INFLUÊNCIA DO ÁCIDO INDOLBUTÍRICO NO ENRAIZAMENTO DE ESTACAS **DE QUARESMEIRA**

INDOLEBUTYRIC ACID INFLUENCE ON THE ROOTING OF Tibouchina fothergillae (D. C.) Cogn.

Rodrigo NICKNICH1 Arthur Hermann WEISER² Katia Christina ZUFFELLATO-RIBAS³

RESUMO

Tibouchina fothergillae (D. C.) Cogn., popularmente conhecida por quaresmeira, é uma espécie nativa do Brasil, de grande valor paisagístico, que pode alcançar até 1,5 metros de altura. Visando a elaboração de um protocolo de enraizamento da espécie, o objetivo deste trabalho foi verificar a influência de diferentes concentrações de ácido indolbutírico (AIB) na indução radicial em estacas caulinares de quaresmeira. Em 15/04/2011 foram coletadas estacas semilenhosas de plantas matrizes localizadas nos jardins do Campus III da Universidade Federal do Paraná, as quais foram confeccionadas com 8 cm de comprimento mantendo-se duas folhas cortadas ao meio na porção apical. As estacas foram submetidas aos seguintes tratamentos veiculados na forma de talco: 0 mg Kg⁻¹, 1000 mg Kg⁻¹ e 2000 mg Kg⁻¹ de AIB, sendo plantadas em tubetes com vermiculita de granulometria média e casca de arroz carbonizada (1:1) como substrato e mantidas em casa de vegetação com nebulização intermitente. Foi utilizado um delineamento inteiramente casualizado, com 5 repetições e 20 estacas por unidade experimental. Após 60 dias, foram avaliadas as seguintes variáveis: porcentagem de estacas enraizadas; número de raízes por estaca; comprimento médio das três maiores raízes por estaca (cm); porcentagem de estacas com calos, vivas e mortas. Não houve diferença significativa entre os tratamentos, tendo como maior média de enraizamento 92%, para os tratamentos com 0 e 2000 mg Kg⁻¹de AIB, sendo possível concluir que não é necessária a aplicação de auxina exógena no enraizamento de estacas de Tibouchina fothergillae.

Palavras-chave: Tibouchina fothergillae; auxina; paisagismo; propagação vegetativa

ABSTRACT

Tibouchina fothergillae (D. C.) Cogn. is a Brazilian native species, reaching 1,5 meters in height, with great landscape value. Aiming to develop a rooting protocol for the species, the objective of this study was to evaluate the indolebutyric acid (IBA) influence on the rooting induction of semi hardwood *Tibouchina fothergillae* cuttings. The shoots were collected in 15/04/2011 at the gardens of the Federal University of Paraná, Campus III, and cut to 8 cm in length, keeping two half leaves on the apex. The cuttings were submitted to the following treatments: 0 mg Kg⁻¹, 1000 mg Kg⁻¹ and 2000 mg Kg⁻¹ of IBA in powder, planted in tubes containing medium size vermiculite and carbonized rice husk (1:1) and maintained in greenhouse with intermittent mist. Data were analyzed using a completely randomized design, with 5 replications of 20 shoots per experimental unit. After 60 days, were evaluated: the percentage of rooted cuttings; number of roots per cutting; average length of the three biggest roots per cutting (cm); percentage of cuttings with calluses, alive and dead. The difference between the treatments was not significant, with the higher average of rooting being 92% for the treatments with 0 and 2000 mg Kg⁻¹ of IBA, leading to the conclusion that exogenous auxin is not necessary on the rooting of Tibouchina fothergillae cuttings.

Key-words: Tibouchina fothergillae; auxin; landscape; vegetative propagation

¹Eng. Agr., Universidade Federal do Paraná. Curitiba, PR, Brasil. Bolsista de Iniciação Tecnológica Industrial do CNPq – Nível A. Email: rodrigonicknich@gmail.com

 ²Eng. Agr., Universidade Federal do Paraná. Curitiba, PR, Brasil. Bolsista de Iniciação Científica do CNPq.
³Bióloga, Pós-Doutora, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brasil. E-mail: kazu@ufpr.br

INTRODUÇÃO

Tibouchina fothergillae (D. C.) Cogn. é uma planta da família Melastomataceae, nativa da Mata Atlântica Brasileira. Apresenta porte arbustivo, com cerca de 1,5 metros de altura e flores de coloração púrpura. Floresce e frutifica em quase todos os meses do ano, sendo os mais representativos abril e maio (Silva e Affonso, 2005) e sendo por isso conhecida popularmente por quaresmeira.

Por apresentar belíssimas flores e em abundância, a quaresmeira tem altíssimo potencial ornamental, sendo recomendada em projetos paisagísticos, na arborização de ruas estreitas e sob redes elétricas. Além disso, apresenta grande capacidade de se adaptar, sobreviver e se desenvolver no local do plantio, sendo por estes motivos, muito utilizada na arborização urbana (Lorenzi, 2002).

Suas sementes são minúsculas, dificultando a coleta e manuseio, além de existir grande número de sementes abortadas e com baixa germinabilidade (Elisson et al., 1993; Barroso et al., 1999). Assim, faz-se necessária a utilização de meios mais eficientes de propagação.

A propagação vegetativa pode ocorrer de diversas formas, bastando-se promover a regeneração de uma parte qualquer retirada de uma plantamatriz a fim de formar um novo indivíduo por meio da indução do enraizamento adventício (Janick, 1966; Hartmann et al., 2002). Uma das formas de propagação vegetativa é a estaquia, a qual permite a obtenção de um grande número de mudas com alta uniformidade a partir de uma planta-matriz, além de antecipar o período de florescimento por reduzir o período juvenil da mesma (Hartmann et al., 2002).

Para que a estaquia tenha sucesso, é necessário que ocorra a formação de raízes adventícias. O principal hormônio vegetal envolvido no enraizamento é a auxina. A aplicação de auxinas exógenas em estacas estimula a formação de raízes adventícias, aumentando a porcentagem de estacas enraizadas e o número de raízes por estaca (Hartmann et al., 2002), sendo que o ácido indolbutírico (AIB) é a auxina sintética mais utilizada devido a sua baixa mobilidade, maior estabilidade química e, quando aplicado em concentrações adequadas, não ser fitotóxico (Audus, 1963)

O presente trabalho teve como objetivo desenvolver um protocolo de enraizamento de *Tibouchina fothergillae* (D. C.) Cogn. pela aplicação de diferentes concentrações de ácido indolbutírico aplicadas via talco.

MATERIAL E MÉTODOS

Foram coletados ramos semilenhosos de uma planta-matriz localizada nos jardins do Centro Politécnico da Universidade Federal do Paraná, na cidade de Curitiba-PR, em 15 de abril de 2011.

Foram confeccionadas estacas semilenhosas de 8cm de comprimento, com corte em bisel na parte inferior e corte reto na parte superior, mantendo duas folhas na porção apical com sua área reduzida à metade.

As estacas foram submetidas à desinfestação

com hipoclorito de sódio 0,5% por 10 minutos, sendo posteriormente lavadas em água corrente por 5 minutos. Na base das estacas foram aplicados os tratamentos com ácido indolbutírico (AIB) veiculado na forma de talco, nas concentrações de 0, 1000 e 2000 mg Kg⁻¹ de AIB, as quais foram plantadas em tubetes de polipropileno de 53 cm³, com vermiculita de granulometria média e casca de arroz carbonizado na proporção de 1:1 como substrato, sendo então levadas para casa de vegetação com nebulização intermitente.

Após 60 dias, verificou-se a porcentagem de enraizamento, número de raízes por estaca, comprimentos das três maiores raízes por estaca, porcentagem de estacas com calos, vivas e mortas.

O delineamento experimental foi inteiramente casualizado, com 5 repetições de 20 estacas por unidade experimental. As variâncias dos tratamentos foram testadas quanto à homogeneidade pelo teste de Bartlett. Aquelas que se mostraram homogêneas foram submetidas à análise de variância e comparadas pelo teste de Tukey ao nível de 5%.

RESULTADOS E DISCUSSÃO

As variáveis porcentagem de enraizamento, número de raízes por estaca, comprimento das três maiores raízes por estaca e porcentagem de estacas mortas se mostraram homogêneas e foram submetidas à comparação de médias pelo teste de Tukey ao nível de 5% de probabilidade.

Foram verificadas médias de enraizamento de 92% para os tratamentos com 0 mg Kg⁻¹ e 2000 mg Kg⁻¹ e 87% para o tratamento com 1000 mg Kg⁻¹ (Tabela 1), não sendo esta diferença significativa. O sucesso de enraizamento da T. fothergillae foi observado também por Mayer et al. (2003), tratando estacas semilenhosas com 0, 2000, 4000 e 8000 mg L⁻¹ de AIB em solução, obtendo 100% de enraizamento para todos os tratamentos com exceção da aplicação de 8000 mg L⁻¹ de AIB (89,6%). Bortolini et al. (2005) observaram 100% de enraizamento tratando estacas caulinares de T. fothergillae com 0, 1500 e 3000 mg L⁻¹ de AIB, enquanto Ribeiro et al. (2007) observaram enraizamento de 94% das estacas testemunhas de *T. fothergillae*. Essa facilidade de enraizamento pode estar relacionada à presença satisfatória de auxina endógena na planta e à presença de folhas nas estacas, que servem como fontes de auxinas, carboidratos e outras substâncias (Hartmann et al. 2002).

Para o número de raízes por estaca, foram observadas médias de 7,46 para o tratamento com 0 mg Kg⁻¹, 9,23 para o tratamento com 1000 mg Kg⁻¹ e 7,57 para o tratamento com 2000 mg Kg⁻¹ (Tabela 1). Bortolini et al. (2005) encontraram maior número de raízes para todos os tratamentos, tendo 22,41 raízes no tratamento testemunha. As médias de comprimento das 3 maiores raízes por estaca foram de 5,87 cm para o tratamento com 0 mg Kg⁻¹, 5,09 cm para o tratamento com 1000 mg Kg⁻¹ e 4,81 cm para o tratamento com 2000 mg Kg⁻¹ (Tabela 1).

TABELA1 – Porcentagem de estacas semilenhosas de *Tibouchina fothergillae* (D. C.) Cogn. enraizadas (EE), número médio de raízes por estaca (NRE), comprimento médio das 3 maiores raízes por estaca (CMR), porcentagem de estacas com calos (EC), vivas (EV) e mortas (EM). Curitiba – PR, 2011

AIB (mg Kg ⁻¹)	EE (%)	NRE	CMR (cm)	EC (%)	EV (%)	EM (%)
0	92,0 a	7,5 a	5,9 a	0	3,0	5,0 a
1000	87,0 a	9,2 a	5,1 a	0	3,0	10,0 a
2000	92,0 a	7,6 a	4,8 a	0	0	8,0 a
Média geral	90,3	8,1	5,3	0	2	7,7
Coeficiente de varia- ção (%)	9,3	19,6	22,4	-	-	114,8

Médias seguidas pela mesma letra na coluna não diferem estatisticamente pelo teste de Tukey ao nível de 5% de probabilidade.

A porcentagem de estacas mortas foi baixa e dentro da normalidade dos padrões para a estaquia, sendo vertificadas médias de 5% para o tratamento com 0 mg Kg⁻¹, 10% para o tratamento com 1000 mg Kg⁻¹ e 8% para o tratamento com 2000 mg Kg⁻¹ (Tabela 1). A presença de estacas mortas pode ter sido causada pelo baixo grau de lignificação do material utilizado, causando uma maior perda de água e consequentemente, morte das estacas, sendo este o motivo atribuído por Nachtigal et al. (1994) para a alta mortalidade de estacas semilenhosas de araçazeiro. Outra explicação possível foi o longo tempo em casa de vegetação que pode ter favorecido a desidratação das estacas, visto que Bortolini et al. (2005) obtiveram 100% de enraizamento com apenas 30 dias de experimento em casa de vegetação.

Não houve formação de calos em nenhum tratamento e a porcentagem de estacas vivas (sem raízes e sem calos) foi de 3% para os tratamentos com 0 e 1000 mg Kg⁻¹ de AIB, não ocorrendo estacas vivas no tratamento com 2000 mg Kg⁻¹ de AIB, uma vez que a maioria das estacas enraizaram e uma pequena porcentagem morreu.

CONCLUSÕES

Nas condições em que o experimento foi realizado, pode-se concluir que *T. fothergillae* é uma espécie de fácil enraizamento. O uso de AIB não é recomendado, visto que o tratamento testemunha apresentou alta porcentagem de enraizamento.

REFERÊNCIAS

- 1. AUDUS, L.J. Plant growth substances. 2 ed. Intersciences, New York, 1966.
- 2. BARROSO, G. M. et al. **Frutos e sementes:** morfologia aplicada à sistemática de dicotiledôneas. Viçosa Imprensa Universitária, 1991, v. 2. 377 p.
- 3. BORTOLINI, M. et al. Propagação de quatro espécies do gênero *Tibouchina Aubl.* (Melastomataceae Juss.) In: CON-GRESSO NACIONAL DE BOTÂNICA, 56., 2005, Curitiba. **Resumos...** Curitiba: Digittal Solutions, 2005. CD-ROM.
- 4. CÉZAR, T.M.; SOUZA, F.C.; MACIEL, R.T.; DEMBISKI, W.; ZUFFELLATO-RIBAS, K.C.; RIBAS, L.L.F.; KOEHLER, H.S. Estaquia e alporquia de *Tibouchina fothergillae* (D.C.) Cogn. (Melastomataceae) com a aplicação de ácido naftaleno acético. **Scientia Agraria**, v. 10, p. 463-468, 2009.
- ELISSON, A.M. et al. Seed and seedling ecology of neotropical Melastomataceae. Ecology, v. 74, n. 6, p. 1733-1749, 1993.
- 6. HARTMANN, H.T.; KESTER, D.E.; DAVIS JÚNIOR, F.T.; GENEVE, R.L. **Plant propagation:** principles and practices. 7 ed. New York, Englewood Clips, 2002, 880 p.
- 7. JANICK, J. A ciência da horticultura. Rio de Janeiro; F. Bastos, 1966, 485 p.
- LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. v. 2, 2 ed. Nova Odessa: Instituto Plantarum, 2002. 384 p.
- MAYER, J.L.; ZUFFELLATO-RIBAS, K.C.; BONA, C.; RIBAS, L.L.F.; CARPANEZZI, A.A.; TAVARES, F.R. Enraizamento e anatomia de estacas de estacas de Tibouchina fothergillae (DC.) Cogn. (Melastomataceae). In: IX CONGRESSO BRASILEIRO DE FISIOLOGIA VEGETAL, Atibaia, 2003. Caderno de resumos. Atibaia: Brasilian jornal of Plant Physiology, 2003. 148 p.
- RIBEIRO, M.N. de O.; PAIVA, P.D.O. de., SILVA, J. da. C.B.; PAIVA, R. Efeito de ácido indolbutírico sobre estacas apicais e medianas de quaresmeira (*Tibouchina fothergillae* Cogn.). Revista Brasileira de Horticultura Ornamental, v.13, n.1, p. 73-78, 2007.
- 11. SILVA, C. V.; AFFONSO, P. Levantamento de *Tibouchina* AUBL. (Melastomataceae) no parque estadual da serra do mar núcleo Curucutu São Paulo. **Revista do Instituto Florestal**, v. 17, n. 2, p. 195-206, 2005.

Recebido em 06/12/2011 Aceito em 05/08/2013