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ON THE STANDARD PART OF SOME KINDS OF
TWO PARAMETER INTERNAL MARTINGALES

MyRiaM MuRoz pE OzAK(*)

Resumen. Se definen algunas filtraciones y martingalas no-estdndar y se es-
tablecen algunas relaciones entre ellas y sus partes estdndar con pardmetros. Se
presentan también algunos resultados acerca de las partes estandar de algunas
clases de martingalas internas con dos parametros.

Abstract. Some nonstandard filtrations and martingales are defined and some
relations between them and the standard part of filtrations and martingales on
a nonstandard, standard parameter set are established. Some results are also
given about standard parts of some kinds of two parameter internal martingales.
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0. Preliminaries

We will use the standard two dimensional interval [0,1]2 with the partial
order “<” given by

(s,t) < (s',t') & s < s’and t <t

(s,t) < (¢',t') means (s,t) < (s',t') and s < s’ or t < t’ and (s,t) << (¢,t')
means s < s’ and t < t'. We will write (s,t)A(s,t') if s < s’ and ¢t > ¢'. If
z=(s,t) < (¢',t') = 2/, we denote with (z, 2’| the set {z € [0,1]?: z <z < 2},
and call it a rectangle.

(*)Texto recibido 10/2/99, revisado 28/6/99. Myriam Mufioz de Ozak, Departamento
de Matematicas y Estadistica, Universidad Nacional-Sede Bogota. E-mail:
mymunoz@matematicas.unal.edu.co The author acknowledges partial support from CINDEC
(Universidad Nacional de Colombia) and COLCIENCIAS.
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40 MYRIAM MUNOZ

In what follows we will use the terminology and notations from nonstandard
analysis as presented for example in [1]. In particular, we assume saturation
is granted, as is the case when discussing stochastic processes in nonstandard
analysis. We review some definitions in [9], and we also restate some results
from the same source.

1. Definition. Given sub-o-algebras 2, 9B, € in a probability space (2, F, P),
we say that 2 and B are conditionally independent given €, if for A € A and
Be®B

P(AnN B|¢) = P(A|C)P(B|).

2. Definition. An adapted two parameter probability space is a structure
Q = (2,3, (Fs,0))(s,t)el0,1)25 P) such that (§(s,:))(s,t)ef0,1)2) is a family of sub-
o-algebras of . We call it a two parameter filtration if the o-algebras satisfy:
F1 : Given (s,t) < (s',t'), then F(s,¢) C (s ,1)-
F2 : §(0,0) is P-complete.
F3 : For eaCh (S,t), S(S,t) = n(s',t')>(s,t) 3(8’,t')'
Additionaly we say that the filtration satisfies F'4 if for (s,t)A(s,t’), §(s,t) and
3(s,¢/) are conditionally independent given § ).
Condition F4 is equivalent to each one of the following:
(a) If (s,t)A(s’,t') and X is a random variable, then

E(E(X[Z )8 (s,e1) = E(E(X[8(s,0) S (s.t)) = E(X[S(s,1))-
(b) If (s,t)A(s’,t') and X is an §(,,-)- measurable random variable, then

E(Xlg(s,t)) = E(Xlg(s,t’))'

Given an internal probability space (2,8, P), (€2, L(8), P) denotes the corre-
sponding Loeb space; that is, L(B) is the external complete o-algebra generated

by B and P is the unique o-additive extension of st(P) to L(*B).

1. Filtrations

3. Definition.
(i) Let Le *N—N, N = L!, 6t = 1/N. The hyperfinite line is
T = {0,6t,26t, .., (N — 1)5¢,1}.
(i) Let @ = {~1,1}7" = {w: T2 — {—1,1}| w is internal }. The internal
hyperfinite cardinality of Q is 20V+D)°,
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(ili) Given (s,t) € T?, we define on Q the equivalence relation:
w Ry W e w(s, ) =w(s,t)

for all (s',t') < (s,1), (s',t') € T?, where w,w’ € Q.
(iv) Using the last equivalence relation we define for (s,t) € T2,

B(st) = {A € QA is internal and closed under = ;)}.

This is an internal *o-algebra.

(v) An internal two parameter filtration is an internal family (B, 4)) with
(s,t) € T? of internal *sub-o-algebras of B that satisfy property F1
(that is, the corresponding property F1 in the nonstandard sense).
The filtration is P-complete if B (g g) is complete.

Let P be the internal counting probability measure defined by

il _ _ N

where |A| denotes the internal cardinality of A.

In this paper we will always work with the internal hyperfinite probability
space @ = (£, (B (s,1))(s,1)eT?, P) With Q as in (ii), (B (s,))(s,t)er? defined as in
(iv), and P, the internal counting probability measure.

4. Definition. The standard part of {8, )} is the filtration {F () : (s,t) €
[0,1]?} defined by

S(st) = ﬂ o(B(s,t)) \/‘Tl

°(s,8)>(s,t)

for (s,t) € T?, where 9 is the class of P-null sets of §.

The standard filtration {F (s ¢)}(s,t)c(0,1)> satisfies properties F1 to F4 (see
(9])-

In a two parameter stochastic analysis we use different kinds of filtrations.
We want to associate to each one of them the corresponding nonstandard in-
ternal filtrations as follows:

(a) B,y = B(s,1) and BE ;) = By ).

(b) Blsn = B(s,1) V By is the smallest *o-algebra containing the *o-
algebras B (IM) and %%z,i)’ B{, 1) Is atomic and his atoms are [w](, ;). =
[w)(s,1) O [w1,)-
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5. Lemma. %2‘5 £) does not satisfy F4.

Proof. Let s = (s;,8;), t = (;,t2), sAt and u = (s;,t5), we will see that if
[w']s» € B [w"]¢» € B} and [w]us € B}, then

P([w']s> N [w"]er [[wlur) # P([w']se |[wlye ) P([w" ]+ [[w]ye)-
It is enough to show that

|[w]se O [w"]ee O[]

# |[wge O fwlye| - [fw"]ee N [we

/|[wlus|.

In order to have both sides different from zero, it must be w x5, 4,) W' ~(5 1)

'LU"

|[w']se N [w"]es O [wlae]

= |}y N 9D 0180 O 1" g0 N 10" 1) 0 000,10 O Bl

— 9(N+1)2(1~))(1=5,) _ o(N+1)*(1-s—t;+55ty)
In the same way, the right side is equal to

[[w')(s,1) 0 [} 1,85) N [W](s,.) N (W],
A1) N " 1.6) N [Wle,,1) 0 W)y / [0, 1) O ) ,e,)]
_ (N4 (15, (1= +(1=2, )1 ~£) ~(1=8,)(1—t5)]

Py 2(N+1)2(1_§2 _£1+£1§2+_t.1£2—§1£2)’

and we see that the term on the right side is different from that on the left.

6. Proposition. Let {J(,.)} be the standard part of the filtration {B,)}.
Then
(a) 3(13,0 = 3(3,1) = n°§>s‘7(‘B(g,l)) v
8ty =80 = Nogse 0(By) VN
(b) Sty = (Mogss o(B(s,1)) VIV [(Nog>10(B1,0)) VN
=M (056,60 T (Bls))| VR

Proof.

(a) is obvious from the definition.
(b) Let A€ F(,0)=Flsn)V 8oy 1€

Ae n O’(%(ﬁyl))\/‘ﬁ Vv ﬂ O’(%(],L))Vm

°8>s ot>t
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Then A = (By N B2) N (C) N Cy) with

Bi€ ) o(Bn) Ci€ [ o(Bay)

°s>s ot

and B,, C, € M. This implies that B; € o(B(,,1)) for all °s > s and
Cy € 0(B(1,y)) for all °t > ¢, so that BiNC1 € 6(B,,1)) Vo(B(,y) for
all °(s,t) > (s,t). Therefore,

BiNC; € ﬂ o(B(s,1)) Vo (Bay)
°(s,t)>>(s,t)

= 1 o®BenVBay)
o(8,£)>>(5,t)

As 0(B(s,1)) VI(By) = 0(Be,1) V B(iy)), We also have that

N oa®Ly) = | o(Ben) Va(Bay)

o(8,1)>>(s,t) °s>s |°t>t i

=) | o(B1) VolBay)

o>t |os>s ]

7. Definition. For t € T, fixed, we define the semistandard filtration

Son=|[)oBev)| VR

°s>s

For s € T, fixed, we similarly define

z(g,t) = n O(E(Q,L)) v N.

op>t

We can consider these filtrations as one parameter filtrations when we fix one
of the parameters. By fixing the nonstandard parameter, it follows from results
in one parameter analysis that the filtrations satisfy the usual properties, that
is, they satisfy F1 to F3. But we can also consider both filtrations as two
parameter filtrations. Along this line we have the following result:
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8. Proposition. Both o-algebras introduced in Definition 8 are complete
and satisfy properties F1 to F4 for the parameter sets [0,1] x T and T x [0, 1},
respectively.
Proof. 1t is enough to show, for example, that {ﬁ(s t)} satisfy F1 to F4. For
the other o-algebra, the proof is similar. It is obvious that 3 ©.0) is complete
for each t € T, so we have F2. B
Since B (s 1) € By 1), for (s,1) < (s/,t'), we have that ﬁ(s & (Ga 8oy and
F1 holds. ) i
F‘ro.m the preceding argument we also have that E(s,g) C ﬂ(s,&,)>>(s’£) i(s',y)‘
Now, if A € n(s',y)>>(s,;)§(3/,y)’ Ac€ ﬁ(s',y) for all (s',t') >> (s,t), so that
A= BNC with B € oy, 0(B(y ) for all (s,t') >> (s,t) and C € M.
Then B € 0(B(y ) for all (°s',t') >> (s',t') whenever (s',t') >> (s,t) so
that B € 0(B () for all (°s,t') >> (s,t). Hence A € 8(s,4)> and F3 holds.
Now we prove F4. In fact, given 3 = (s1,85)A(t1,89) = t, T = (s1,1,), if
A € ., B €3;, Lais § adapted and I is §; adapted, there are s = (s, s5) =
5and t = (t;,8) ~ t such that E(I;5/B(s,.¢,)) is a lifting of E(Isnpl3,),
where A and B are internal and P(AAA) = 0 and P(BAB) = 0. Then
E (IanBl3;) = P(AN BI3,)
= st (P (AN B[B(,1,)))
= st (F(—A'%(Ql s.&z)) : F(B-'%(il vgz)))
= st (P(A|B(s, 1)) - st (P(B|By, 1,)))
= P(A|3;) - P(B|35),
and F4 follows.
Remark. From the definitions it follows that §(, ;) = ﬂ,,pt ﬁ(s "

2. Standard Part of Some Kinds of Internal Martingales

First we recall some definitions and results in [9].

9. Definition. A function z : [0,1)2 — R is a larc in [0,1)? if, for each
(S0, to) € [0,1]%, the quadrantal limits exist and satisfy:

lim z(s,t) = z(s,,%0) lim z(s,t) = z(s,,t,)
s—s3 s—s}

t—t} t—t

lim z(s,t) = z(s, ,t}) lim z(s,t) = z(s],t,).
s—s, s,

- t—t;
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We denote with D? the set of all larcs in [0,1]2. In this set we can define

a metric k, such that the space (D?,k,) is a complete and separable metric
space:

ko(z,y) = inf {f €R" : (3p € A0, 1])( s lz(r) — y(o(r))| <€) A d(p) < 6}

z,y € D%, p € A[0,1)2, where A[0,1]2 is the set of deformations of [0,1]2. We
denote with J2 the topology induced by this metric.

For each point (s,t) € *[0, 1]? let us consider the following sets
Qloy = (w,v) €*[0,1]?:u>sand v > t}

Q%s 6 = = {(y,v) € *[0,1]> : u < sand v > t}
te) = 1w, 2) €*[0,1 :u < sand v < t}
Qo = {(w,2) €*[0,1]* :u > sand v < ¢t}

10. Definition. Let F' € *D? be such that F(s,t) € ns(*R) for (s,t) € *[0,1]2.
We say that
(a) F is of class SD?, if for each (s,t) € [0,1]? there are points (s;,t;) ~
(82,2) ~ (83:23) ~ (84,8) = (5,2) such that;

) If (91721) & (Sat)v(ﬂl’p-l) € Q(lgl,h)’ then F(y Ql) = F( 31 )
i) If (up,v5) & (5,1), (Ugy23) € Q) then F(ug,v5) = F(s5,15)
iit) 1 (ug, v3) = (s,1), (u3,v3) € Q(s t,) then Fug,v3) = F(s3,t3)
IV) If (U_47v_4) (S t) (U4,_4) € Q(s i ) then F( »24) ~ F(§4,§)

(b) F is of class SD?J, or a larc lift, if (a) holds with (s;,%;) = (8g,15) =
(s5:15) = (s4,L4), and F(s,1) ~ F(0,0) ¥(s,1) = (0,0) in *[0, 12
A function F : T? — *R is of class SD? ( SD?J) in T? if it is the restriction
to T2 of an SD? ( SD?J) function F' on *[0,1]?

11. Definition. The standard part of an SD? function F on T2 is the function
st(F) defined by

t(F)(s,t)= lim °F(s,t), s,t) e T2,
stF)(s,t) = lim Rt (80

Remark. The class of functions in * D? which are nearstandard in the J; topol-
ogy is SD?J, and st|sp2; is the standard part map for the J; topology.

12. Proposition. Suppose that F : T? — *R is the restriction of a function
in *D? to T? and that F(s,t) € ns(*R) for all (s,t) € T2. Then F is SD? if
and only if st(F) exists and belongs to D?.
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13. Theorem. If X : T? x Q@ — *R is an internal map of class SD?, then
there is a positive infinitesimal A’t € T such that if T" = {kA't : k € *N, kA’ <
1}U {1} then X|(1y2xq Is of class SD?J.

14. Definition. An internal stochastic process X is of class SD? (SD?J) if,
for almost all w, the mapping X((-,-),w) : T> — *R is of class SD? (SDJ).

If X is SD?, a process st(X) with sample paths in D? is defined by fixing
7, € R and requiring that

HX)(, ), ,t), if X((-,-),w) € SD?
)= { 20 X0
o, otherwise
15. Definition. Let {B ;) : (s,t) € T?} be an internal filtration satisfying
F1 to F4. Then
(i) An internal stochastic process X : T? x 2 — *R is a B, ,)- martingale
if {(X(s,t),B(s,) : (s,t) € T?} is an internal martingale, i.e., if X (s,1)
is B ;) adapted and

E(X(gz,h)l%(il,h)) = X(s;;t;) P-as.

whenever (s;,t;) < (s, ;)

(ii) X is an S- martingale with respect to {®B s} if X is a B, 4)- martin-
gale and | X (s,t)|P is S- integrable for all (s,t) € T2, p > 0.

(i) X is a *- martingale after At for At =0, At € T, if

E(X(éz’tz)]%(ﬁl,;,)) = X(s1,t;) P-as.

whenever (s;,1;) < (s5,t2), (815t1), (82, 2) € (T")?, where T" = {kAt:
ke *N kAt <1} U {1}

(iv) X is a At- martingale for some At € T, At =~ 0, if X is SD?J, S-
integrable for all (s,t) € (T')? and a *- martingale after At.

Remark. From theorem 14 it can inferred that if X is an S-martingale and X
is SD?, there exists an infinitesimal At € T such that X is a At- martingale.

16. Definition. Let {F(,:) : (s,t) € [0,1]?} be the standard part of {8, :
(s,t) € T*}. A stochastic process z : {0,1]* x @ — R is an {F(,)}- lar-
cmartingale if it is §(s)- adapted, p-uniformly integrable for some p > 1,
z((+,-),w) € D? as., and for (s,t) < (u,v),

E (z(u,v)|§(s,1)) = z(s,t) P-as
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17. Theorem. If X is a At- martingale, then st(X) = z is a larcmartingale.

18. Definition. X(s,t) is an internal 1-martingale if X(s,0) is a one pa-
rameter internal martingale with respect to %%@0), X(s,t) is %(lé‘i)_ adapted
and E(X(R)PB%M)) = 0, for each rectangle R = ((s,t),(s/,t')], where X(R)
denotes the increment X (s',t') — X (s',t) — X(s,t) + X(s,1).

We have a corresponding definition for an internal 2-martingale.
19. Proposition. X(s,t) is an internal 1-martingale if and only if for each
fixed t, X(s,t) is a one parameter B, ;) internal martingale. (A similar state-
ment holds for an internal 2-martingale).
Proof. Let X(s,t) be an internal 1-martingale. Since B, ;) satisfies F'4, given
the rectangle A = ((5,0), (s + h,t)] we have B(,4) & B(s,1) = B, and
—E(X(A)]‘B(éyo)) =0, thus
E(X(A)|B(s) =
=E(E([X(s+ht) - X(s+h,0) = X(s,8) + X(5,0)]|B(s,1)) [B(sp) =0
= E([X(s+h, 1) = X(5,)]B(s,p) — E (BE((X(s+ h,0) — X(s,0)]|B(5,1))|B(s0)
=E([X(s+ht)) = X(5,)]IB(s) -
The last equality holds because X (s, 0) is a one parameter internal martingale
with respect to B, o = B(s,1)-

On the other hand, if for each fixed ¢, X(s,t) is a one parameter B, ;)
internal martingale, we have first of all that X (s, t) is B, adapted. Since F'4
holds, given A = ((s,t), (s',t')] we then have
E (X(4)|Bl,,) = E (X(s,t) - X(s',£) — X(s,) + X(5,)][Be.)
=E([X(s,t) = X(s,t)IB(s) — E ([X(s,8) = X(5,1)]|Bs5,1))
= E([X(s',t') = X(s,t)|IB(s,0)) — E ((X(g',1) = X(5,0)]|B(s,0)) = 0.

For fixed ¢ it follows from Proposition 20 that we can see an internal 1-mar-
tingale as a one parameter internal martingale for s, thus X(s,t) is SD with
respect to s, and therefore there exists At € T such that X |7 y7 is an SDJ
martingale on s with 77 = {kAt : kAt € T} U {1}. Hence, we can define the
following stochastic process:

st(X)(s,8) = lim °X (s, ).
°sls
We also immediately have that if X(s,t) is an S-integrable 1- martingale,
st(X)(s,t) is a one parameter cad-lag martingale with respect to {F s, t)} (cad-
lag means that is continuous from the right and has limits from the léft). See
[6]. The same holds for 2-martingales.
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20. Theorem. If{X(s,t)} isan internal B, ;)-martingale and E(|X(1,1)|) <
400, then X is SD?.

The proof is in [9], Theorem 2.2.27.

21. Theorem. If X(s,t) is an internal martingale, for each fixed s, st(X)(s,t)
is an §  martingale, and limoy ¢ st(X)(s,t) exists. Also, for each fixed t,

st(X)(s,t) is an 8, ) martingale, limog st(X)(s,t) exists and

st(X)(s,t) = llrn[llm °X(s,t)] = lim{lim °X (s, t)].

°sls°t|t

Proof. First we prove that, for each fixed s, st(X)(s,t) isan § (s,) Martingale.
We must show that -

E ([§£(X)(s,§+ h) — st(X)(s,1)] Iﬁ(s,g)) =

Given s there exist 53, s3, s1 =~ s2 =~ s such that for u = s and u > s,
X(u,t+h)~ X(s1,t+h), and for v =~ s and u > sy, X(u, t)xX(_g t). Let us
take s’ = max{s;, sz}, so that for u ~ sand u > ¢’, X(u,t +h) = X(s',t + h),
X(u,t) ~ X(s,8), st(X)(s,t +h) = °X (', + h) and st(X)(s,) = °X(s.1).
Thus,

E ([s_t(X)(s,§ + h) — st(X)(s, 1)) |5(s,z))
=E (OX (8.t +h)-°X (é"i)lﬁ(s,g)
=F (E (OX(§_,, t+ h) - OX(§11£)|U(%(£"‘E))) lg(s,;))

—E (0 (E(X(§',§+ﬁ) — X((§/,E)|%(§”.£))) |ﬁ(s,£))

for all s” with °s” > s. Now, X(s,t) is By, adapted; then it is B (s 1)
adapted, and we also have from F4 that
E(X(§I’ t+ Q)F‘B(_S_”,Q)) = E(X(§I’£ i h)l%(g’.g))7
and finally that
E (X(Sla i g h) - X(_S_/, §)|%(§",§))
=E(X(¢,t+b)B(rp) — B (X(,8)|Bz)

E(X(s,t+b)|B(srp) — X(,1)
(X(s',t+h) — X(s',1)|B(ss)) = O.
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Hence
E(OX(él’i + h) - OX(_S_,v i)l_&(s’é)) = 07

and then
B (st(X)(s.£ + 1) — st(X)(s, D] 1§, ) = O

Now let € > 0. There exists 6’ > 0 such that if (s,z) € T2 and (s,t) <<
°(s,t) << (s+d&',t +¢') then

[°X (s,t) — st(X)(s,t)] < €/2.
For each t also exists 6" > 0 such that for s € T and s < °s < s + 46",
1°X (s,t) — st(X)(s,8)] < €/2.

Let § = min{é’,8”}. If t < °t < t + §, we choose for this ¢ an s, such that
s <% < s+ 4, and so

|st(X)(s,8) — st(X)(s, )| < |st(X)(s,2) = ° X (s, )| +[|° X (s, 1) — st(X)(s,2)| < €.

Then we have that
st(X)(s,t) = lim [lim °X (s, t)]

°tlt |°sls
and the same holds for the other parameter.

22. Theorem. If X(s,t) is an internal S-integrable SD? i-martingale (SD*J
i-local martingale), then st(X)(s,t) is a i-larcmartingale (i-local larcmartin-
gale), i =1,2.

Proof. The proof for the local martingales follows from the proof for martin-
gales and the properties of the one parameter local martingales. Suppose that
X (s,t) is an internal S-integrable SD? 1-martingale. If X (s,t) is S-integrable,
we have that st(X)(s,t) is uniformly integrable, and X(s,t) being SD?, we
have:

(1) There exists a At € T such that X (s,t) is SD2J for (s,t) € (T')?, then
st(X)(s,t) is a larc.

(2) For (s,t) € [0,1]2, limo(g )| (s,0) °X (8, ) exists.

(3) For each t € T, limog),°X (s,t) exists.

(4) Similarly as in the proof of Theorem 20 we can show that

G000 = o X0 = i e0)
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and furthermore we have

lim [lim °X (s, §)} = lim |lim °F (X(I,Q)I‘B(gyg)]

°tlt [°sls °tlt |°sls

= lim [lim "E(X(l,.t)l‘B@,l))]

otlt [°sls

= lim |lim F (OX(1,§)|U(%(§,1)))]

otlt |°sls

=lim B (*X(1,)B ) -

That the last equality holds, follows from the reverse martingale Theo-
rem. Now let {t,} be a decreasing sequence in [0, 1] that converges to
t. Then

E (st(X)(L,1)|3s,1y) = E (liﬁnf?fox(l’t)m(s’l))
< . . o
< lutr:ll?fE( X(1,031))

<limsup E (°X(1,1)|3(s,1))
tnlt

<E (limsup °X(1 ,§)|3(s,1)>

t'!llt

= E (st(X)(1,8)[8(s,1)) -

Finally we have that st(X)(s,t) = E(st(X)(1,t)3(s,1)) = E(st(X)(1,8)[F(5,0))s
and therefore st(X) is a 1-martingale.

23. Definition. X(s,t) is an internal weak martingale if X(s,t) is B,
adapted and for a rectangle R = ((s, 1), (s/,t')] with (s,t) < (s/,t') we have

E(X(R)|Bs) =0.

Remark. It holds (Wong- Zakai [11]) that X (s, ) is an internal weak martingale
if and only if X(s,t) = M'(s,t) + M?(s,t), where M!(s,t) is an internal 1-
martingale and M?2(s,t) is an internal 2-martingale.

24. Theorem. If X(s,t) is an internal S- integrable and SD? weak martingale
then st(X)(s,t) is a weak larc martingale.

Proof. 1t follows at once from the remark above, the previous theorem and the
fact that every internal ¢-martingale is an internal weak martingale.



ON THE STANDARD PART OF SOME KINDS... 51

25. Definition. X(s,t) is an internal strong martingale if it is B, ;) adapted
X(0,¢) = 0 = X(s,0), and for each rectangle R = ((s,t), (¢',¢')] with (s,t) <

(s',t), o
E(X(R)|B}, ) = 0.

26. Theorem. If X(s,t) is an internal strong martingale that is S-integrable

then st(X)(s,t) is a strong larc martingale.

Proof. An internal S-integrable strong martingale is an internal S-integrable
martingale (because it is an internal 1- and 2-martingale). Then X (s, ) is SD?
by Theorem 2.2.27, and therefore is SD?J restricted to (7”)? for some At ~ 0
in T”. So, we have that st(X)(s,t) exists a.s. for each (s,t) and is a larc.
Denote with z(s,t) the process st(X)(s,t).

Given R = ((s,t),(s',t')], from property SD?J we can find (u,v;) and
(ug,v5) in (TV)2, (u3,2y) = (s,t) and (uy,v,) = (s',t'), such that if R =
((8,1), (s, 8] with (s,8) > (u;,21), (8,8) = (s,1), (s’,t') > (up,2p), and
(s',t') ~ (s,t), then °X(R) = z(R).

Let U € §{, ). Given a sequence {(s,,t,)} in (7")* such that (u;,v,) <<
(8p+t5), and 0 < °(8p,tn) — (s5,t) < (1/n,1/n), for each n € N, , there exists,
as U € a(%(s )), an internal set U, € %( such that °Iy; = Iy as.
(Ta(s,t) =1 if (s t) € A and Is(s,t) = 0 if (s, t) ¢ A). By saturation there
also exists v € *N— N and a U, € B, , ) such that (¥1,21) < (s,1,),
(s,,t,) = (s,t) and °I7 = Iy a.s, and then we have P(UAU,) = 0. Take

R = ((s,:1,), (s, 2,)]- Then °X(R) = z(R) and

| Bt pap = [ atmapr = [ x@ap

= ([ x®P) = ([ Ex®IBe0) dP) =0

so that E(x(R)|3z‘s 1) = 0 a.s.. Then, st(X)(s,t) is a strong larc martingale.
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