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Resumen

El problema de calibración no es reciente. Los trabajos en este tema fueron pre-
sentados inicialmente por Krutchkoff en la época de los 60, bajo un enfoque pa-
ramétrico y han sido ampliamente estudiados por otros autores desde diferentes
perspectivas. Las investigaciones recientes respecto al punto de cambio han con-
siderado supuestos adicionales y estimación usando modelos lineales mixtos. Se
presenta una revisión exhaustiva de los problemas de calibración y punto de cam-
bio. Adicionalmente, se puede observar que la vinculación de estos bajo el enfoque
de modelos para datos longitudnales no ha sido trabajado.
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Abstract

Calibration is not a new problem, early in the 1960, it was worked by Krutchkoff
under a parametric approach. Then, this idea has been widely studied and several
approaches have been presented by different authors. On the other hand, latest
proposals on change points consider some additional assumptions and worked ba-
sed on a linear mixed models approach. We present an extensive review about
this topics to show that both problems: calibration and change point has not been
worked jointly yet under a longitudinal setting.
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1. Introduction

In general, if we have two variables and we want to explore the nature of the
relationship between them, we can consider a model given by

Y = f(X;β) + e,

where ei ∼ N(0, σ2) and f(X;β) may be a linear or nonlinear function.
Classic regression problem studies the relationship between two variables X and Y ,
where X is called the independent variable and Y is called the dependent variable
and we usually register the information about these variables as a pair (X,Y ),
where X can be a vector or a matrix of values for the independent variables. As a
particular case, Simple Linear Model can be adjusted if we assumed that a linear
relationship between X and Y is plausible. Under similar assumptions, we consider
the calibration problem that is another important interest for researchers. It arises
when the focus is on the estimation for a particular value of the independent
variable x given an observed value of the dependent variable Y = y. Some authors
have worked on this topic as (Berkson 1969, Naszódi 1978). They proposed some
estimators and discussed their asymptotic properties. Before to present a solution
to the calibration function problem from change points, we present a review of the
classical and latest calibration problem approaches jointly with the change point
problem.

2. Calibration problem

In a particular way, fitting a simple linear regression model (SLRM) implies to
quantify the effect of the predictor (X) on the response variable (Y ). This is done
through the estimation of the model parameters and a posterior residual analysis.
After the data set is collected and the model is specified, the next step is to find
the estimate the parameters of the model. The general statement for a SLRM is

yi = α+ βxi + εi , i = 1, 2 . . . , n, (1)

with εi ∼ N
(
0, σ2

)
(i.i.d.) that corresponds to the usual normality, independence

and homoscedasticity assumptions about the random error.
The parameters can be estimated using maximum likelihood or least squares. In
both cases the expressions of the parameter estimates are:

β̂ =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)
2 (2)

α̂ = ȳ − β̂x̄ (3)

The α̂ and β̂ are Gauss-Markov minimum variance unbiased estimates (Rao 1973,
Berkson 1969). From a SLRM we get:

Xi =
Yi − α
β

+ ηi , i = 1, 2 . . . , n, (4)
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where ηi = εi
β and ηi ∼ N

(
0, σ

2

β2

)
. This model is considered a particular ap-

proach to solve the inverse regression problem. However, there are several approa-
ches to this problem used to determinate the best estimator for X. Krutchkoff
(1967, 1969), Berkson (1969), Chow & Shao (1990), Halperin (1970), Naszódi
(1978) have worked on this topic and they have developed some methods to sol-
ve some specific problems associated with the calibration problem in the cross-
sectional setting. Many other authors cited by Osborne (1991) have also worked
on this topic.
Many disciplines conduct studies in which the primary objective is to make in-
ferences based on a linear or nonlinear relationship between the explanatory and
response variables. However, this is not the unique interest of the researchers, an
inverse relationship could be important, too. If we are interested in predicting a
specific value for X, given a value of Y , then we have a calibration or inverse pre-
diction problem and we need to study some specific concepts and conditions about
this. Blankenship et al. (2003) studied some properties about calibration problems.

In the case of longitudinal data,observations are collected over the time and some
assumptions about the model given by (1) are wrong and we need to consider
some additional covariance structures and take them into account to estimate the
parameters and predict t (t̂) as accurate as possible.

2.1. Parametric approach

As we stated before, the calibration problem can be deal with in different ways.
Some authors have worked on parametric approaches most of them referenced in
the Osborne’s paper and so many others have been working on this topic as Wu
et al. (2001) and Blankenship et al. (2003). A Bayesian approach have been wor-
ked by Hoadley (1970), Harville (1974), Hunter & Lamboy (1981), and some other
authors. Also Knafl et al. (1984), Carroll et al. (1988), Carlstein (1988), Gruet
(1996) and Ding & Karunamuni (2004) worked on a nonparametric approach to
this problem. Concordet & Nunez (2000), Schwenke & Milliken (1991), Blankens-
hip et al. (2003) have made some approaches for specific problems in which there
are a mixture of linear or nonlinear mixed models and calibration problems in ap-
plied sciences. Krutchkoff (1967, 1969) began a wide discussion on the calibration
problem under independence assumption in cross-sectional setting. Odén (1973)
proposed a methodology to obtain the confidence intervals in reverse regression
by proposing to select a function which has some specific properties to guarantee
that a fixed proportion of intervals contain the true parameter. Brown (1979) pro-
posed the integrated mean squared error (IMSE) and compared the results with
the classical and inverse estimator. Also, he discussed its properties as well, and
called this the ‘optimal estimator ’. Trout & Swallow (1979) contrasted results
between classic and inverse regression estimates using confidence bands with both
a uniform procedure and Scheffe’s procedure. He concluded the uniform procedure
is enough efficient and simplier than Scheffe’s procedure.
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Oman (1984) showed some results about residual analysis in calibration by con-
sider a calibrative distance curve. He proposed this methodology and suggested
some of this curve properties. Also, he suggested to make a precise specification
about the model to run an adequate residual analysis through some methodo-
logies such as Cook’s distance and his proposal. Shukla (1972) returned on the
Krutchkoff’s papers and discussed some specific details about these results, parti-
cularly he wrote about how the number of observations in the design effects the
parameter estimates, the mean squared error (MSE) and variance in both cases
classical and inverse estimator. Perng & Tong (1974) disscused the results showed
by Odén and proposed a sequential procedure for the construction of confidence
bands to x. Their work can be taken as an important benchmark to asymptotic
results obtained for the calibration problem. Minder & Whitney (1975) showed,
using likelihood analysis, the relevance of an informative likelihood to get a more
precise estimate to x. Naszódi (1978) discussed how to eliminate the bias in cali-
bration problems while the experimental design is running.

In a similar fashion, Carroll et al. (1988) discussed the results presented in the
parametric approach worked by Trout & Swallow and suggested other proper-
ties about the nonparametric approach on the work made by Knafl et al. (1984).
Chow & Shao (1990) showed the difference between classical and inverse regres-
sion through some properties about the relative ratio between the estimates and
concluded that the values obtained in each case are not interchangeable. Schwenke
& Milliken (1991) made an approach to the calibration problem but in the nonli-
near case. Osborne (1991) wrote a paper about the main advances on calibration
problems made to date. A modified approach to the calibration problem was made
by Dahiya & McKeon (1991) who proposed two additional estimators based on
past results to get better estimates than the classic and inverse estimates. Hsing
(1999) proved properties about the nearest neighborhood technique applied to in-
verse regression by using some geometric properties. All their work is a theoretical
development in this topic.

Kalotay (1971) proposed a solution of the calibration problem by using an struc-
tural model under three assumptions which allow to get, by formal mathemati-
cal computation, the structural distribution for the model parameters even if the
error does not come from a normal distribution. This methodology is so attracti-
ve because it supplies the marginal structural distribution for x and avoids some
distributional assumptions. His work was based on a similar framework as the
Creasy-Feller theorem. Scheffé et al. (1973) made a wide exposition about the sta-
tistical theory of calibration. His work presented some results to the calibration
intervals. He proposed a graphical method to get the calibration line and analyzed
some properties about the estimates under different assumptions. On the other
hand, Brown & Sundberg (1989) worked on the calibration problem but extended
it to the multivariate case and proposed a change regression. Their development

Comunicaciones en Estad́ıstica, junio 2017, Vol. 10, No. 1



A Calibration Function Built from Change Points: a Review 117

also considered the time series case and supervised and unsupervised learning pro-
cesses based on comparative information analysis.

Srivastava & Singh (1989) made an interesting study which presented some pro-
perties of the classical and inverse estimator. Their conclusions are based on small
disturbance asymptotic (SDA) theory. They suggested that the classical estimator
is better because it is consistent. They studied some additional properties about
the classic and the inverse estimator, by analyzing the Asymptotic Mean Squared
Error (AMSE) and variance. However, their study was limitated to small values of
the variance of the errors, that is, the random errors in the calibration are relati-
vely small. Schwenke & Milliken (1991) explored the properties about the classical
estimator for the calibration problem but in the nonlinear model case by construc-
ting the confidence bands using the distribution on the x̂ and the distribution on
the β̂. This work also presented a methodology to test the equality of two calibra-
tion points by using different monotone functions, f and g,respectively over the
regression range. Based on simulation studies, they showed that the asymptotic
testing procedure performed well small sample sizes.

Kimura (1992) compared the estimates of an unknown value of x by considering
two models and in conjunction with the Expectation Maximization (EM) algo-
rithm to get estimates under each model and constrast them against the eigenvec-
tor estimators including a large sample approximation to obtain the estimates for
standard errors. He suggested that the Eigenvectors Estimators (EV) and the EM
methods had an identical maximum likelihood estimate of regression coefficients.
Denham & Brown (1993) worked on calibration with serially correlated errors.
They considered the estimation of a matrix Γ = σ2I to allow more flexibility on
the covariance matrix. They also considered a stationary autocorrelation process
and adapted the Box-Jenkins procedure to avoid some difficulties to obtain the
generalized least squares estimator and worked on the calibration problem using
cubic splines. They illustrated the methodology by using a data set on analysis of
the infrared absorption in detergents and remarked that ‘methods of estimation
based on many frequencies retain better robustness in routine use under varying
experimental conditions ’. Their work has a plus because of it was the first ap-
proach to calibration using linear mixed models.

Extending the works made before by some authors, Wang et al. (1997) proposed
an estimator and obtained its asymptotic properties in presence of censored data.
They performed a simulation study allowing a fixed percentage of censored data
and checked the change in bias, MSE, and standard error of the estimates. They
found these methods much more efficient than similar methods presented in the
available literature.

A robust calibration method was presented by Cheng & Van Ness (1997). They
compared the estimators obtained using several regression methods. They sho-
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wed that robust calibration methods have a good behavior in presence of outliers
and with non-normal errors distribution. Also, they suggested an outlier detection
procedure to identify simple-outliers in calibration problems.

Sundberg (1999) showed an application to the multivariate calibration problem
by studying both univariate and multivariate estimation and he provided a com-
plete review on the estimators in linear and non-linear case. He suggested some
confidence regions and diagnostics in the calibration problem and illustrated them
by using some data from a chemical study. Furthermore, he suggested to evaluate
the goodness of fit by comparing the estimators obtained under several models,
including ridge regression.

2.2. Nonparametric approach

Knafl et al. (1984) made a nonparametric approach to the calibration problem
and obtained some confidence bands under nonmonotonic functions. However,
they suggested the effectiveness of their procedures depends on the accuracy of
the estimates. They also mentioned that calibration problems are strongly related
to regression problems. They provided an useful algorithm to estimate a non-
parametric calibration function and its confidence bands. They illustrated this
methodology and gave some remarks about this procedure.

Benton et al. (2003) proposed a parametric bootstrap method to test the hy-
pothesis H0 : x ≤ c against Ha : x > c, where c is a known value given to y0
under the selected model. They proposed to use a modified pivot statistic to get
confidence regions based on it. They compared the power of two tests based on
this statistic for both univariate and multivariate one-sided hypothesis testing to
the calibration problem and made some additional considerations. They suggested
to use a parametric bootstrapping method to improve the quality of the inferences
on the calibration problem.

2.3. Bayesian approach

Racine-Poon (1988) presented a Bayesian approach to the calibration problem. He
proposed to obtain the estimates of the parameters taking into account the prior
information given by the calibration experiment. Also, they assumed that the
random errors come from a normal distribution. He obtained the posterior distri-
bution under the parameters independence condition and by consider a particular
value η = x to estimate. He considered a logit model to describe the relationship
between concentration and the response variable. He suggested that the posterior
distributions have a normal distribution in many calibration experiments. He also
suggested to avoid an improper posterior distribution by considering only pro-
per a prior distributions. DeJong et al. (1996) presented an alternative approach
to deal with the calibration problem. They proposed a symmetric treatment for
researcher’s uncertainty according to the model and an additional empirical mo-
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del by considering prior distributions for both theoretical and empirical models.
They also dealt with serial correlation but these results are not appealing neit-
her of the prior distributions considered by them. They applied the methodology
using technology market data and showed the weakness and strenght of the model
and its sensitivity to the specification of the parameter uncertainty. Gruet (1996)
proposed an additional method to estimate a quantity of interest by combining
kernel (classic nonparametric) and robust estimation techniques. She developed a
theory and showed some main results and properties as consistency of the estima-
tor proposed and some other important characteristics in multivariate calibration.
She also considered simultaneous tolerance sets to build simultaneous calibration
intervals.

On the other hand, Lucy et al. (2002) presented a nonparametric approach to
the calibration problem. They used a Bayesian and an empirical Bayesian estima-
tion procedure in the calibration problem. Also, they worked on a nonparametric
approach using smoothing on continuous and discrete variables and contrasted
the obtained values using some measurements as the Mean Absolute Deviation
(MAD), systematic bias by estimating the slope coefficient against the known x
value and the mean width of the 95 % confidence intervals. These approaches were
illustrated using on forensic data. They found that the smoothed empirical Baye-
sian calibration method yielded estimates with accuracy and precision similar to
the multiple regression but it is better due to its robustness against the systematic
bias, particularly to extreme values in the distribution of X. Ding & Karunamuni
(2004) proposed a new estimator for the calibration problem. They compared clas-
sical, inverse and their estimator using the MSE. They also showed some additional
asymptotic properties of this estimator under some scenaries. They performed a
simulation study which considered X as a random variable and suggested that the
proposed estimator is as good as the inverse or the classic estimator under some
conditions.

2.4. Extension to linear and nonlinear mixed models

Developments on the calibration problems have been widely made in the last de-
cades. Næs (1985) made an approach to the calibration problem but in the multi-
variate case. He proposed an adapted estimator to obtain a prediction of X under
multivariate normality assumptions and also worked on multivariate calibration
on the specific case in which the covariance matrix has a predetermined structu-
re. He proposed a multivariate calibration method finding that the new predictor
coincides with the Multiple linear regression predictor for X on Y when the fac-
tors and the amount of variables are similar. He pointed out that the main idea
of this approach is to estimate the covariance matrix for Y in a better way than
usual. This work is important because it has an specific development when the
collected data presents multicollinearity problems. Furthermore, some extensions
considered by some authors included the calibration problem under a longitudinal
setting approach and using linear mixed models.
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Fornell et al. (1991) investigated some properties of the direct and reverse regres-
sion when some unobservable variables are including in the model. They concluded
that the reverse regression had some limitations compared to direct regression, be-
cause the estimates obtained by using it are generally biased. Also, they proposed
an alternative method to obtain unbiased estimates. This method is based on linear
mixed models which consider a flexible covariance structure for the errors.

3. Change point problem

Fitting a simple linear regression model to a data set in a cross-sectional setting is
a common practice. It is usually assumed that the considered model holds for the
whole data. However, sometimes researchers need to consider linear models whe-
re the structure of the model changes. An exploratory data analysis could allow
to detect a change in the model structure in either any specific point or several
points. The point in which the structure changes is called the change point. If we
consider a model with a single continuous change point, the model given by (1)
can be rewriten as:

yi =

{
β10 + β11xi + ε1i i = 1, . . . , s ε1i ∼ N

(
0, σ2

1

)
β20 + β21xi + ε2i i = s+ 1, . . . n ε2i ∼ N

(
0, σ2

2

) . (5)

In general, change points can be known or unknown and they divide a statistical
model into homogeneous segments. Usually, the statistical model can be fitted as
a piecewise or broken-stick regression. The former is applied when the model has a
discontinuity at a specific point (change point) and the latter when the model has
a continuous change point. In statistical inference a change point exists if there is
enough evidence against the null hypothesis of ‘no change’. Several authors worked
on this problem, Carlstein (1988), Muller (1992), Hartigan (1994), Bhattacharya
(1994), Küchenhoff (1996), Jandhyala & MacNeill (1997), Neumann (1997), Ro-
gers (2010), Saatçi et al. (2010), Killick & Eckley (2014),Chen & Gupta (2000)
and some others. These authors worked on this problem in cross-sectional setting
under independence assumption.

Hofrichter (2007), based on McCullagh & Nelder (1989) works on a parametric
approach about the change point estimation by considering Generalized Linear
Models (GLM). The results from the simulation study showed that and the re-
sults showed that this approach was so effective to detect one single change point
or multiple change points. He built an R-package called CpInGLM but unfortu-
nately, it is not still available at the CRAN mirror. Zhou et al. (2008) also works
under this setting but in their approach they suggested to modify the objective
function to eliminate the non-smothness problem with the change point problem
in the maximum likelihood function.
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Some algorithms useful for the detection of change points are available. detection
can be structured. We have explored some papers and working with an R-project
package called changepoint. This package was proposed by Killick & Eckley (2014)
and this methodology is particularly useful when time series are the object of
study. They worked on large samples and considered changes on the mean and the
variance which allow a better estimation. The detection of a single change point
can be presented as a hypothesis test. The null hypothesis, H0, corresponds to no
change point (m = 0) and the alternative hypothesis, H1, is a single change point
(m = 1) (Chen & Gupta 2000). However this idea is not new, some advances were
done in this topic, for instance, Farley & Hinich (1970) developed a test of the null
hypothesis that a slope coefficient in a time series model does not shift, against
the alternative that the parameter shifts exactly once and the potential shift is
small relative to the error variance.

Bai & Perron (2003) introduced a dynamic programming algorithm to identify how
many change points had a model under a linear structure and to estimate these
change values. They suggested to build first a triangular matrix of sums of squared
residuals and then sequentially evaluate the each partition of data until the new
partition achieves a global minimization on the overall sum squared regression.
They also suggested a modified algorithm to evaluate a partial structural change
and mentioned some properties of this algorithms including the convergence rates.
They worked on confidence regions for these change points and the parameters
estimates. They also performed a study to determine the number of partitions
that should be considered in each model by consider a test of no break against
a fixed number of breaks. Downey (2008) proposed a Bayesian algorithm to find
the change points which they called an online technique that allows to identify
change points when the evidence of this reaches a certain threshold. He proposed
to evaluate this technique using a generalized linear model procedure based on the
cummulative distribution function and a nonparametric procedure that allows to
calculate the change point probability, and finally he found some specific properties
associated to each one.

3.1. Nonparametric approach to the change point problem

Carlstein (1988) made a nonparametric aproach to the change point problem and
he found a set of consistent estimators. He studied the rates of convergence and
the error probability associated to each one. He also remarked that the error pro-
bability has an exponencial bound and proved it through four lemmas which were
exposed and proved on his paper. Simmilarly, Muller (1992) suggested some chan-
ge points estimators and established the conditions under which them would be
consistently estimated. His work was made through a comparison of left and right
one-sided kernel smoothers and also included the detection of discontinuities. He
showed that the rates of convergence are as similar as when the change point is
known. Hartigan (1994) studied the change point problem by evaluate the perfor-
mance of linear estimators under the assumption that the parameter values did
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not vary smoothingly. In this case, the linear estimators could be wrong because
if the parameter of interest is so near to a discontinuity then the weighted sum
will include an specific kind of bias. This bias was introduced by the observations
on the other side of the discontinuity and modifies the value of the parameter es-
timators. He considered a lower bounds for the minimax risk in three cases. First
one, by consider a circular change point problem on an even number of data. The
second one, aditionally considered the linear estimator as the shift estimator which
result useful for adaptative methods but it is not in practice. At the last one, he
considered linear estimators for image segmentation problems.

Darkhovski (1994) worked the change point problem using nonparametric met-
hods and he studied the problem by consider two ideas, the first idea is based
on consider the problem of detection of changes in the mean value of some new
sequences and the second idea was based on Kolmogorov-Smirnov statistics that
allows to detect the change point in these sequences. He presented both methods
and some concrete algorithms to find the change point and exposed some con-
ditions to guarantee the almost sure convergence of these sequences. Simmilarly,
Hušková & Picek (2005) made an approach to this problem by a bootstrap tech-
nique and they explained the main results of their proposal through theoretical
results. They proved the theorems applied on the change point problem under
asymptotical assumptions. On the other hand, change point problem is not only a
regression problem, stocastic processes is an important field where change problem
is important, too. Dayanik et al. (2008) worked a change detection under a Baye-
sian approach but considering a Wiener and a Poisson process and solved optimal
stopping problems for jump-diffusion processes by separating jump and diffusion
parts with the help of a jump operator. Their work could be seen as a solution to
a particular problem on manufacturing processes or production processes because
in both cases we need to identify promtly and accurately the changes to avoid that
the process goes out of control or false alarm signals.

4. Change points and linear mixed models

Linear Mixed Models (LMMs) have been widely studied and they are usually seen
as an extension of the model (1), but in this case taking into account that the
random errors can be divided into two parts: the former, between-subjects varia-
bility and the latter within-subjects variability. The general expression for LMMs
(Fitzmaurice et al. 2008), is given by:

Yi = Xiβ︸︷︷︸+ Zibi + εi︸ ︷︷ ︸
Fixed Random

bi ∼ N (0,D)
εi ∼ N (0,Σi)
εi and bi are independent.

(6)
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Most recent works on change points in linear mixed model had been limited only
to some authors as Lai & Albert (2014) and Rosenfield et al. (2010) which consi-
dered change points as a unique point through the blocks or factors. They rewrote
the model (6)as:

Yij =

g+1∑
k=1

XijβBk
I (tij ∈ Bk) + Zijbi + eij (7)

and in case of a fixed effects and random effects model it can be written as:

Yij =

g+1∑
k=1

XijβBk
I (tij ∈ Bk) + bi,0 +

g+1∑
k=1

bi,Bk
I (tij ∈ Bk) + eij , (8)

where g corresponds to the number of blocks. They worked the problem as a
model with a common change point by building blocks until a particular value of
the fixed variable. However, they did not predict an individual change point for
each subject under a longitudinal setting. They neither worked on the prediction of
an specific time given some previous conditions on the fixed variable. Predicting a
time in which the model changes is so important in productive processes because,
for example, this could allow to avoid some additional drawbacks, especifically
it could help to reduce the storage expenses. Jackson & Sharples (2004) worked
on the change point problem for longitudinal data considering these as censored
change points. They worked on a Bayesian approach to this problem and studied
the change point problem by consider two models, the first one was defined as a
linear progression and it is related to those subjects who showed a smooth profile
on its measures through the time. The second one was defined as the acute onset
model that allows to explain a sudden change on the subject-specific profile. Their
work was illustrated using a particular data set about lung transplantation.

5. Conclusions

We have reviewed most of the literature about this topic and we have found an
extensive work and some useful methodologies. The proposal of this review was
to establish the main references and advances that has been made on this topic
to ensure the relevance and the appropriateness of our research proposal (Garcia
et al. 2015) which consider as the main goal to estimate the unknown change
points for each subject in longitudinal studies by using a linear mixed models
approach and once we know these change points we want to build a calibration
function that allows us to predict the change point according with the available
information about the fixed effects considered at the onset modeling stage. We
will propose a methodology useful in that research fields which it is important
to predict a specific point. For example, predict the time when a person becomes
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healthier according to the specific conditions of a treatment, or establish the ma-
ximum time that a wooden slot should be dryed before selling it and thus not
increasing the storage expenses.

We consider Hofrichter (2007)’s work as a benchmark to generalize the change
point identification under a longitudinal setting and the Lai & Albert (2014)’s
work as one of the most important references to estimate the change points for
Linear Mixed Models. The main results of that research will be presented later.
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Saatçi, Y., Turner, R. D. & Rasmussen, C. E. (2010), Gaussian process change
point models, in ‘Proceedings of the 27th International Conference on Machi-
ne Learning (ICML-10)’, pp. 927–934.
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