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Abstract

Background: oblique rotation of factors is usually
performed in exploratory factor analysis in order to
achieve the best and simplest interpretation of the
solution based on the prescribed number of factors.
Currently available algorithms, however, do not take into
account the fluctuation of the correlations on which the
factor solution is based. If such correlations’ stability is
low, the rotated solution obtained in a specific sample
may substantially differ from the rotated solutions
obtained in different samples from the same population.
Objetive: the present paper proposes a modified version
of the Promin rotation designed to achieve simple and
stable rotated solutions through the samples.
Conclusions: the usefulness of Robust Promin is
illustrated by using an empirical example based on a real
dataset. The procedure proposed in this paper has been
implemented in the FACTOR factor analysis program
version 10.9.

Keywords: oblique rotation, robust factor analysis,
exploratory factor analysis, unrestricted factor analysis.

Resumen

Antecedentes: la rotación oblicua de los factores es
una práctica habitual en el análisis factorial exploratorio.
Habitualmente su finalidad es obtener la solución más
interpretable y a la vez más simple con base en el número
de factores prescrito. Los algoritmos actualmente
disponibles, sin embargo, no tienen en cuenta la
fluctuación de las correlaciones en las que se basa la
solución factorial. Si la estabilidad de dichas
correlaciones es baja, entonces la solución rotada
obtenida en una muestra en particular puede diferir
bastante de las que se obtendrían en diferentes muestras
procedentes de la misma población. Objetivos: en este
artículo se propone una versión modificada de la rotación
Promin, cuyo objetivo es obtener soluciones que sean a
la vez simples y estables a través de muestras.
Conclusiones: el funcionamiento de Promin robusto se
ilustra mediante un ejemplo empírico basado en datos
reales. El procedimiento propuesto en el artículo ha sido
implementado en la versión 10.9 del programa de análisis
factorial FACTOR.

Palabras clave: rotación oblicua, análisis factorial
robusto, análisis factorial exploratorio, análisis factorial
no restricto.
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Introduction
Once a factorial solution with a specified number

of factors has been obtained, it should be substantively
interpreted. Unfortunately, the direct or canonical
orthogonal loading matrix is obtained under
convenience constraints aimed at achieving
determinacy, and is in general substantively
uninterpretable. In exploratory factor analysis, the
factorial model in the population is unknown and any
rotated solution can be considered to be interpreted
(see, for example, Schönemann & Wang, 1972, or
Browne, 2001). To arrive at a substantively
interpretable solution, the orthogonal loading matrix
is typically rotated to maximize the simple structure
criterion (Thurstone, 1947). As Browne (2001)
pointed out, the most advisable rotation approach is
to allow factors to correlate (i.e., to rotate the factors
by using oblique rotation methods).

Because all rotation approaches aim to maximize
a loading simplicity index, the rotation procedure is
expected to arrive at a simple and interpretable solution
based on the data obtained in a specific sample.
However, if the focus is only set on maximizing factor
simplicity, the rotated solution can fit the sample data
very well but misses the ‘true’ factor solution in the
population. This is most likely when the correlations
among variables are unstable and the sampling
variability is larger. In turn, this basic instability is
expected to lead to rotated solutions that are also
unstable across samples.

Some direct factor procedures available at present
take into account the differential stability of the inter-
variable correlation matrix. These procedures are
expected to be more robust than standard procedures
to the problem of sampling variability, and are usually
based on a minimization criterion in which the residual
correlations are weighted by their estimated asymptotic
variance. These procedures are expected to
outperform standard procedures when (a) the sampling
fluctuation (asymptotic variances) varies considerably
among correlations, and (b) the asymptotic variances
(i.e., the weights) can be estimated accurately.

Condition (a) occurs in particular when the factor
analysis is based on a tetrachoric/polychoric
correlation matrix (see, e.g., Ferrando & Lorenzo-
Seva, 2013).

In the present paper we extend the basic principle
above to the rotation stage in order to obtain a rotated
loading matrix that is more robust to (differential)
sampling fluctuation. As we adapt our approach to the
rotation method known as Promin (Lorenzo-Seva,
1999), we shall name the new rotation method Robust
Promin.

Robust Promin rotation
One of the most popular oblique rotation hat first

computes a perfectly simple matrix, and then uses this
matrix as a target pattern in the rotation. Examples of
this approach are Promax (Hendrickson & White,
1964), Simplimax (Kiers, 1994) and Promin (Lorenzo-
Seva, 1999).

In order to build the target matrix, Promax first
computes an orthogonal rotation (usually Varimax,
Kaiser, 1958). Then each of the elements in the
orthogonally-rotated loading matrix is manipulated so
that they become either close to zero, or close to one.
One of these manipulations increases each value to
an arbitrary power (usually a power of four). Once
the target is available, an oblique congruence rotation
(Mosier, 1939) is computed. The major drawback of
Promax is that the final position of the rotated factors
depends on the power that is used when building the
target matrix.

Simplimax shares some characteristics with
Promax. For example, it is also a two-step rotation
method, and it is recommended to carry out a previous
Varimax rotation (clever start) in order to build a target
matrix. In addition to the clever start, a large number
of random orthogonal starts are computed. For each
one of these previous rotations, a set of partially
specified target matrices are computed: each target
matrix is based on a different k number of specified
values. For each target at hand, the k values that are
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closest to zero in the previously rotated loading matrix
are set to zero in the target matrix. The other elements
are set as non-specified values in the target. Each target
matrix is used to compute a partially specified oblique
Procrustes rotation (Browne, 1972) in which the
specified elements are the ones set to zero in the target
matrix. As a (large) number of targets are built, the
rotation produces a (large) number of rotated
solutions, and the optimal one has to be chosen. The
major drawback of Simplimax is that it can sometimes
be difficult to decide which solution has the optimal
k number of zeros in the partially specified target, and
non-expert researchers can find it complex to use. In
addition to this problem of choice, it is also difficult
to decide how many factors to retain when applying
exploratory factor analysis. It must be noted that
Simplimax can give good results even with complex
solutions in which many of the variables have a
complexity larger than one. The conclusion is that
Simplimax is a powerful and efficient rotation method
but not always easy to use.

Promin was proposed as an oblique rotation
method that combines strategies already used in other
rotation methods (like Promax and Simplimax) but
adapted so that no decisions need to be taken. In this
regard, Promin turns out to be a simple-to-use rotation
method. Its usefulness in applied research has already
been proved by the numerous researchers that use
Promin in their daily analyses. In the original proposal,
Promin focuses on maximizing the simplicity of the
rotated solution, even when some of the variables are
not simple but complex (i.e., some variables show a
salient loading value on more than one factor; see
Ferrando & Lorenzo-Seva, 2014). In our new
proposal, we aim to propose a rotation method that
focuses (1) on maximizing the simplicity of the rotated
solution, and (2) on the loading values of the variables
whose correlations with the remaining variables are
the most stable. So, the rotated loading matrix obtained
with Robust Promin is expected to be both simple and
stable across samples.

Like Promin, Robust Promin is a two-step rotation
method. The first step builds a partially specified target
matrix; the second step rotates the loading matrix using
the partially specified oblique Procrustes rotation.

First step: partially specified target matrix

Promin builds a partially specified target matrix
using a previous Weighted Varimax rotation as a
starting point (Cureton & Mulaik, 1975). In the
context of Varimax rotation, Kaiser (1958) proposed
to row-normalize the variables of the unrotated loading
matrix so that all the variables have the same influence,
and the final position of the rotated factors can be
decided. In the context of Weighted Varimax rotation,
Cureton and Mulaik proposed that the variables
expected to be the simplest should be detected before
the rotation is computed. On the basis of this previous
information, the variables are weighted so that the
simplest variables are precisely the ones that have the
largest influence on the decision about the final
position of the rotated factors.

In Robust Promin we propose using a weighted
scheme, the aim of which is different from the one
proposed by Cureton and Mulaik. Our aim is to give
more influence to the variables that have the most
stable set of correlations with the other variables.
Given a particular variable vj  in a set of m variables,
this variable has m – 1 correlations with the other
variables. The stability of the set of correlations related
to vj can be quantified as the average of the m – 1
diagonal values in the asymptotic variance/covariance
matrix in which the variable vj is involved. Let us refer
to this average as hj. Then, the weight wj for variable
vj is obtained as where E is a residual value (for
example, E = .0001).

wj = 1 -
hj

max(hj) + E (1)
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The variable with the largest average of asymptotic
variances (i.e., the variable with the least stable set
of correlations) will have a weight value (wj) close to
zero. On the other hand, a variable with a mean
asymptotic variance of zero (i.e., a variable with a
set of perfectly stable correlations) will have a weight
value (wj) of one.

In order to obtain the partially specified target B,
an orthogonal loading matrix that maximizes factor
simplicity must be computed. If W is a diagonal matrix
which weights wj in the diagonal positions, A is the
direct unrotated loading matrix, and

S = varimax (WA),

then the product P = WAS is an orthogonal rotated
loading matrix in which the simplicity is maximized
for the variables that show the most stable set of
correlations. Let V be a diagonal matrix that is
computed as

This means that the F matrix can be computed as
the product

F = VP

where F is now the corresponding row-normalized
matrix of P. Finally, the mean and the standard
deviation of the squared elements of each column in
the F matrix is computed. Let m be the vector with
these means, and s be the vector with these standard
deviations. So the partially specified target matrix B
is built as follows:

1. If  then the corresponding
element of B is given by bij = 0.

2. If  then bij is left unspecified.

The target B has two kinds of values: zero and
unspecified. The values equal to zero are the specified
values, while the unspecified values are free values
in the rotation. So, matrix B is a partially specified
target matrix.

(3)

(2)

V = diag(PP´)
1
2

(4)

Second step: partially specified oblique Procrustes
rotation

Once the simple partially specified target has been
set, Promin minimizes the function g,

g(T) = ||AT - B||2

where T is constrained to    diag(T-1 T-1´) = I.
Browne (1972) proposed the solution to this partially
specified Procrustes rotation criterion. The final
rotated loading matrix L is obtained as

L = AT,

and the inter-factor correlation matrix as

(5)

(6)

(7)

Illustrative example
The Statistical Anxiety Scale (SAS; Vigil-Colet,

Lorenzo-Seva and Condon, 2008) is a measure of
anxiety towards statistics that assesses three related
dimensions of anxiety: Examination anxiety (EX; 8
items), Asking for help anxiety (AH; 8 items) and
Interpretation anxiety (IN; 8 items). All 24 items are
positively worded and use a five-point Likert response
format, ranging from «no anxiety» (1) to
«considerable anxiety» (5). The SAS was
administered to a sample of 384 undergraduate
students.

As the distributions were generally skewed, the
item scores were treated as ordered-categorical
variables, and we chose to compute the factor analysis
on the basis of the polychoric inter-item correlations.
This model is an alternative parameterization of the
multidimensional IRT-graded response model (see
Ferrando & Lorenzo-Seva, 2013).

The inter-item correlation matrix had good sample
adequacy (KMO = .930; 95% confidence interval =
.928 and .935), and the Optimal Implementation of
Parallel Analysis (Timmerman & Lorenzo-Seva, 2011)
suggested that three factors should be extracted. Next,

ΦΦΦΦΦ = T-1 T-1´
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a factor solution was fitted using Robust Factor
Analysis based on the Diagonally Weighted Least
Squares (DWLS) criterion as implemented in the
FACTOR program (Ferrando & Lorenzo-Seva, 2017).
Goodness-of-fit levels were acceptable: RMSEA =
.090 (95% confidence interval = .0424 and .100), CFI
= .981 (95% confidence interval = .968 and .995) and
WRMR = 0.071 (95% confidence interval = .064 and
.075).

We computed the asymptotic variance/covariance
matrix and observed that the variance values ranged
between 0.15 (for the correlation of the pair of items
7 and 17) and 1.54 (for the correlation of the pair of
items 10 and 13). The first column in table 1 shows
the averages of the 23 diagonal values for each item
(hj). Interestingly, the items that were expected to
measure Interpretation anxiety (IN) were the ones
that generally produced the least stable correlations
(i.e., correlations with the largest variances), while the
items expected to measure Asking for help anxiety
(EX) were the ones that produced the most stable
correlations. So, it seems that the stability of the
correlations was to some extent affected by the latent
variables involved in the analysis. The second column
in table 1 shows the corresponding robust weights (wj).
As can be observed, the item that produced the least
stable set of correlations (item 13, which measures
Examination anxiety) was given a weight of .0001,
whereas the item that produced the most stable set
of correlations (item 21, which measures Asking for
help anxiety) was given a weight of .2759. None of
the items was given a weight close to 1 because they
all produced correlations with a considerable amount
of sampling error. The last three columns in table 1
show the rotated loading matrix after Robust Promin
rotation. As can be observed, it is quite simple. Only
a few items, like item 8 («Trying to understand a
mathematical demonstration») related to Interpretation
anxiety, had a complex structure. The value of the
loading simplicity index (Lorenzo-Seva, 2003) was
0.655. Finally, the inter-factor correlation ranged
between .35 and .52.

Robust Promin does not only focus on factor
simplicity. It converges to a rotated solution that is
assumed (a) to maximize factor simplicity, and (b) to
be stable. This assumption implies that the rotated
loading matrices obtained in different samples are more
stable than the ones obtained with other rotation
criteria. To determine whether this is so, we randomly
split the sample into two halves, and replicated the
same factor analysis in the subsamples using the same
specifications as in the whole sample. For purposes
of comparison, we rotated the loadings matrix obtained
in each subsample using both Robust Promin and
Promin. Table 2 shows the congruence and the Root
Mean Square Residual (RMSR) values between
subsamples. As can be observed, Robust Promin
produced the most similar rotated solutions. In terms
of congruence, Promin showed a congruence value
that was slightly under the threshold of .95, which
suggests that the rotated solutions may not have a
perfectly identical interpretation in each subsample
(Lorenzo-Seva & ten Berge, 2006). Finally, we
repeated this last analysis 1,000 times, and observed
that Robust Promin produced the most similar rotated
solutions 68.9% of the times.
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Table 1
Robust Promin rotation

Items h j wj Rotated loading matrix

EX IN AH

15. EX 1.1028 .0247 .95 -.02 -.11
13. EX 1.1306 .0001 .88 .04 -.13
20. EX 0.9618 .1494 .86 .05 -.12

9. EX 0.9131 .1924 .82 -.10 .11
4. EX 0.9582 .1526 .80 .05 -.03

11. EX 0.9482 .1614 .74 -.09 .15
1. EX 0.9232 .1835 .67 .09 .07

14. EX 0.9330 .1748 .64 .03 .17
22. IN 0.9148 .1909 -.03 .91 .03

2. IN 1.0724 .0516 -.01 .84 -.08
6. IN 0.9924 .1223 -.09 .79 .07

10. IN 1.1149 .0140 -.03 .76 -.08
18. IN 1.0930 .0333 .03 .57 .07
19. IN 0.9527 .1574 .18 .41 .19

8. IN 0.8975 .2062 .33 .30 .15
16. IN 1.0673 .0561 .23 .30 .12

12. AH 0.8499 .2483 .04 -.06 .96
23. AH 0.8754 .2258 .03 -.11 .96

3. AH 0.9199 .1864 .05 -.15 .95
17. AH 0.8366 .2601 .02 .03 .92

7. AH 0.8246 .2707 .06 .02 .86
24. AH 0.9049 .1997 -.11 .13 .81
21. AH 0.8187 .2759 -.06 .22 .73

5. AH 0.9909 .1236 -.06 .13 .70

Note: EX: Examination Anxiety; IN: Interpretation anxiety; AH: Asking for help anxiety.

Table 2
Congruence and the Root Mean Square Residuals (RMSR) between subsamples

Rotation Congruence RMSR

Promin .947 .150
Robust Promin .962 .119
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Discussion
The purpose of the present article was to present

a robust modification of a well-known oblique rotation
procedure, which is expected to lead to more stable
across-sample solutions, and to maintain the simplicity
and interpretability of the original Promin. As with
weighted robust schemas in the extraction stage of
factor analysis, Robust Promin is expected to be
particularly advantageous when the sampling errors
of the bivariate correlations are considerably different
and these errors can be estimated with reasonable
accuracy. Different sampling errors are more likely
to occur if the input correlations are tetrachoric and
polychoric, because in this case the correlation matrix
is estimated not jointly but pairwise. The empirical
example, which uses this type of correlation, shows
that the asymptotic variances (and, therefore, the
proposed weights) can vary considerably. It is also
noteworthy that, with a sample size of only 384
respondents, the sampling errors are accurate enough
to reveal the potential advantages of the method.

We have tested our diagonally-weighted factor
rotation with Promin in order to propose Robust
Promin. However, the same robust weighting scheme
can be applied to other rotation methods that accept
this sort of strategy. Some of the rotation methods
for which our weighted schema are applicable are
Weighted Varimax (Cureton & Mulaik, 1975) and
Weighted Oblimin (Lorenzo-Seva, 2000), which would
become Robust Varimax and Robust Oblimin when
used with our approach.

Our experience suggests that proposals such as the
present one can only be applied in practice when they
are implemented in user-friendly and readily-available
software. In this respect, the procedure proposed
herein has been implemented in the 10.9 version of
the FACTOR program (Ferrando & Lorenzo-Seva,
2017). In order to compute a diagonally weighted
factor rotation with FACTOR, the user has to select
(1) the robust factor analysis option, and (2) one of
these three rotation methods: Promin, Weighted
Varimax or Weighted Oblimin. The output of the

program informs the researcher that a robust rotation
has been computed.
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