 
same direction.

Fault theory of Tsai-Hill

It is a criterion formulated referring to the energy of 
distortion, i.e. it takes into account interplanar shear 
stresses. The failure criterion is described by:

Where again the parameters in the denominators are 
the limits of the efforts in the indicated directions.

In this work it was decided not to show failure criteria 
such as Tsai-Wu because biaxial testing properties 
would be required that were not determined for Tin 
Palm.

Modeling

For this simulation the DU06W200 profile is used, 
the 3D model is created by importing the coordinates 
of the points and then extruding them, then the 
internal reinforcement of the blade is positioned, its 
location is at 20% of the length of the rope, which for 
this simulation is 25 cm, i.e. the stiffener is located 
5 centimeters from the nose of the blade, distance 
determined in previous works [21], [26], the length 
of the blade is 2 meters, taking as a reference that 
the aspect ratio (ratio between blade length and rope 
length) for this type of turbines should not be less 
than 7.5 [27].

The laminate is made in normal direction to the 
surface, for the internal reinforcement, sheets are 
placed on both sides of the base geometry that is 

inside, in addition, the joint between the stiffener 
and the walls of the blade is made in the form of “T” 
adhering through a layer of material.

Figure 1. Blade model with a single layer of material and internal reinforcement.

Materials

In order to simulate the blade and verify the failure 
criteria, it was necessary to mechanically characterize 
the Can Palm, using as a guide the ASTM D3039, 
E132-04, D1037 and D7078 standards to obtain the 
great majority of the engineering constants required 
in (5) when testing: Traction in direction 1 and 2, 
Poisson Coefficient and Cutter in direction 12.
Table I. Properties of the tin palm used for simulation. The (+) symbol on the right side 

of a property indicates that it is based on literature.

The remaining properties of the Palm are obtained 
by averaging or comparing proportions. In the first 
instance, the maximum compressive stress  was 
taken from [14] for the stem of dry and complete 
canned palm. The  was taken as the average of this 
property for hardwoods presented in [28]  of woods, 
which together with   was calculated  by means of 
(5). Huang’s work [23] compares the limits: y  for 
the maximum shear force in PSB, obtaining that  
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Figure 1. Blade model with a single layer of material and internal reinforcement. 
 
Materials 
In order to simulate the blade and verify the failure criteria, it was necessary to 
mechanically characterize the Can Palm, using as a guide the ASTM D3039, E132-04, 
D1037 and D7078 standards to obtain the great majority of the engineering constants 
required in (5) when testing: Traction in direction 1 and 2, Poisson Coefficient and Cutter 
in direction 12. 
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The remaining properties of the Palm are obtained by averaging or comparing proportions. 
In the first instance, the maximum compressive stress     was taken from [14] for the stem 
of dry and complete canned palm. The     was taken as the average of this property for 
hardwoods presented in [28]  of woods, which together with     was calculated     by 
means of (5). Huang's work [23] compares the limits:    y     for the maximum shear 
force in PSB, obtaining that     is 44.3% less than    , for La Palma was obtained 
experimentally     and conserving the proportion of the PSB is a     approximate. Finally, 
in order to determine F( 2c), the comparison process is repeated using as a guide the PSB. 

Polyvinyl alcohol (PVA) [29] was used as a binder, which was chosen as an adherent 
because it is of natural origin and soluble in water so that it can be removed with a 
relatively simple process, in addition to this, PVA is commonly used as for the union of 
wood pieces [30], the limit stress to traction and the modulus of elasticity of the work were 
taken from Chan's work [29], and the Poisson coefficient from Chen's work [31]. 
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is 44.3% less than , for La Palma was obtained 
experimentally  and conserving the proportion of the 
PSB is a  approximate. Finally, in order to determine 
F( 2c), the comparison process is repeated using as a 
guide the PSB.

Polyvinyl alcohol (PVA) [29] was used as a binder, 
which was chosen as an adherent because it is of 
natural origin and soluble in water so that it can be 
removed with a relatively simple process, in addition 
to this, PVA is commonly used as for the union of 
wood pieces [30], the limit stress to traction and the 
modulus of elasticity of the work were taken from 
Chan’s work [29], and the Poisson coefficient from 
Chen’s work [31].

Table II. Pva adhesive properties

 

Lamination is performed by placing a layer of PVA 
between two layers of Tin Palm as shown in Figure 
2, the thicknesses of the Palm sheets are taken to be 
1 mm due to the limited thickness of the Palm bark, 
and the thickness of the PVA layer is taken to be 0.3 
millimetres.
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Lamination is performed by placing a layer of PVA between two layers of Tin Palm as 
shown in Figure 2, the thicknesses of the Palm sheets are taken to be 1 mm due to the 
limited thickness of the Palm bark, and the thickness of the PVA layer is taken to be 0.3 
millimetres. 

 

Figure 2. Stacking Order of Material Layers and their Properties 

 

Contour and mesh conditions 
The blade is supported by 2 rectangular structural steel bars that are directly attached to the 
internal stiffener in order to approximate the contour conditions to which the blade would 
be subjected when in a turbine. However, this is a simplification as the supports must 
actually go from edge to wind and must have the shape of an aerodynamic profile that 
produces low lift when it produces little drag, so as not to hinder the operation of the 
turbine.  

The load conditions imposed in the model are taken from [32], in this case only the 
pressure distribution was taken, which in [32] was determined bidimensionally around the 
profile, which is considered constant along the blade for this study. 
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Figure 2. Stacking Order of Material Layers and their Properties

Contour and mesh conditions

The blade is supported by 2 rectangular structural 
steel bars that are directly attached to the internal 
stiffener in order to approximate the contour 
conditions to which the blade would be subjected 
when in a turbine. However, this is a simplification 
as the supports must actually go from edge to wind 
and must have the shape of an aerodynamic profile 
that produces low lift when it produces little drag, so 
as not to hinder the operation of the turbine. 

The load conditions imposed in the model are 
taken from [32], in this case only the pressure 
distribution was taken, which in [32] was determined 
bidimensionally around the profile, which is 
considered constant along the blade for this study.

Figura 3. Blade finite element mesh

 
 

 

Figura 3. Blade finite element mesh 

The parameterization of the number of elements and the maximum total displacement was 
carried out, in order to look for a sufficiently fine mesh so that the results are independent 
of the quantity of elements, finding that close to 8000 elements this behavior is observed, 
working this way the final model with 40360 elements type SHELL 181 with 6 degrees of 
freedom, recommended to analyze structures thin to moderate thickness. 

 

Results and discussion 

 

Blade with a composite layer 

A first simulation was performed to visualize the behavior of the Palma-PVA compound 
with a single layer as shown in Figure 2, this was arranged both in the profile and in the 
internal stiffener, the distribution of displacements, stresses and failure criteria were 
visualized to identify the critical regions in the model. 

 

Figure 4 shows the total displacements of the blade, a maximum value can be seen in the 
center of the area that is not subject, which is in line with expectations. It can also be seen 
that the zone of maximum displacement is located in the upper region of the blade where 
the sustentation occurs. The maximum value of total displacements is 0.075 [mm] which 
will not affect the structural integrity of the blade. 
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The parameterization of the number of elements and 
the maximum total displacement was carried out, in 
order to look for a sufficiently fine mesh so that the 
results are independent of the quantity of elements, 
finding that close to 8000 elements this behavior 
is observed, working this way the final model with 
40360 elements type SHELL 181 with 6 degrees of 
freedom, recommended to analyze structures thin to 
moderate thickness.

Results and discussion

Blade with a composite layer

A first simulation was performed to visualize the 
behavior of the Palma-PVA compound with a 
single layer as shown in Figure 2, this was arranged 
both in the profile and in the internal stiffener, the 
distribution of displacements, stresses and failure 
criteria were visualized to identify the critical regions 
in the model.

Figure 4 shows the total displacements of the blade, a 
maximum value can be seen in the center of the area 
that is not subject, which is in line with expectations. 
It can also be seen that the zone of maximum 
displacement is located in the upper region of the 
blade where the sustentation occurs. The maximum 
value of total displacements is 0.075 [mm] which 
will not affect the structural integrity of the blade.

Figure 4. Total displacements of the blade

When analyzing the distribution of efforts, it is 
noticed that the blade has 2 critical regions: the 
distant exit edge to the supports and the entry edge 
in the region adjacent to the supports, in both failing 
in the direction of the matrix the Palma de Lata 
(direction 2), but not in the same sheet.  

As can be seen in figure 5 (a), the leading edge has 
maximum stresses on the palm outer sheet with a 
value of 22.7. [MPa], that when compared to the 
limit value in Table 1 of 3.55 [MPa] by means of 
(7) and (8) an inverse fault index value of 6.39 is 
obtained indicating a fault in this zone.

Now, when observing figure 5 (b) it was found that 
it is the inner sheet that presents the greatest efforts, 
with a maximum of 60.54 [MPa], resulting in an 
inverse failure rate of 17.55, this region being more 
critical than the leading edge.

(a)

(b)
Figure 5. Stress distribution in direction 2 of: (a) Tin Palm Outer Sheet, (b) Tin Palm 

Inner Sheet

The trailing edge region is the one that obtains 
higher inverse failure index values, greater than 15 
for all the fault criteria analyzed, and the fault is 
present in the inner sheet of Palma de Lata, this may 
be due to the fact that in this region the upper and 
lower surfaces come together creating a vertex that 
generates a concentration of stresses.
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Figure 5. Stress distribution in direction 2 of: (a) Tin Palm Outer Sheet, (b) Tin Palm Inner Sheet 
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Blade reinforced with more layers

Because the previous blade was faulty, the blade 
was reinforced by adding 2 external layers of PVA-
Palma to stiffen the entire blade. Two more layers 
of PVA-Palma were added to the inlet and outlet 
edges in the internal region, as shown in Figure 6, 
to support and reduce the concentration of stresses 
without affecting the aerodynamic profile.

Figure 7 shows the total displacements for the 
reinforced blade, obtaining a maximum equal to 
0.1295 [mm] at the edge of the blade, again this 
value does not affect the integrity of the blade, 
even so it must be noted that this value is greater 
than that found for the blade with a single layer of 
laminate, this is because the reinforcements make 
the displacements are distributed evenly throughout 
the body of the blade by introducing a rotation of the 
point further away from the supports, unlike the local 
deformation shown in the figure, which is different 
from the local deformation shown in the figure.

 
 

The trailing edge region is the one that obtains higher inverse failure index values, greater 
than 15 for all the fault criteria analyzed, and the fault is present in the inner sheet of Palma 
de Lata, this may be due to the fact that in this region the upper and lower surfaces come 
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Finally, to corroborate that reinforcements also help to reduce stress and avoid material 
failure, the Tsai-Hill maximum stress failure criteria are shown in Figure 8 (a) and 8 (b), 
obtaining inverse failure index values of 0.2872 and 0.168 respectively, which indicate that 
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Finally, to corroborate that reinforcements also 
help to reduce stress and avoid material failure, the 
Tsai-Hill maximum stress failure criteria are shown 
in Figure 8 (a) and 8 (b), obtaining inverse failure 
index values of 0.2872 and 0.168 respectively, which 
indicate that there is no material failure, even so it 
should be noted that the entry edge zone located just 
in front of the supports, is still an area of interest.
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(b)
Figure 8. Failure Criteria: (a) Maximum stress and (b) Tsai-Hill 
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Figure 8. Failure Criteria: (a) Maximum stress and (b) Tsai-Hill 
 

A comparison with the literature shows that the work done gives similar results in terms of 
deformations and stresses. As shown in Wang [33], the deformation increases to a 
maximum in the blade as it moves away from the support, in Raciti [34] the trailing edge is 
observed to rise as it deforms. As far as the stresses are concerned, Liu [35] describes how 
the maximum stress occurs in the area where the blade supports are located, in the same 
way as the results found in this work. 

Conclusions   

The displacements in the composite blade of canned palm with PVA do not present critical 
values, with maximums of only 0.075 [mm] for the single-layer blade and 0.1295 [mm] for 
the reinforced blade. 

The reinforcement layers in the blade help to substantially reduce the stresses obtained, 
leading to a substantial reduction in failure, showing that the inverse failure rate for the 
maximum stress theory can be reduced more than 60 times, from 17.55 obtained for a 
single layer to 0.2872 with reinforcements. Because for the 3 tested failure theories the 
inverse failure rates are significantly lower than 1, it can be said that the reinforced blade 
does not fail with the loads that were imposed. 

Finally, it can be said that the tin palm and PVA composite material provides a viable 
alternative, which can be used as a replacement for synthetic compounds in both wind 
turbines and low load structures. 
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inverse failure rates are significantly lower than 1, it can be said that the reinforced blade 
does not fail with the loads that were imposed. 

Finally, it can be said that the tin palm and PVA composite material provides a viable 
alternative, which can be used as a replacement for synthetic compounds in both wind 
turbines and low load structures. 
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A comparison with the literature shows that the work 
done gives similar results in terms of deformations 
and stresses. As shown in Wang [33], the deformation 
increases to a maximum in the blade as it moves 
away from the support, in Raciti [34] the trailing 
edge is observed to rise as it deforms. As far as the 
stresses are concerned, Liu [35] describes how the 
maximum stress occurs in the area where the blade 
supports are located, in the same way as the results 
found in this work.

Conclusions  

The displacements in the composite blade of canned 
palm with PVA do not present critical values, with 
maximums of only 0.075 [mm] for the single-layer 
blade and 0.1295 [mm] for the reinforced blade.

The reinforcement layers in the blade help to 
substantially reduce the stresses obtained, leading to 
a substantial reduction in failure, showing that the 
inverse failure rate for the maximum stress theory can 
be reduced more than 60 times, from 17.55 obtained 
for a single layer to 0.2872 with reinforcements. 
Because for the 3 tested failure theories the inverse 
failure rates are significantly lower than 1, it can be 
said that the reinforced blade does not fail with the 
loads that were imposed.

Finally, it can be said that the tin palm and PVA 
composite material provides a viable alternative, 
which can be used as a replacement for synthetic 
compounds in both wind turbines and low load 
structures.

References

[1] L. García, J. Jaramillo and J. Chacón, “Análisis 
aerodinámico del perfil de los álabes de 
una turbina eólica de eje vertical mediante 
simulación en 2d usando cfd,” Universidad 
Industrial de Santander, 2014.

[2] T. S. Sene, L. V. da Silva, S. C. Amico, D. 
Becker, A. M. Ramirez, and L. A. F. Coelho, 
“Glass fiber hybrid composites molded by RTM 
using a dispersion of carbon nanotubes/clay in 
epoxy,” Mater. Res., vol. 16, no. 5, pp. 1128–
1133, Jul. 2013.

[3] G. Suresh, L. S. Jayakumari, G. Suresh, and 
L. S. Jayakumari, “Evaluating the mechanical 
properties of E-Glass fiber/carbon fiber 
reinforced interpenetrating polymer networks,” 
Polímeros, vol. 25, no. 1, pp. 49–57, Feb. 2015.

[4] Á. O. Díaz-Rey, J. E. González-Gil, O. A. 
González-Estrada, Á. Díaz Rey, J. González 
Gil, and O. A. González-Estrada, “Análisis de 
un generador de HHO de celda seca para su 
aplicación en motores de combustión interna,” 
Rev. UIS Ing., vol. 17, no. 1, pp. 143–154, 2018.

[5] Y. J. Rueda Ordóñez, K. K. Tannous, Y. Rueda-
Ordóñez, and K. K. Tannous, “Análisis cinético 
de la descomposición térmica de Biomasa 
aplicando un esquema de reacciones paralelas 
independientes,” Rev. UIS Ing., vol. 16, no. 2, 
pp. 119–128, 2017.

[6] K. Molina, D. Ortega, M. Martínez, W. Pinto 
Hernández, and O. A. González-Estrada, 
“Modelado de la interacción fluido estructura 
(FSI) para el diseño de una turbina eólica 
HAWT,” Rev. UIS Ing., vol. 17, no. 2, pp. 269–
282, 2018.

[7] E. Galimany, M. Ramón, and M. Delgado, “First 
evidence of fiberglass ingestion by a marine 
invertebrate (Mytilus galloprovincialis L.) in a 
N.W. Mediterranean estuary,” Mar. Pollut. Bull., 
vol. 58, no. 9, pp. 1334–1338, Sep. 2009.

[8] J. Beauson and P. Brøndsted, “Wind Turbine 
Blades: An End of Life Perspective,” in MARE-
WINT, Cham: Springer International Publishing, 
2016, pp. 421–432.

[9] WIND EUROPE, “Discussion paper on 
managin composite blade waste,” 2017. 
[Online]. Available: https://windeurope.
org/wp-content/uploads/files/policy/topics/
sustainability/Discussion-paper-on-blade-
waste-treatment-20170418.pdf. [Accessed: 10-
Jun-2018].

[10] L. Mishnaevsky, P. Freere, R. Sinha, P. Acharya, 
R. Shrestha, and P. Manandhar, “Small wind 
turbines with timber blades for developing 

Respuestas, 23 (2) July - December 2018, pp. 43-52, ISSN 0122-820X

Manuel del Jesús Martínez, Juan Dayal Castro-Bermúdez, Iván Darío Ortega-Anillo

ufps
Tachado
46



51

countries: Materials choice, development, 
installation and experiences,” Renew. Energy, 
vol. 36, no. 8, pp. 2128–2138, Aug. 2011.

[11] M. Ho et al., “Critical factors on manufacturing 
processes of natural fibre composites,” Compos. 
Part B, vol. 8, no. 8, pp. 3549–3562, 2012.

[12] M. J. Plotkin, L. Famolare, Conservation 
International., and Asociación Nacional para 
la Conservación de la Naturaleza., Sustainable 
harvest and marketing of rain forest products. 
Island Press, 1992.

[13] C. Osorio, J. G. Carriazo, and O. Almanza, 
“Antioxidant activity of corozo (Bactris 
guineensis) fruit by electron paramagnetic 
resonance (EPR) spectroscopy,” Eur. Food Res. 
Technol., vol. 233, no. 1, pp. 103–108, Jul. 2011.

[14] I. Gil, R. Prada, and A. Rey, “Análisis y 
caracterización de las propiedades físicas y 
mecánicas de la palma de lata,” Universidad 
Industrial de Santander, 2008.

[15] D. Chavez, F. García, and A. Pertuz, “Estudio 
del comportamiento dinámico de un material 
compuesto laminado elaborado a partir de 
la corteza de la palma de lata,” Universidad 
Industrial de Santander, 2016.

[16] D. Castro and I. Ortega, “Caracterización 
ortotrópica de las propiedades mecánicas de 
la palma de lata para su uso como reemplazo 
de fibras sintéticas en turbinas eólicas,” in 
COIES2017 - Conferencia Internacional de 
Energía Sostenible & Workshop Materiales 
para Nuevas Tecnologías de Energía, 2017.

[17] UNIDAD DE PLANEACIÓN MINERO 
ENERGÉTICA, “INFORME SECTORIAL 
SOBRE LA EVOLUCIÓN DE LA 
DISTRIBUCIÓN Y COMERCIALIZACIÓN 
DE ENERGÍA ELÉCTRICA EN COLOMBIA,” 
2011. [Online]. Available: http://www.upme.
gov.co/Docs/Asocodis_2010.pdf. [Accessed: 
10-Jun-2018].

[18] O. C. Zienkiewicz, El método de los elementos 
finitos. Reverté, 1982.

[19] A. Ayestarán, C. Graciano, and O. A. González-
Estrada, “Resistencia de vigas esbeltas de acero 
inoxidable bajo cargas concentradas mediante 
elementos finitos,” Rev. UIS Ing., vol. 16, no. 2, 
pp. 61–70, Sep. 2017.

[20] J. Martínez, E. Casanova, C. Graciano, and O. 
A. González-Estrada, “Sensitivity analysis of 
a member under compression via Monte Carlo 
method,” Rev. UIS Ing., vol. 17, no. 2, pp. 179–
184, 2018.

[21] D. Castro, I. Ortega, and R. Güiza, “Reducción 
de los esfuerzos y las deformaciones de un álabe 
de turbina eólica de eje vertical por medio de 
refuerzos estructurales internos,” in CCMN2017 
- XI Congreso Colombiano de Métodos 
Numéricos, 2017, p. 9.

[22] A. Zhou, D. Huang, H. Li, and Y. Su, “Hybrid 
approach to determine the mechanical 
parameters of fibers and matrixes of bamboo,” 
Constr. Build. Mater., vol. 35, pp. 191–196, Oct. 
2012.

[23] D. Huang, Y. Bian, A. Zhou, and B. Sheng, 
“Experimental study on stress–strain 
relationships and failure mechanisms of parallel 
strand bamboo made from phyllostachys,” 
Constr. Build. Mater., vol. 77, pp. 130–138, Feb. 
2015.

[24] D. Chavez, F. Garcia, and A. Pertuz, Estudio 
del comportamiento dinámico de un material 
compuesto laminado elaborado a partir de la 
corteza de la pala de lata. Bucaramanga, 2016.

[25] E. J. Barbero, Finite Element Analysis of 
Composite Materials Using ANSYS, 2nd ed. 
Boca Ratón, Florida, U.S.A.: CRC Press, 2013.

[26] D. Castro, I. Ortega, and M. Martinez, “Análisis 
estructural de un álabe de aerogenerador de 
eje vertical constituido por material natural 
compuesto,” in CIBIM 2017-XIII Congreso 
Iberoamericano de Ingeniería Mecánica, 2017, 
p. 7.

[27] M. Islam, A. Fartaj, and R. Carriveau, “Analysis 
of the Design Parameters related to a Fixed-pitch 

Respuestas, 23 (2) July - December 2018, pp. 43-52, ISSN 0122-820X

Design turbine blade Aeolian of vertical axis using laminated tin palm material using the finite element method

ufps
Tachado
47



52

Straight-Bladed Vertical Axis Wind Turbine,” 
Wind Eng., vol. 32, no. 5, pp. 491–507, 2008.

[28] D. W. Green, J. E. Winandy, and D. E. 
Kretschmann, Mechanical properties of wood, 
vol. 113. 1999.

[29] K. S. Chan, H. B. Senin, I. Naimah, M. 
Rusop, and T. Soga, “STRUCTURAL 
AND MECHANICAL PROPERTIES OF 
POLYVINYL ALCOHOL (PVA) THIN FILM,” 
in AIP Conference Proceedings, 2009, vol. 
1136, no. 1, pp. 366–369.

[30] S. Bueno, L. Rodríguez, and R. Cruz, “Propuesta 
de elemento constructivo base laminado de 
guadua,” Universidad Industrial de Santander, 
2005.

[31] F. Chen, D.-J. Kang, and J.-H. Park, “New 
measurement method of Poisson’s ratio of PVA 
hydrogels using an optical flow analysis for a 
digital imaging system,” Meas. Sci. Technol., 
vol. 24, no. 5, p. 055602, May 2013.

[32] J. E. Ibarra-Jaramillo, L. F. Rodríguez-García, 
and J. L. Velazco-Chacón, “MODELADO 
NUMÉRICO DEL PERFIL DE LOS ÁLABES 
DE UNA VAWT,” 2015, p. 9.

[33] L. Wang, A. Kolios, T. Nishino, P. L. Delafin, 
and T. Bird, “Structural optimisation of vertical-
axis wind turbine composite blades based on 
finite element analysis and genetic algorithm,” 
Compos. Struct., vol. 153, no. January 2015, pp. 
123–138, 2016.

[34] M. Raciti Castelli, A. Dal Monte, M. Quaresimin, 
and E. Benini, “Numerical evaluation of 
aerodynamic and inertial contributions to 
Darrieus wind turbine blade deformation,” 
Renew. Energy, vol. 51, pp. 101–112, 2013.

[35] W. Liu and Q. Xiao, “Investigation on Darrieus 
type straight blade vertical axis wind turbine 
with flexible blade,” Ocean Eng., vol. 110, pp. 
339–356, 2015.

Respuestas, 23 (2) July - December 2018, pp. 43-52, ISSN 0122-820X

Manuel del Jesús Martínez, Juan Dayal Castro-Bermúdez, Iván Darío Ortega-Anillo

ufps
Tachado
48




