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Abstract

Kriging and cokriging and their several related versions are techniques widely
known and used in spatial data analysis. However, when the spatial data are func-
tions a bridge between functional data analysis and geostatistics has to be built.
We give an overview to cokriging analysis and multivariable spatial prediction to
the case where the observations at each sampling location consist of samples of ran-
dom functions. We extend multivariable geostatistical methods to the functional
context. Our cokriging method predicts one variable at a time as in a classical
multivariable sense, but considering as auxiliary information curves instead of vec-
tors. We also give an extension of multivariable kriging to the functional context
where is defined a predictor of a whole curve based on samples of curves located
at a neighborhood of the prediction site. In both cases a non-parametric approach
based on basis function expansion is used to estimate the parameters, and we
prove that both proposals coincide when using such an approach. A linear model
of coregionalization is used to define the spatial dependence among the coefficients
of the basis functions, and therefore for estimating the functional parameters. As
an illustration the methodological proposals are applied to analyze two real data
sets corresponding to average daily temperatures measured at 35 weather stations
located in the Canadian Maritime Provinces, and penetration resistance data col-
lected at 32 sampling sites of an experimental plot.
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cDepartment of Mathematics, Universitat Jaume I

315



316 Ramón Giraldo, Pedro Delicado & Jorge Mateu

Resumen

Kriging y cokriging y sus versiones relacionadas son técnicas ampliamente cono-
cidas y usadas en análisis de datos espaciales. Sin embargo cuando los datos son
curvas se requiere un puente entre análisis de datos funcionales y geoestad́ıstica.
Aqúı se da una revisión sobre el uso de cokriging y de kriging multivariado para
el caso en que las observaciones en cada sitio de muestreo corresponden a mues-
tras de funciones aleatorias. Se extiende la geoestad́ıstica multivariada al contexto
funcional. El método cokriging propuesto pemite predecir una variable en un pe-
riod de tiempo como en el sentido multivariado, pero considerando como variables
auxiliares curvas en vez de vectores. También se muestra como extender el krig-
ing multivariable al caso funcional definiendo un predictor de una curva completa
basado en la información de curvas en sitios cercanos. En las dos propuestas se
usan métodos no paramétricos de suavizado por base de funciones. Se comprueba
que las dos aproximaciones considerdas coinciden. Se emplea un modelo lineal de
corregionalización (MLC) para definir la dependencia entre los coeficientes resul-
tantes del ajuste de las bases de funciones y por consiguiente para la estimación de
los parámetros funcionales. A manera de ilustración la metodoloǵıa propuesta es
aplicada al análisis de dos conjuntos de datos reales correspondientes por una lado
a temperaturas diarias medidas en 35 estaciones meteorológicas de las provincias
maŕıtimas de Canada y por el otro a datos de resitencia mecánica a la penetración
colectados en 32 puntos de muestreo en una parcela experimental.

Palabras clave: base de funciones, cokriging multivariado, modelo lineal de cor-
regionalización, modelo lineal funcional, validación cruzada.

1 Introduction

In recent years there has been an increasing interest in modeling functional data.
In environmental studies this type of data often arise when measurements are
recorded at a fine grid of temporal instants over a period of time. Statisti-
cal methods for analyzing this type of data define a new branch of statistics
called Functional Data Analysis (FDA). Exploratory data analysis (Ramsay &
Silverman 2005), regression (Cardot et al. 2007), analysis of variance (Cuevas
et al. 2004), non-parametric analysis (Ferraty & Vieu 2006) and multivariate tech-
niques (Ferraty & Vieu 2003) are standard statistical procedures adapted to the
functional setting. An overview of statistical methods for analyzing functional
data is shown in Ramsay & Silverman (2005) and recent developments in this field
are given in special issues of several journals (González-Manteiga & Vieu 2007).

In this paper we focus on spatially correlated functional data, and particularly in
modeling curves collected in sites of a region with spatial continuity. In spatial
statistics, and in particular in geostatistics, both cokriging analysis (Bogaert 1996)
and multivariable kriging (Ver Hoef & Barry 1998) are used for modeling obser-
vations of vector-valued random fields. Here we adapt these methodologies to the
functional context. We propose a cokriging predictor (cokriging based on curves)
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for performing prediction at a particular point of the curve (as in the cokriging
multivariable sense), but considering as auxiliary information samples of curves
instead of observations of random vectors. Likewise, we extend the multivariable
kriging from random vectors to the functional context by defining the functional
kriging total model predictor which allows to predict a whole curve at an unvis-
ited site by using as information the curves sampled in the neighborhood of the
prediction site. In both cases we give a non-parametric solution based on basis
functions. we also prove that both approaches are equivalent for each particular
point of the curve. A distinctive feature between these two methodologies is given
in terms of their prediction variances. The estimated prediction variance of the
functional kriging total model can be used as a global measure of uncertainty in
the prediction of a whole curve, whereas the prediction variance of the cokriging
based on curves method can be used in a classical sense, that is, we can calculate
point-wise confidence intervals for the prediction.

The problem of functional kriging for predicting a whole curve is also studied by
Nerini et al. (2010). Their proposal (called cokriging for functional data) is based
on the use of orthonormal basis functions. This is justified by the fact that it
allows to find a simple expression of the minimization problem and the functional
kriging problem reduces to a standard multivariate kriging on the coefficients.
That approach limits the use of basis such as B-spline basis functions which are
frequently used in the field of functional data analysis (Ramsay & Silverman 2005).
In this sense, our functional kriging predictor is more general because orthogonality
is not a required condition to give a solution to the minimization problem. In
addition, Nerini et al. (2010), do not consider a predictor to perform predictions
at particular points of the curve, as our proposal for cokriging based on curves
does. With their functional kriging and cokriging functional predictors it is only
possible to estimate an integrated prediction variance. One important advantage
in our functional proposals is that, in addition to the prediction for a particular
point of the curve, we can also estimate the prediction variance at this point of
the curve.

The problem of spatial prediction of curves in a geostatistical context has been
considered from several points of view. Goulard & Voltz (1993) is a pioneer work
in this topic. They propose three geostatistical approaches to predict curves: a
curve kriging approach and two multivariable approaches based on cokriging on
either discrete data or coefficients of the parametric models that have been fitted to
the observed curves. Giraldo et al. (2011), propose a non-parametric approach for
solving the first approach considered by Goulard & Voltz (1993). The predictor
in the first proposal of Goulard & Voltz (1993) as well as that considered by
Giraldo et al. (2011), has the same form as the classical ordinary kriging predictor
(Cressie 1993), but considering curves instead of one-dimensional data, that is,
each curve is weighted by an scalar parameter. Giraldo et al. (2010), solve the
problem of spatial prediction of functional data by weighting each observed curve
by a functional parameter. This approach is a hybrid between ordinary kriging
and the functional linear concurrent (point-wise) model such as shown in Ramsay
& Silverman (2005). The methodologies proposed in this paper follow the line
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of Giraldo et al. (2010), in the sense that each observed curve is weighted by
a functional parameter. However, here the flexibility increases because double
indexed functional parameters are considered and estimated. Now, each curve is
weighted by a functional parameter for the prediction at each time. This modeling
approach follows the basic philosophy of the functional linear model for functional
response, for which a bivariate regression coefficient function must be estimated
(Malfait & Ramsay 2003).

The methodology proposed is illustrated by means of applications to two real
datasets. A good knowledge of the spatial and temporal patterns of meteorological
and climate variables is often required when dealing with environmental problems.
These variables are often measured in a fine temporal grid and over a set of spatial
locations. What we observe can be thus considered a sample of a continuous
function, and the spatial functional methodology is the right scientific context.
Here we show how the predictors proposed can be used in modeling a data set
consisting of daily temperature measurements recorded at 35 weather stations of
the Canadian Maritime Provinces. In addition we apply the methodology to an
agronomic data set corresponding to penetration resistance data recorded at 35
sites of an experimental plot at the National University of Colombia.

The remainder of the paper is organized as follows. Section 2 presents an overview
of cokriging and multivariable kriging. Section 3 introduces the cokriging predic-
tor based on curves and the corresponding parameter estimation. In Section 4 an
extension of multivariable kriging to the functional context is shown and its equiv-
alence with cokriging based on curves is established. Applications of the proposed
methodology to the Canadian Maritime Provinces temperature data, and the pen-
etration resistance data set are given in Section 5. In the first example Fourier
basis functions and B-splines basis functions are used. In the second only a B-
splines basis functions is used taking into account that the data are not periodic.
The paper ends with a brief discussion and suggestions for further research.

2 Cokriging and multivariable spatial prediction

In this section we show the basics of cokriging (Myers 1982) and multivariable
spatial prediction (Ver Hoef & Cressie 1993). As in Ver Hoef & Barry (1998) we
use the term cokriging to mean prediction of a single random variable, and the
term multivariable spatial prediction when predicting a vector of random variables.
Let {Z(s) = (Z1(s), · · · , Zm(s)) : s ∈ D} be a multivariable spatial process defined
over a domain D ⊂ Rd. In practice usually d = 2, with s = (x, y) corresponding
to the geographical coordinates. We now consider the model

Z(s) = µ(s) + ε(s),

where µ(s) is a mean vector and ε(s) a random vector with expected value
E(ε(s)) = 0. It is assumed that the process is stationary, that is, the mean
vector is considered constant for all s ∈ D, and the variance (covariance), cross-
covariance and cross-variogram functions depend only on the separation vector
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h, and not on locations. Let {Z(si) = (Z1(si), · · · , Zm(si)), i = 1, . . . , n} be a
realization of a multivariable spatial process and Zk(s0), k = 1, . . . ,m a random
variable at s0 ∈ D. We use the following notation:

2γlq(si, sj) = V(Zl(si) − Zq(sj)), l, q = 1, . . . ,m, i, j = 1, . . . , n, where V
stands for the variance.

γTlk = (γlk(s1, s0), · · · , γlk(sn, s0))

Γlq =

 γlq(s1, s1) · · · γlq(s1, sn)
...

. . .
...

γlq(sn, s1) · · · γlq(sn, sn)


The cokriging predictor of the random variable Zk(s0) based on the realization
Z(si) is given by

Ẑk(s0) =

m∑
j=1

λk1jZj(s1) + · · ·+
m∑
j=1

λknjZj(sn)

=

n∑
i=1

m∑
j=1

λkijZj(si). (1)

The predictor (1) is unbiased if
n∑
i=1

λkik = 1 and
n∑
i=1

λkij = 0 for all j 6= k, j =

1, . . . ,m. Using the method of Lagrange multipliers to minimize the mean squared
prediction error, E(Ẑk(s0)−Zk(s0))2, subject to the unbiasedness constraints gives
the cokriging system of equations, which in matrix notation can be expressed by

Cλk = ck,

with

C =



Γ11 · · · Γ1k · · · Γ1m 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
Γk1 Γkk Γkm 0 1 0

...
. . .

...
...

. . .
...

Γm1 · · · Γm2 · · · Γmm 0 · · · 0 · · · 1
1T · · · 0T · · · 0T 0 · · · 0 · · · 0
...

. . .
...

...
. . .

...
0T 1T 0T 0 0 0
...

...
. . .

...
...

. . .
...

0T · · · 0T · · · 1T 0 · · · 0 · · · 0



=

(
Γ X

XT 0∗

)
,

(2)
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λk =



λk1
...

λkk
...

λkm
δ1
...
δk
...
δm



, ck =



γk1
...
γkk
...
γkm
0
...
1
...
0



,

where (Γij)(n×n), 1 = (1, · · · , 1)T(n×1), 0 = (0, · · · , 0)T(n×1), (Γ)(m×n)×(n×m), (X)(n×m)×m,

(0∗)(m×m), λ
k
j = (λk1j , · · · , λknj)T , and γkj = (γk1j , · · · , γknj)T , for all i, j = 1, · · · ,m.

In multivariable spatial prediction (Ver Hoef & Cressie 1993, Ver Hoef & Barry
1998) all the m variables are predicted simultaneously at s0. In this case the
predictor kriging is given by

 Ẑ1(s0)
...

Ẑm(s0)

 =

 λ111 · · · λ11m · · · λ1n1 · · · λ1nm
...

. . .
...

...
. . .

...
λm11 · · · λm1m · · · λmn1 · · · λmnm





Z1(s1)
...

Zm(s1)
...

Z1(sn)
...

Zm(sn)


, (3)

and the parameters are estimated by minimizing the matrix V(Ẑ(s0)−Z(s0)). The
solution is then obtained by solving the system (Ver Hoef & Barry 1998)(

Γ X

XT 0

)(
Λ
∆

)
=

(
G
I

)
,

where Γ and X are defined as in (2), Λ is the matrix of parameters, ∆ is a diagonal
matrix of Lagrange multipliers, I is an identity matrix and

G =


γ1
1 γ2

1 · · · γm1
γ1
2 γ2

2 · · · γm2
...

. . .
...

γ1
m γ2

m · · · γmm

 .

Cokriging could be used for predicting simultaneously all m variables by cokriging
each variable, one at a time. The cokriging prediction for one variable at a time
coincides with the prediction of that variable obtained by multivariable spatial
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prediction (Ver Hoef & Cressie 1993). However, this coincidence depends on the
criteria used in multivariable prediction. If for example criteria takes into account
cross-correlation between variables using the Mahalanobis metric the results need
not be similar (see details in Ver Hoef & Cressie (1993)). Proposition 1 in this
paper clarifies this fact. The difference between both approaches is given by their
prediction variances. With cokriging we obtain a prediction variance for each uni-
variate variable. In multivariable spatial prediction, in addition to the univariate
prediction variances, is possible to estimate a multidimensional prediction region
with its long axis oriented toward regions where the predicted variables tend to
co-vary (Ver Hoef & Cressie 1993).

3 Cokriging based on curves

Let
{
χs(t), t ∈ T, s ∈ D ⊂ Rd

}
be a random function defined on some compact set

T of R. Suppose we observe a sample of curves χs1(t), · · · , χsn(t) defined for t ∈ T ,
si ∈ D, i = 1, · · · , n. We assume that these curves belong to a separable Hilbert
space H of square integrable functions defined on T . We consider that for each
t ∈ T we have a second-order stationary and isotropic random process, that is, the
mean and variance functions are constant and the covariance depends only on the
distance among sampling points. We want to predict a single variable at a single
location from a sample of spatially correlated functional data χs1(t), · · · , χsn(t).
Let χs0(v) be the random variable to be predicted at an unsampled location s0 at
a particular temporal instant v ∈ T . To work with cokriging based on curves, we
extend the cokriging predictor shown in Section 2 replacing in (1) both the n×m
parameters λkij by n functional parameters λvi (t) and the n×m random variables
Zj(si) by n functional variables χsi(t), i = 1, · · · , n, j = 1, · · · ,m. We describe
these replacements in (4) and (5), respectively:

Parameters

Multivariable Cokriging Cokriging Based on Curves
λ11 · · ·λ1m ⇒ λv1(t), t ∈ T
λ21 · · ·λ2m ⇒ λv2(t), t ∈ T

. . .
...

...
λn1 · · ·λnm ⇒ λvn(t), t ∈ T

(4)

Variables

Multivariable Cokriging Cokriging Based on Curves
Z1(s1) · · ·Zm(s1) ⇒ χs1(t), t ∈ T
Z1(s2) · · ·Zm(s2) ⇒ χs2(t), t ∈ T

. . .
...

...
Z1(sn) · · ·Zm(sn) ⇒ χsn(t), t ∈ T

(5)
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Thus, the cokriging predictor of χs0(v) based on functional data (CBFD) is given
by

χ̂s0(v) =

n∑
i=1

∫
T

λvi (t)χsi(t)dt. (6)

For each specific v ∈ T, the functional parameters λvi (t), i = 1, · · · , n in (6) are
estimated taking into account classical geostatistical constraints, that is, unbiased-
ness and minimum prediction variance. We solve this problem using an approach
based on basis functions. We expand functional variables and parameters by

χsi(t) =

K∑
l=1

ailBl(t) = aTi B(t), (7)

and

λvi (t) =

K∑
l=1

bilvBl(t) = bTivB(t), (8)

where K defines the number of basis functions, and its value can be obtained using
a cross-validation procedure as explained in Section 5. Therefore, using (7) and
(8) the predictor (6) is expressed as

χ̂s0(v) =

n∑
i=1

∫
T

bTivB(t)BT (t)aidt

=

n∑
i=1

bTivWai, (9)

where

W =

∫
T

B(t)BT (t)dt. (10)

For any orthonormal basis such as the Fourier basis, the Gram matrix W is the
identity matrix. For other basis functions such as B-Splines, W must be calculated
by numerical integration.

Assuming stationarity of the random functions, the matrix

A =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
. . .

...
an1 an2 · · · anK

 = (α1, · · · ,αK)(n×K) (11)

forms a K multivariable random field with

E(αj) =


E(a1j)
E(a2j)

...
E(anj)

 =


ϑj
ϑj
...
ϑj

 , j = 1, · · · ,K, (12)
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and covariance matrix

Σ =


Σ11 Σ12 · · · Σ1K

Σ21 Σ22 · · · Σ2K

...
...

. . .
...

ΣK1 ΣK2 · · · ΣKK

 . (13)

where Σij = C(αi,αj)(n×n), is the covariance between αi and αj . From equation
(12) We have

E(ai) =


E(ai1)
E(ai2)

...
E(aiK)

 =


ϑ1
ϑ2
...
ϑK

 = ϑ. (14)

Thus, the mean of the predictor (9) is given by

E(χ̂s0(v)) =

n∑
i=1

bTivWE(ai)

=

n∑
i=1

bTivWϑ.

On the other hand the mean of the unobserved function on site s0 at a time v is

E(χs0(v)) =

K∑
l=1

E(a0l)Bl(v)

= BT (v)E(a0)

= BT (v)ϑ.

Consequently, the proposed predictor is unbiased if

n∑
i=1

bTiv = BT (v)W−1. (15)

Although a Gram matrix is in general positive semidefinite, and positive definite-
ness can not be generally guaranteed, our Gram matrix W in (10) is positive
definite because the functions Bl(t), l = 1, · · · ,K are part of a basis and thus
are linearly independent. Consequently, W−1 exists and the equation (15) is well
defined.

To find the best linear unbiased predictor (BLUP), the n functional parameters
in the proposed predictor are given by the solution of the following optimization
problem

Min
λv
1(·),...,λv

n(·)
V (χ̂s0(v)− χs0(v)) , s.t. E(χ̂s0(v)) = E(χs0(v)). (16)
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Developing the variance in the objective function (16) we find the following ex-
pression:

V (χ̂s0(v)− χs0(v)) = V (χ̂s0(v)) + V (χs0(v))− 2C(χ̂s0(v), χs0(v))

=

n∑
i=1

bTivWV(ai)W
T biv

+ 2
∑
i<j

bTivWC(ai,aj)W
T bjv

+BT (v)V(a0)B(v)

− 2

n∑
i=1

bTivWC(a0,ai)B(v), (17)

where V(ai) and V(a0) stand for the variance of the vectors ai and a0 respectively,
and C(ai,aj) and C(a0,ai) define, respectively, the covariance between the vectors
ai and aj , and between the vectors a0 and ai. These values can be calculated if
Σ in (13) has been previously estimated, but I can use multivariable geostatistics
(Wackernagel 1995) and in particular a linear model of coregionalization (LMC)
(Borgault & Marcotte 1991) in order to estimate these matrices. Note that because
of the stationarity of the random functions in A, the variances of ai and a0 are
equal. In addition, C(a0,ai) depends only on the separation vector and not on
the locations themselves. Thus they can be calculated directly from Σ.
If we define

Mi =
(
WV(ai)W

T
)
(K×K)

,

Mij =
(
WC(ai,aj)W

T
)
(K×K)

Ni(v) = (WC(a0,ai)B(v))(K×1) (18)

and

D(v) = BT (v)V(a0)B(v), (19)

equation (17) can be rewritten as:

V (χ̂s0(v)− χs0(v)) =

n∑
i=1

bTivMibiv + 2
∑
i<j

bTivMijbjv

+ D(v) − 2

n∑
i=1

bTivNi(v). (20)

From (20) and considering K Lagrange multipliers mT
v = (m1v, · · · ,mKv), the
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optimization problem (16) can be expressed as

min
b1v,...,bnv,mv

n∑
i=1

bTivMibiv + 2
∑
i<j

bTivMijbjv + D(v)

− 2

n∑
i=1

bTivNi(v) + 2mT
v

(
n∑
i=1

biv −W−1B(v)

)
. (21)

Taking βv =
(
bT1v, · · · ,b

T
nv,m

T
v

)T
(K(n+1)×1)

, then is given by

Min
βv

βTv Mβv + D(v) − 2βTv N(v) (22)

where

M =


M1 M12 · · · M1n I
M21 M2 · · · M2n I

...
...

. . .
...

...
Mn1 Mn2 · · · Mn I

I I · · · I 0


[K(n+1)]×[K(n+1)]

and

N(v) =


N1(v)
N2(v)

...
Nn(v)

W−1B(v)


(K(n+1)×1)

(23)

Finally, minimizing equation (22) with respect to βv I obtain

2Mβv − 2N(v) = 0⇒Mβv = N(v)⇒ β̂v = M−1N(v). (24)

A plug-in estimation of the prediction variance σ2
s0(v) = V (χ̂s0(v)− χs0(v)) is

given by

σ̂2
s0(v) = β̂

T

v Mβ̂v + D(v) − 2β̂
T

v N(v), (25)

where the matrix D(v) defined as in equation (19) is calculated using an estimate

of V̂(a0) obtained by means of the fitted LMC.

4 Functional kriging: total model

In this section we show a predictor defined in Giraldo (2009) which is also con-
sidered by Nerini et al. (2010). We call this one functional kriging (total model)
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predictor (FKTM). We assume the same stationarity and isotropy assumptions as
for the cokriging in Section 3. The cokriging predictor given in (6) is defined for
an specific v ∈ T . If we want to predict the whole curve at s0, the functional pa-
rameter λvi (t) in (6) is replaced by a double indexed functional parameter λi(t, v).
Thus, the predictor of the whole curve is given by

χ̂s0(v) =

n∑
i=1

∫
T

λi(t, v)χsi(t)dt, v ∈ T, (26)

such that λ1(t, v), . . . , λn(t, v) : T ×T → R. Note that, following the replacements
given in the schemes (4) and (5), the predictor given in (26) is an extension to
the functional context of the predictor (3). It is clear that, for a fixed v ∈ T ,
the FKTM predictor in equation (26) and the CBFD predictor given in (6) have
similar expressions. Proposition 1 bellow establishes the equivalence between both
problems when basis function expansion is used to solve them.

The functional parameter λi(t, v) in (26) determines the impact of the i-th observed
function at time t on an unobserved function at time v. This modeling approach
is coherent with the functional linear model for functional responses (total model)
shown in Ramsay & Silverman (2005). In that framework and assuming that we
generally have Xj ∈ L2(T1), Y ∈ L2(T2) with j = 1, . . . , q, with L2 a space of
square integrable functions, the functional response Y (v) is modeled in terms of
the functional covariates by

Y (v) = α(v) +

q∑
j=1

∫
T1

Xj(t)βj(t, v)dt+ ε(v), (27)

where βj ∈ L2(T1 × T2) is a parameter function, α ∈ L2(T2) is an intercept
function and ε ∈ L2(T2) is a random error process such that E(ε(v)) = 0 for all v.
Estimation of functional parameters in (27) is carried out by solving (Ramsay &
Silverman 2005)

Min
α(·),β1(·,·),...,βq(·,·)

E‖Ŷ (·)− Y (·)‖2.

In our context the covariates are the observed curves in n sites of a region and
the functional response is an unobserved function at an unvisited location. Con-
sequently our objective function, based on the L2-norm is

E‖χ̂s0(·)− χs0(·)‖22,

depending on λ1(·, ·), . . . , λn(·, ·), or by using Fubini's Theorem∫
T

E
(
χ̂s0(v)− χs0(v)

)2
dv.

Considering stationarity, the objective function becomes∫
T

V
(
χ̂s0(v)− χs0(v)

)
dv.
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Again the functional parameters λi(t, v) in(26) are estimated taking into account
the constraints of unbiasedness and minimum prediction variance. Thus, the op-
timization problem becomes

Min
λ1(·,·),...,λn(·,·)

∫
T

V
(
χ̂s0(v)− χs0(v)

)
dv s.t. E(χ̂s0(v)) = E(χs0(v)), ∀v ∈ T.

We solve this problem by using an approach based on basis functions. We ex-
pand the functional variables as in the equation (7) and the bivariate functional
parameters by

λi(t, v) =

K∑
j=1

K∑
l=1

cijlBj(t)Bl(v) = BT (t)CiB(v), (28)

where

Ci =


ci11 ci12 · · · ci1K
ci21 ci22 · · · ci2K
...

...
. . .

...
ciK1 ciK2 · · · ciKK


(K×K).

From equations (7) and (28), the predictor (26) can be expressed as

χ̂s0(v) =

n∑
i=1

∫
T

aTi B(t)BT (t)CiB(v)dt

=

n∑
i=1

aTi WCiB(v) = BT (v)

n∑
i=1

CT
i WTai

= BT (v)

n∑
i=1

CT
i Wai = BT (v)â0, (29)

where the matrix of inner products W is defined as in equation (10). The predictor
(26) is also considered by Nerini et al. (2010). These authors assume that W is
the identity matrix because they consider a solution based on orthonormal basis
expansions. In our solution this is not a necessary condition. Now we consider the
unbiasedness and minimum variance properties of the proposed predictor. As in
Section 3, we assume that the coefficients ai in the equation (29) follow a stationary
multivariable random field. Consequently from equation (14) the expected value
of the curve on an unvisited site s0 is given by

E(χs0(v)) = E

 K∑
j=1

a0lBl(v)


= E(BT (v)a0) = BT (v)E(a0)

= BT (v)ϑ. (30)
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On the other hand taking expected values in (29) we have

E(χ̂s0(v)) = BT (v)

n∑
i=1

CT
i WE (ai)

= BT (v)

n∑
i=1

CT
i Wϑ. (31)

Consequently from equations (30) and (31) we note that the predictor (26) is
unbiased if and only if

BT (v)

n∑
i=1

CT
i Wϑ = BT (v)ϑ, for all ϑ ∈ T,

that is, if and only if,

n∑
i=1

CT
i Wϑ = ϑ, for all ϑ ∈ T.

Given that W is full rank, this condition is equivalent to

n∑
i=1

Ci = W−1.

The n functional parameters in the predictor (26) are given by the solution of the
following optimization problem

Min
C1,...,Cn

∫
T

V(BT (v)â0 −BT (v)a0)dv s.t.

n∑
i=1

Ci = W−1. (32)

The integral in the objective function (32) can be rewritten as∫
T

BT (v)V (â0 − a0) B(v)dv

=

∫
T

Tr
(
BT (v)V (â0 − a0) B(v)

)
dv

=Tr

(
V (â0 − a0)

∫
T

B(v)BT (v)dv

)
=Tr (V (â0 − a0) W) . (33)

The variance in (33) is

V (â0 − a0) =

n∑
i=1

CT
i WV(ai)WCi + 2

n∑
i<j

CT
i WC(ai,aj)WCj

+ V(a0)− 2

n∑
i=1

CT
i WC(ai,a0). (34)
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From (34) and defining the following matrices

Qii = WV(ai)W,Qij = WC(ai,aj)W,Ni = WC(ai,a0)

the optimization problem (32) can be expressed as

Min
C1,...,Cn,m

n∑
i=1

Tr
(
CT
i QiiCiW

)
+ 2

n∑
i<j

Tr
(
CT
i QijCjW

)
+ Tr(V(a0)W)

− 2

n∑
i=1

Tr
(
CT
i NiW

)
+ 2m

(
n∑
i=1

Ci −W−1

)
. (35)

Derivatives with respect to Ci, i = 1, · · · , n, and m in (35) are given, respectively,
by

2

n∑
j=1

QijCjW− 2NiW + 2m, and

n∑
i=1

Ci −W−1.

The solution of the problem given in (35) is achieved by setting these derivatives
equal to zero. This solution can be represented in matrix notation as

Q11 Q12 · · · Q1n I
Q21 Q22 · · · Q2n I

...
...

. . .
...

...
Qn1 Qn2 · · · Qnn I

I I · · · I 0




C1

C2

...
Cn

m∗

 =


N1

N2

...
Nn

W−1

 , (36)

where m∗ = mW−1. From equations (33) and (34), an estimation of the inte-
grated prediction variance

σ2
int =

∫
T

σ2
s0(v)dv =

∫
T

V
(
χ̂s0(v)− χs0(v)

)
dv

is given by

σ̂2
int =

n∑
i=1

Tr
(
Ĉ
T

i QiiĈiW
)

+ 2

n∑
i<j

Tr
(
Ĉ
T

i Qij ĈjW
)

+ Tr(V(a0)W)− 2

n∑
i=1

Tr
(
ĈiNiW

)
, (37)

where the matrices Ĉ1, · · · , Ĉn are obtained by solving the system (36).

To finish with this section we note the connection between the two methods intro-
duced in the paper. The relationship between CBFD and FKTM is analogous to
that of cokriging analysis and multivariable spatial prediction, in the sense that
the prediction obtained by CBFD at a time is identical to the prediction achieved
by FKTM at the same time.
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The expressions of these predictors, the unbiasedness constraints and the respec-
tive objective functions, are equivalent at each fixed time v. The distinctive feature
between these approaches is given in terms of the prediction variances. In the first
case a prediction variance at each particular time can be obtained, whereas in the
second one an integrated prediction variance can be estimated and used as a global
measure of uncertainty. Indeed Proposition 1 establishes the equivalence between
both alternatives when, as we propose, a basis function expansion is used. The
proof is deferred to the Appendix.

Proposition 1. Assume that representation (7) is correct for χsi , i = 0, 1, . . . , n.

Let χ̂Cs0(v), v ∈ T , be the set of predictors for χs0(v), v ∈ T , derived from equations
(6) and (8), where the coefficients biv, i = 0, 1, . . . , n, are the solution of problem
(22) for each v ∈ T . Let χ̂Fs0(v), v ∈ T , be the predicted function given by equations
(26) and (28), where coefficient matrices Ci, i = 0, 1, . . . , n, are the solution of
problem (35). Then, assuming that we use the L2-norm, i.e, the norm of χsi is
the expectation of the integral of squared χsi(v) with v ∈ T ,

χ̂Cs0(v) = χ̂Fs0(v)

for all v ∈ T and all s0 ∈ D.

5 Applications

In applied sciences, it is common that data have both spatial and functional com-
ponents. One such example could be meteorology, when curves of temperature
or precipitation are obtained in several weather stations of a country (Ramsay &
Silverman 2005). Likewise in agronomy when measures of penetration resistance
are taken in a sampling grid of the study area (Chan et al. 2006). In this case,
and though penetration resistance is measured only at some depths, it is possible
to consider it as a functional variable after a smoothing or interpolation process
have been applied. We consider two real data sets in these fields to illustrate the
approach.

5.1 Spatial prediction of temperature curves in the Cana-
dian Maritime Provinces

Spatial prediction of meteorological data is an important input for many types of
models. In particular, the modeling of spatially correlated temperature data is
of interest, among others, for predicting microclimate conditions in mountainous
terrain, resource management, calibration of satellite sensors or for studying the
“greenhouse effect”.

A data set frequently used in the FDA setting corresponds to temperature curves
recorded at 35 weather stations located throughout Canada (Yamanishi & Tanaka
(2003), Ramsay & Silverman (2005) and Hall & Hosseini-Nassab (2006)). This
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Figure 1: Averages (over 30 years) of daily temperature curves ( right panel) ob-
served at 35 weather stations of the Canadian Maritime provinces (left panel).
Source: own elaboration.

corresponds to a spatially correlated functional data set showing an unusual large
spatial scale as the weather stations expand over the Canadian territory. The
large distances among the locations are reflected in marked differences among the
temperatures values, making the assumptions of stationarity and isotropy hard
to meet. Taking into account that we assume stationarity and isotropy in the
model introduced here, we analyze a homogeneous smaller area in Canada (the
Maritime Provinces), thereby assuming negligible the above-mentioned effects. In
particular we use a data set consisting of temperature measurements recorded at 35
weather stations located in the Canadian Maritime Provinces (Figure 1, left panel).
The Maritime Provinces cover a region of Canada consisting of three provinces:
Nova Scotia (NS), New Brunswick (NB), and Prince Edward Island (PEI). The
temperature here is characterized by cool summers and mild winters, with a much
smaller annual temperature range than that recorded in other Canadian regions.
The effects of longitude, latitude, coastal and inland climates are unimportant, and
the conditions of stationarity and isotropy are therefore plausible (Stanley 2002).

We thus analyze information of daily temperatures averaged over the years 1960 to
1994 (February 29th combined with February 28th) (Figure 1, right panel). The
mean of the averaged daily temperatures varies from -9.4 oC in wintertime to 19.3
oC in summer. The data for each station were obtained from the Meteorologi-
cal Service of Canada (http://www.climate.weatheroffice.ec.gc.ca/climateData/).
The geographical coordinates in decimal degrees of the weather stations (Figure 1,
left panel) were obtained from the database of geographic coordinate information
(http://www.tageo.com).

When data are periodic, Fourier basis with an even number of basis functions is the
most appropriate choice (Ramsay & Silverman 2005). To choose an appropriate
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Figure 2: Left panel: Cross-validation predictions obtained by FKTM. Right panel:
Predicted temperature at Moncton station obtained by FKTM (dark line), smoothed
temperature curves (gray color), and real data recorded at Moncton (circles).
Source: own elaboration.

number of basis functions to smooth the discrete data set recorded at each weather
station, we followed a non-parametric cross-validation criterion (Giraldo et al.
2010). This criterion is defined in terms of the sum of squared errors (SSE) of
cross-validation by

NPCV(K) =

n∑
i=1

‖χ̃si(t)− χsi(t)‖ =

n∑
i=1

M∑
j=1

(χ̃(j)
si (tj)− χsi(tj))2,

where χ̃
(j)
si (tj) is the estimated function at tj by means of equation (9) when the

datum χsi(tj) has been temporarily suppressed from the sample. The strategy
is to minimize NPCV(K) in K. We concluded that a basis with 65 functions
is appropriate for smoothing the temperature values recorded in the Canadian
Maritime provinces data set. This number agrees with that reported by Giraldo
et al. (2010) and Ramsay & Silverman (2005).

To verify the goodness-of-fit of the proposed predictors and to compare them with
other spatial predictors for functional data, we used a functional cross-validation
analysis. Each individual smoothed curve χsi(t) for i = 1, . . . , 35, was temporarily
removed, and further predicted from the remaining ones. We also do prediction
at an unvisited site (the Moncton station).

Considering the result in Proposition 1, we know that predictions obtained by
CBFD coincide with those given by FKTM. We thus only show the results obtained
by FKTM. Once the coefficients in matrix (11) were estimated, a LMC was fitted
to empirical variograms and cross-variograms and used to calculate the matrices
Qij ,Ni, i, j = 1, · · · , 35, in equation (36), to finally estimate the parameters given
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Figure 3: Left panel: Pointwise variance calculated with the smoothed curves and
the predicted curves (obtained by FKTM). Right panel: Cross-validation residuals
obtained by FKTM (clear lines), residual mean (dark line) and residual standard
deviation (dashed line). Source: own elaboration.

.

in that system. According to the LMC, we assumed that all direct and cross-
variograms should be modeled as linear combinations of the same set of variogram
models (nugget, spherical, exponential, Gaussian, etc). The results coming from
several combinations of tentative models were compared graphically, and then all
direct and cross-variograms were modeled as a linear combination of nugget and
exponential models. In this step of the analysis we used the library gstat of the
R language (Pebesma 2004).

Figure 2 shows the cross-validation predictions, the smoothed curves (when using
65 Fourier basis functions), and the prediction at Moncton (an unvisited weather
station, see Figure 1). A graphical comparison between smoothed (right panel
of Figure 2) and predicted curves (left panel of Figure 2) shows the good perfor-
mance of the predictions. In addition, the kriging prediction at Moncton station
is certainly close to the original data (right panel of Figure 2). For each t we
calculate the temperature variance based on the smoothed and predicted data
(Figure 3, left panel). Note that for each case (data smoothed or predicted) these
variances are calculated with 35 data (one data for each weather station). The
predicted curves show less pointwise variance than the smoothed ones which is not
surprising, because kriging is itself a smoothing method.

Right panel of Figure 3 shows the cross-validation residuals (differences between
the smoothed curves and the predicted curves). In general, good predictions in a
high proportion of sites (those having residuals around zero) are obtained. Large
positive or negative residuals are obtained in just a few number of stations. In
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wintertime, the residuals are bigger than in other seasons (residuals higher than
4 oC and lower than -4 oC at the beginning and end of the year), that is, we
have greater uncertainty on the prediction in this period. This is due to the fact
that the observed temperature curves show more variability at this time of year
(Figure 3, left panel). The residual standard deviation is lower in the summer
(Figure 3, right panel) where the smoothed and the predicted curves have less
variation (Figure 3, left panel). The residual mean varies around zero indicating
that the predictions are unbiased (Figure 3, right panel).

Bertrand and Bathurst in the north eastern area of New Brunswick (Figure 1) are
the stations with the greatest cross-validation residuals. Though the average daily
temperature at these stations has a very similar behavior throughout the time, the
difference among its values at some days (19, 49 to 57, 353, 354 and 356) is greater
than 4 oC. This fact generates high residuals in both cases, taking into account
that the prediction at Bertrand is highly influenced by the curve of Bathurst and
vice-versa, because these sites are relatively close (Figure 1).

With respect to the prediction at Moncton we observe that the predicted curve
shows a seasonal behavior similar to the smoothed curves (Figure 2, right panel).
This is consistent with real values recorded at this weather station. Three of the
estimated functional parameters used for prediction at Moncton are shown in Fig-
ure 4. These correspond to Bouctouche, Nappan and Aroostook. In Figure 4 we
also show the estimated functional parameters for all the stations when predicting
the temperature at Moncton on 9th April (day 100). Two relevant aspects can
be highlighted from Figure 4: (a) First, Bouctouche and Nappan stations have
greater influence in predicting Moncton than Aroostook (whose functional param-
eter is almost zero). A measure of influence is given by ‖λ‖2. Numerical values
of ‖λ‖2 for these three stations were 18.7, 3.9, and 0.006, respectively. This result
is coherent with the geostatistical philosophy: sites closer to the prediction loca-
tion have greater influence than others more far apart. Bouctouche and Nappan,
separated from Moncton 40 km and 56 km respectively, are the nearest stations
to this site in the data set (Figure 1), whereas Aroostook, located in western New
Brusnwick, is one of the most separated stations (approximately 310 kilometers
from Moncton). As Aroostock, other stations far from Moncton have low influence
on the prediction; (b) Second, the estimated functional parameters reveal a short
temporal effect on the prediction. This was also expected. An analysis of time
series, not included in the paper, indicates that these temperatures, considered
as time series and differentiated, have low autoregressive orders. This feature is
reflected in Figure 4 (bottom, right panel) which corresponds to predicting the
temperature at Moncton on 9th April (day 100). The estimated parameters re-
veal a temporal effect on the prediction even lower than 10 days. The greatest
estimated parameter (with values close to 0.09) corresponds to Bouctouche (the
nearest station to Moncton) on the same day. Comparing these curves with those
corresponding to predicting the temperature at Moncton on a different day, it can
be seen that the effect of changing v (the day where the prediction is done) is only
reflected at the time where the estimated parameters show their largest values,
but not in the shape of the curves.
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Figure 4: Top: Estimated functional parameters for Bouctouche (NB) and Nappan
(NB). Bottom: Estimated functional parameter for Aroostook (NB) and functional
parameters for all stations when we predict at Moncton on 9th April (day 100).
Source: own elaboration.
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Table 1: Summary statistics of the sum of the squared errors of functional cross-
validation. Results obtained when using Fourier basis to smooth each curve.
OKFD: Ordinary kriging for function-valued spatial data; CTKFD: Continuous
time-varying kriging for functional data; FKTM: Functional kriging (total model),
that equals CBFD (Cokriging based on functional data). Source: own elaboration.

Statistic OKFD CTKFD FKTM (or CBFD)
Minimum 103.7 104.4 104.3
Median 253.4 252.7 252.8
Mean 299.5 299.2 298.9
Maximum 890.8 902.1 899.8
Standard deviation 178.4 175.4 176.1
Sum 10484 10471 10461

We have introduced in other previous works some methods for spatial prediction
of functional data based on classical kriging approaches. These are called ordinary
kriging for function-valued spatial data (OKFD) (Giraldo et al. 2011) and con-
tinuous time-varying kriging for spatial prediction of functional data (CTKFD)
(Giraldo et al. 2010) which are defined respectively by the following predictors

OKFD: χ̂s0(t) =
∑n
i=1 λiχ̂si(t), t ∈ T

CTKFD: χ̂s0(t) =
∑n
i=1 λi(t)χ̂si(t), t ∈ T.

The OKFD predictor has the same expression than a classical ordinary kriging
but considering curves instead of variables, that is, the predicted curve is a linear
combination of observed curves. On the other hand the CTKFD predictor includes
functional parameters into the predictor. In this case for each t ∈ T , the predictor
equals the ordinary kriging predictor.

We now use the Canadian Maritime Provinces temperature data set and the func-
tional cross-validation criterion, as previously described, for comparison purposes.
In particular, we evaluate over j = 1, · · · , 365 the cross-validation predictions ob-
tained with OKFD, CTKFD, and FKTM (that equals a CBFD predictor when
calculating χ̂s0(v) in equation (6) for each v = 1, · · · , 365). Summary statistics of
the sum of the squared errors of functional cross-validation (SSEF ) are shown in
Table 1. Note that using Fourier basis implies that the matrix W in (10) is an
identity matrix, as in the case of (Nerini et al. 2010). In terms of comparisons, and
to show the generality of our approach, we additionally carried out an analysis con-
sidering B-splines basis (with 65 functions), and thus going far from orthogonality.
The results are given in Table 2. A comparison of the SSEF values by means of
a Friedman test (Hollander & Wolfe 1999) shows no significant difference among
the six approaches (Friedman chi-squared = 8.0612, df = 5, p-value = 0.1529).
Though the temperature data are periodic and consequently a Fourier basis can
be more appropriate, the results shown in Table 2 indicate that a B-splines basis
could also be useful in this case.
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Table 2: Summary statistics of the sum of the squared errors of functional cross-
validation. Results obtained when using B-Splines basis to smooth each curve.
OKFD: Ordinary kriging for function-valued spatial data; CTKFD: Continuous
time-varying kriging for functional data; FKTM: Functional kriging (total model),
that equals CBFD (Cokriging based on functional data). Source: own elaboration.

Statistic OKFD CTKFD FKTM (or CBFD)
Minimum 106.2 106.3 106.1
Median 251.2 251.2 251.3
Mean 299.5 298.3 298.2
Maximum 899.5 899.5 897.4
Standard deviation 176.4 177.2 176.9
Sum 10483 10441 10437

5.2 Spatial prediction of penetration resistance curves

Penetration resistance is an empirical measure of soil strength that can rapidly
identify areas where soil depth or soil compactation may be limiting yields (Chan
et al. 2006). The soil mechanical resistance to penetration shows high influence
on vegetal development since the growth of the roots and the crops productivity
change in an inversely proportional form with its value (Freddi et al. 2006). Know-
ing its spatial variability provides possibilities for site-specific soil treatments that
can increase profitability and sustainability of crop production. Determination of
soil resistance at different depths is also necessary to establish proper management
strategies. We use here some soil penetration resistance profiles (Figure 5, right
panel) obtained on a regular georreferenced grid with 32 sampling points over an
agricultural farm at the National University of Colombia (Figure 5, left panel).
The study area is situated at 4o, 42N, 74o, 12W. For each sampling point, 256 ob-
servations of penetration resistance (MPa) were obtained on depths varying from
0 to 35 cm. The positions of the locations were measured by GPS. The data set
was obtained by Galindo (2004) as part of a research project focused in precision
agriculture (Leiva 2003).

The goal of analyzing this type of data is to predict penetration resistance on
unsampled sites based on the collected information, in order to carry out precision
agriculture. We note that the curves in Figure 5 are not periodic and consequently
a Fourier basis is not the most appropriate choice. Following a non-parametric
cross-validation criterion, as shown in previous Section, we used a B-spline basis
with 14 basis functions to smooth the data. This was also the number of functions
used by Giraldo (2009).

With this basis, the methodology proposed by Nerini et al. (2010) cannot be ap-
plied because the matrix W in (10) is not an identity matrix. The set of smoothed
curves when using a B-splines basis with 14 functions is shown in Figure 6 (right
panel). As an example of the proposed methodology, FKTM prediction on an
unvisited location with coordinates 11179 (longitude) and 9750 (latitude) (see left
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Figure 5: Observed penetration resistance curves (right panel) on 32 sampling
points ( left panel). Data collected during 2004 at Marengo Experimental Station
(National University of Colombia). Dark point without label in ( left panel) corre-
sponds to a unvisited site. Source: own elaboration.

panel in Figure 5) was performed. As in Section 5.1 a LMC was estimated and
used to calculate the matrices Qij ,Ni, i, j = 1, · · · , 32, in equation (36), and
consequently to estimate the parameters given in that system. Any individual
variogram and cross-variograms were modeled as a linear combination of nugget
and exponential models. The predicted curve (Figure 6, solid line in right panel)
indicates that in this location there is a good soil compaction level, because the
predicted penetration resistance is less than 2 MPa, which is considered the critical
limit for root growth (Chan et al. 2006).

Three of the estimated functional parameters used for the prediction at the unvis-
ited site are shown in Figure 7. These correspond to sites 19, 20 and 8 (see Figure
5). From Figure 7, it is clear that sites 19 and 20 have greater influence than others
in the prediction (whose functional parameter is almost zero). A comparison in
terms of the ‖λ‖2 (2.09, 1.68, and 1.9× 10−6, respectively) confirms this aspect.

From a geostatistical point of view this is an expected result because sites 19 and
20 are closer to the prediction site than site 8 (Figure 5). As site 8, other stations
far from the unvisited site have low influence on the prediction. In Figure 7 we also
show the estimated functional parameters for all the 32 sites when predicting the
penetration resistance at the unvisited site on depth 5 cm. Here we observe that
four sites have grater influence than other in the prediction. These corresponds to
sites 19, 20, 13, and 14, that is, the four sites closest to the prediction site (Figure
5).

As in Section 5.1 we carried out a cross-validation analysis with the penetration
resistance data set. Each individual smoothed penetration resistance curve χsi(t)
for i = 1, . . . , 32, was temporarily removed, and further predicted from the re-
maining ones by means of FKTM. Figure 6 shows the cross-validation predictions
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Figure 6: Left panel: Cross-validation predictions of penetration resistance curves.
Right panel: Predicted penetration resistance at a unvisited site obtained by FKTM
(dark line) and smoothed penetration resistance curves (gray color). Source: own
elaboration.

(left panel), and the smoothed curves, and the prediction at an unvisited site (right
panel). A graphical comparison between smoothed and predicted curves shows the
good performance of the predictions (Figure 6). A comparison with OKFD and
CTKFD in terms of the sum of squared errors (Table 3) shows small differences
among the methods. A Friedman test (based on the SSEF values) indicates that
there is no significant difference (Friedman chi-squared = 2.6875, df = 2, p-value =
0.2609) among the three predictors. We can observe in Table 3 that with FKTM
we obtain lower values of maximum and standard deviation of the sum of squared
errors, that is, FKTM allows to obtain better cross-validation results in several
sites. A detailed study of the sum of squared error site by site shows that FKTM
is better than other in 14 sites (44 % of them).

6 Discussion and further research

We have shown how two predictors used in multivariable geostatistics can be ex-
tended naturally to the functional context. Our first predictor (cokriging based
on curves) can be used with the same goal that classical multivariable cokriging
(univariate prediction), but now considering curves instead of vectors as auxiliary
information. This methodology could be an alternative in space-time modeling.
The second proposed predictor (functional kriging: total model) allows predicting
a whole curve at an unvisited site. The estimation for both proposed predictors is
based on the use of basis function expansion. We have shown that when using this
approach our two proposals coincide. Our second approach is also considered by
Nerini et al. (2010). They propose the use of an orthonormal basis because in that
case the predictor is simpler. The use of an orthonormal basis is computationally
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Figure 7: Top: Estimated functional parameters for sites 19 and 20. Bottom:
Estimated functional parameter for site 8 and functional parameters for all sites
when we predict at an unvisited site on depth 5 cm. Source: own elaboration.

Table 3: Summary statistics of the sum of the squared errors of functional cross-
validation with the penetration resistance data set. Results obtained when using
B-Splines basis to smooth each curve. OKFD: Ordinary kriging for function-
valued spatial data; CTKFD: Continuous time-varying kriging for functional data;
FKTM: Functional kriging (total model), that equals CBFD (Cokriging based on
functional data). Source: own elaboration.

Statistic OKFD CTKFD FKTM (or CBFD)
Minimum 4.3 8.2 4.8
Median 24.8 22.4 26.9
Mean 34.9 33.3 34.6
Maximum 175.8 202.2 172.5
Standard deviation 34.3 35.4 33.8
Sum 1118 1066 1108
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advantageous but this is not a necessary condition for applying our proposals.
Thus, other basis useful in FDA, such as B-splines, can be used.

The low temporal effect detected by the estimated parameters in the data analyzed
suggests to consider only a domain v − δ ≤ t ≤ v + δ, where δ is a time lag over
which we use information for prediction. The examples used suggest that the three
predictors considered are equally useful. However, we think that further research is
needed for establishing the performance of the proposed predictors under different
levels of temporal cross-correlation.

Our proposals are based on both a common number of basis functions K and the
same class of basis functions for both the functional variables and the parameters.
We assume this for ease of mathematical developments. However an open question
isif this could be generalized to using different K’s and types of basis functions.
Another important point is that of relaxing the assumption of stationarity and
isotropy.

A generalization to the case where the mean function change inside the study area
is required. Models for carrying out spatial prediction based on information of
several functional variables, that is, two or more functional variables observed at
each sampling location, could also be considered.

Recibido: 16 de Junio de 2017
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Appendix: proof of proposition 1

Let us define the following sets of functions: F = {λ : T × T → R},

LC =
{
λ ∈ Fn : λi(t, v) = bTi (v)B(t),bi(v) ∈ RK , v ∈ T, t ∈ T, i ∈ {1 . . . n}

}
,

LF =
{
λ ∈ Fn : λi(t, v) = BT (v)CiB(t),Ci ∈ RK×K , v ∈ T, t ∈ T, i ∈ {1 . . . n}

}
.

Observe that LF ( LC .

Let F1 be the set of functions from T to R and let g be a generic function defined
from Fn1 × T to R. Let R be a generic subset of Fn such that LF ∩ R 6= ∅. For
L ∈ {LC ,LF } we define the functionals

Ψ
(1)
L (g) =

∫
T

min
λ∈L∩R

g(λ1(·, v), . . . , λn(·, v), v)dv,

Ψ
(2)
L (g) = min

λ∈L∩R

∫
T

g(λ1(·, v), . . . , λn(·, v), v)dv.

Observe that for all function g and for all λF ∈ LF ∩R,

Ψ
(1)
LC

(g) ≤ Ψ
(1)
LF

(g) ≤ Ψ
(2)
LF

(g) ≤
∫
T

g(λF1 (·, v), . . . , λFn (·, v), v)dv,

and

Ψ
(1)
LC

(g) ≤ Ψ
(2)
LC

(g) ≤ Ψ
(2)
LF

(g) ≤
∫
T

g(λF1 (·, v), . . . , λFn (·, v), v)dv.
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Let λC∗ be the optimal element in LC ∩R in the sense that

min
λ∈LC∩R

g(λ1(·, v), . . . , λn(·, v), v) = g(λC∗1 (·, v), . . . , λC∗n (·, v), v),

or equivalently ∫
T

g(λC∗1 (·, v), . . . , λC∗n (·, v), v)dv = Ψ
(1)
LC

(g).

If it would be possible to prove that in fact λC∗ is an element of LF ∩R, then it
would follow that∫
T

g(λC∗1 (·, v), . . . , λC∗n (·, v), v)dv = Ψ
(1)
LC

(g) ≤ Ψ
(2)
LF

(g) ≤
∫
T

g(λC∗1 (·, v), . . . , λC∗n (·, v), v)dv

and then the inequalities would be in fact equalities. Therefore we would conclude

that the minimums defining Ψ
(1)
LC

(g) and Ψ
(2)
LF

(g) are achieved at the same array

of functions λC∗.

We apply this result to the function g defined as

g(λ1(·, v), . . . , λn(·, v), v) = V

(
n∑
i=1

∫
T

λi(t, v)χsi(t)dt− χs0(v)

)

and the subset R of unbiased predictors,

R =

{
λ ∈ Fn : E

(
n∑
i=1

∫
T

λi(t, v)χsi(t)dt

)
= E(χs0(v)), for all v ∈ T

}
.

Then we only need to prove that the optimal coefficients λi(v, t) = λvi (t) defined
in equation (8) as bTivB(t), are in fact of the form BT (v)CiB(t). So we need to
prove that the optimal biv are

b̂iv = ĈiB(v)

for some matrix Ĉi ∈ RK×K . But this is true from equations (18), (23) and (24)
which establish that

(
bT1v, · · · ,b

T
nv,m

T
v

)T
= M−1N(v) = M−1


WC(a0,a1)

...
WC(a0,an)

W−1

B(v),

and the proof concludes.
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