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Abstract
Aim of study: To analyze the influence of harvesting costs on the distribution and type of cuttings when forest management planning 

is based on the dynamic treatment units (DTUs) approach. 
Area of study: A Mediterranean pine forest in Central Spain. 
Materials and methods: Airborne laser scanning data were used in area-based approach to predict stand attributes and delineate 

segments that were used as calculation units. Predicted stand attributes and existing models for diameter distribution and individual-
tree growth were used to simulate alternative management schedules for each segment for a 60-year planning horizon divided into 
three 20-year periods. Three alternative forest planning problems were formulated. They aimed to maximize or minimize net income, 
or maximize timber production with a constant flow of harvested timber. Spatial goals were used in all cases to enhance the clustering 
of treatments. 

Main results: Maxizing timber production without considering harvesting costs can be costly, even close to the plan that minimized 
net incomes. Maximizing net incomes led to frequent use of final felling instead of thinnings, placing cuttings near forest roads and 
creating more compact DTUs than obtained in the plan that maximized timber production. 

Research highlights: Compared to previous studies on DTUs, this study integrated felling and forwarding costs, which depended on 
distance to road and stand attributes, in the process of creating DTUs by means of spatial optimization.
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felling); SA (Simulated Annealing).
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Introduction

Designing a forest plan is a complex task requiring 
the combination of many elements to achieve the 
management goals of the forest landowner (McDill, 
2014). Contemporary forest planning methods are 
able to address a variety of simultaneous goals 
considering, for instance, timber harvesting targets 
and the spatio-temporal allocation of cuttings based 
on economic information (Pukkala, 2002). In these 

methods, preferences are converted into objectives and 
constraints when formulating multi-criteria decision-
making problems (Diaz-Balteiro & Romero, 2008).

The first step of the planning process is to acquire 
information concerning the characteristics of a given 
forest management unit. For this purpose, airborne laser 
scanning (ALS) data are increasingly used since they 
represent a source of spatially-continuous information 
on forest attributes (McRoberts, 2006). Once present-
state information is available, alternative candidate 
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solutions are compared to find the best possible management 
considering both preferences and consequences (Kangas & 
Kangas, 2002). Ensuring long-term sustainability of timber 
production has been a key element in the development 
of methods for forest management planning. In recent 
decades, the integration of additional criteria such as spatial 
objectives (Öhman, 2001) has increased the complexity of 
forest planning problems.

The integration of high-resolution spatial information 
from ALS techniques has eased and improved the 
inclusion of spatial goals in forest management 
planning (Baskent & Keles, 2005; Gobakken & 
Næsset, 2008). Moreover, forest inventory units can 
be delineated by means of ALS-based segmentation 
methods (Mustonen et al., 2008). This enhances the 
possibilities to use spatial optimization methods, for 
instance for delineating compact dynamic treatment 
units (DTUs; Holmgren & Thuresson, 1997; Heinonen 
et al., 2007) or improving the connectivity between 
old-growth forest patches (Tóth & McDill, 2008). 

Although spatial goals have been used to cluster 
treatments when maximizing timber production 
(Öhman, 2001), it may be more meaningful to pursue 
spatial objectives indirectly, for instance via the effect 
of the location and size of harvest blocks on economic 
objectives (Bettinger et al., 2003). Previous research on 
spatial forest management optimization has addressed 
the implications of spatial planning constraints (Pukkala 
et al., 2014) in the economic performance of different 
problem formulations (Öhman & Eriksson, 2002; 
Augustynczik et al., 2016). However, previous studies 
involving DTU-based forest planning have ignored the 
dependence of harvesting costs on forwarding distance. 
Previous research in Spain developed functions for 
calculating the harvesting costs as a function of distance 
to road, slope of the terrain and forest attributes (Solano 
et al., 2007), which can be integrated in spatial forest 
planning studies (González-Olabarria & Pukkala, 2011). 

The purpose of our study was to examine the 
influence of timber felling and forwarding costs on the 
location and type of cuttings. A forest management plan 
that maximized the difference between roadside value 
of harvested trees and harvesting cost was developed 
and compared to yield-maximizing plan, the latter 
representing the business as usual forest management 
in public forests of the study region. A third plan, 
minimizing net incomes, was also compiled as the worst 
possible scenario to properly locate the yield-oriented 
plan within the range of variation in the economic 
performance of alternative forest management options. 
The plans were compared according to their economic 
performance, type and intensity of cuttings, and the 
clustering of treatments.

Material and methods

Study area and field data 

The study area of 1,059 hectares is located in the 
mountainous forests of the Iberian System, in Castilla 
y León (Spain) (41°51´N, 3°15`E). It contains a mixture 
of dense and sparse pine stands where Pinus nigra Arn. 
is the main species. The slope of the terrain is mostly 
between 5 and 15%. About 1% of the area is steeper than 
35%, which is regarded as the limit for timber harvesting.   

Forest management is oriented towards sustained 
production of timber giving increasing importance to 
commercial thinning. This is partly due to the increasing 
value of thinner timber assortments. Usually, an early-stage 
thinning is prescribed 20 years after the establishment of 
the natural regeneration followed by one or two thinnings. 
Then, seed tree cut is prescribed. The rotation length for 
naturally regenerated P. nigra forests is between 90 and 
130 years depending on site productivity. 

Field data were collected using a systematic grid of 
116 circular plots (12.6 m radius). The required forest 
attributes needed for the planning system were number 
of stems per hectare, stand basal area, stand age and 
dominant height. Stand age was estimated using tree 
ring analysis on the tallest tree within each plot, and 
the height of the same tree was taken as the dominant 
height of the plot (Table 1). Forest road information 
was provided by the Forest Service of Soria province. It 
included data on 17 well-conserved forest roads (18,665 m 
in total, 17.6 m/ha) surrounding and intersecting the study 
area. 

ALS data and segmentation 

At the same time as the field work was carried out, 
ALS data were collected using the Leica ALS60 II 
laser scanning system. The average pulse density was 2 
pulses/m2. The scanner recorded up to 4 echoes per pulse. 
The digital terrain model (DTM) was interpolated at a 
1 m2 pixel size from echoes classified as ground echoes 
using the method proposed by Axelsson (2000). The 
elevation of the raster cell was the average elevation of 

Table 1. Summary of sample plot data 
Characteristics Min Mean Max

Diameter at breast height (cm) 10.0 19.8 64.2

Tree height (m) 2.1 11.1 27.0

Number of trees (trees/ha) 60.0 714.1 2,000.0

Stand basal area (m²/ha) 1.3 25.9 56.5

Dominant height (m) 6.1 15.3 27.0

Age (yr) 23.0 61.4 132.0
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those ground echoes that were located within the cell. 
The canopy height model (CHM), also with the pixel 
size of 1 m2, was interpolated by searching the highest 
ALS echo within a radius of 1.6 m (Euclidean distance) 
from the centre of each pixel. Then, the DTM was 
subtracted from the ALS echoes to convert absolute 
heights to heights above ground. Pixels that remained 
empty were filled by calculating the average of the 
highest echoes from non-empty neighbouring pixels. 

The resulting CHM was used for delineating homoge-
neous segments in terms of stand structure (Fig.1). 
Forest roads were considered as 7-m wide polygons 
in segmentation (see right panel in Fig. 1) and the bor-
dermost forest segments started exactly from the side of 
roads. Overall, 2,947 segments (average size 0.36 ha) 
were used as forest inventory units. The reader is referred 
to Pascual et al. (2017) for a detailed explanation on how 
the segmentation was done and how ALS metrics were 
selected and forest attributes predicted for the segments. 

Felling and forwarding cost functions

We used the cost functions (Eqs. [1]-[2]) presented 
in earlier studies under similar conditions (Solano et al., 
2007; González-Olabarria & Pukkala, 2011) to calculate 
the felling costs (including debranching and cross-
cutting) and forwarding costs to the nearest forest road. 
Slope, distance to road and the diameter of the harvested 
tree were the predictors of the cost functions (Fig. 2). 

 Cfelling                                                [1]

                                         
Cforwarding                     [2]

where Cfelling is felling cost (€/m3), Cforwarding is forwarding 
cost (€/m3), d is dbh of the harvested tree (cm), Slope is the 
average slope of the stand (%), and Distance is distance 
to road (m). The distance from a segment to the nearest 
forest road was computed along the surface of the terrain 
considering the slope. The slope was calculated from ALS 
data as the mean slope of the segment. 

Figure 1. Partial view of the study area showing sam-
ple plot locations and forest roads over the canopy 
height model (CHM) (a). Examples of segments (b).

Figure 2. Felling cost as a function of diameter at breast 
height (dbh) and slope (a) and forwarding cost as a func-
tion of dbh, slope and distance to road (b).

a

b

a

b
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Planning problems and spatial optimization

Since the predicted forest attributes consisted of 
segment-level information, we used diameter distribution 
models to obtain individual-tree attributes. Then, the 
individual-tree models presented in Pascual et al. (2017) 
were used to predict stand dynamics along a 60-year 
planning horizon divided into three 20-year periods. For 
the 2,947 calculation units, we simulated alternative nearly 
optimal even-aged management schedules using the Monte 
forest vers. 6.0 planning software (Palahi et al., 2004). 

To create the instructions for nearly optimal 
management, stand dynamics were used to predict the 
value increment of a large set of segments. Growing 
stock volume and value, stand basal area, site index 
and stand age were also calculated for each segment. 
Then, a regression model showing the value increment 
as a function of the above-listed stand variables was 
fitted and used to develop instructions for economically 
optimal management. The instructions showed the 
basal area at which thinning should be conducted and 
the mean diameter at which final felling should be done. 
The stand was considered financially mature for cutting 
when its relative value increment fell below 2%. 

The simulation used these instructions for rotation 
length and thinning basal area. Seed tree cut followed 
by the removal of seed trees during the next period 
was simulated when the mean diameter was larger 
than the instruction while thinnings were simulated 
when stand basal area was higher than the thinning 
basal area threshold of the instruction. Then, rotation 
diameter and thinning basal area were multiplied with 
constants slightly larger or smaller than 1, and the 
simulation was repeated to obtain several treatment 
schedules per segment. Always when basal area 
exceeded the thinning limit, three thinning intensities 
were simulated: light (20% reduction in stand basal 
area terms), normal (30%) and heavy thinning (40%). 
This also increased the number of alternative treatment 
schedules. The 2,947 segments of the case study area 
had 60,581 different simulated schedules, which is 21 
schedules per segment on average. 

Three alternative forest planning problems were for-
mulated and solved to examine the effect of harvesting 
costs on forest plan: i) maximize timber production 
(MaxPro); ii) maximize net income (MaxNetInc) and 
iii) minimize net income (MinNetInc). Since MaxPro 
ignored harvesting costs, cuttings were allocated 
without considering the effect of slope and forwarding 
distance on harvesting costs. MaxNetInc, which aimed 
at maximizing the total net income (roadside price of 
harvested trees – harvesting costs), took these factors 
into account. The MinNetInc formulation was not 
realistic regarding practical forestry, but it showed the lower 

bound of net income and making it possible to evaluate the 
MaxPro plan from the net income point of view.

Eight management objectives were included in each 
forest planning formulation. The principal management 
objective is referred to with symbol M as follows:

  ● MaxPro: Maximization of standing volume at the 
end of the plan (M1). 

 ● MaxNetInc: Maximization of net income during 
the plan (M2).

 ● MinNetInc: Minimization of net income during 
the plan (M3).

The three formulations shared the following seven 
non-spatial and spatial management goals:

  ● Removal of 50,000 m³ during each 20-year period 
(R1, R2, R3). 

  ● Maximization of the proportion of cut–cut borders 
of adjacent segments (CC). 

  ● Maximization of the proportion of cut–cut borders 
of adjacent segments prescribed as final fellings (FF). 

  ● 

  ● 

Constant timber flow along the plan was required (ob-
jectives R1, R2 and R3) to ensure sustained timber pro-
duction and steady economic return. Preliminarily, we 
tested three possible harvesting scenarios (25,000 m3, 
50,000 m3 and 100,000 m3). The results revealed that the 
difference between initial standing volume (253, 016 m3) 
was very close to the ending volume when 50,000 m3 was 
harvested during every 20-year period (ending volume 
was 256,043 m3). Therefore, we set the harvesting target 
as 50,000 m3 in all problems. 

The aggregation of harvest blocks was pursued via four 
simultaneous spatial goals that promoted the clustering 
of segments having a similar cutting prescription. CC and 
CNC aimed at aggregating all cuttings while FF and FNF 
specifically aggregated final fellings to avoid isolated 
segments prescribed as final felling within a thinning 
block. The aggregation was based on maximizing the 
shared border of adjacent cut-cut segments (CC and FF). 
In addition, the proportion of cut-uncut boundary was 
minimized to create compact and round-shaped treatment 
units (objectives CNC and FNF). 

The cellular automaton (CA) of Heinonen & Pukkala 
(2007) was used as the optimization method since 
previous research has shown the good performance of 
decentralized heuristic methods in large spatial problems 
(Pukkala et al., 2009) and, specifically, to create compact 
harvest blocks (Pascual et al., 2017). This two-phase CA 
included segment-level and neighbourhood-related goals 
(local function) and forest management unit level goals 
(global function). The local function included the spatial 

Minimization of the proportion of cut–non-cut 
borders of adjacent segments prescribed as final fellings 
(FNF).

Minimization of the proportion of cut–non-cut 
borders of adjacent segments (CNC). 
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objectives (CC, FF, CNC and FNF) and the primary 
objective (M) of the respective formulation. The CA 
calculates the probability of mutation and innovation as a 
function of iteration number. Firstly, one of the simulated 
treatment schedules is randomly selected for each segment. 
Then, a random number from 0 to 1 is drawn from a 
uniform distribution. If the random number is smaller than 
the current mutation probability, a mutation takes place 
(Heinonen & Pukkala, 2007). Innovations are assigned 
in the same way. If innovation occurs, the management 
schedule of the segment is replaced by the one which 
maximizes the following local function (Eq. [3]):

                        [3]

where U is the objective function value, s (sign) is +1 
for MaxPro and MaxNetInc plans and -1 for MinNetInc 
plan and Mmax is the largest per hectare value of the 
principal objective variable among all schedules of all 
segments. Preliminary tests were used to assign such 
weights for the spatial objetives that ensured a good 
harvest block layout. In this regard, the weights of CNC 
and FNF were progressively increased until compact 
harvest blocks were obtained. 

In the second phase of the CA, a global objective 
function (Eq. [4]) was added to the local one, ex-
pressing the cutting targets (R1, R2 and R3). The prin-
cipal objective variable was included also in the global 
objective function as this resulted in slightly better 
solutions than having the non-spatial objective only in 
the local objective function: 

                                        [4]

where p1, p2, p3 and p4 are the sub-priority functions for 
the cutting targets and M (Fig. 3).

In the global optimization phase, treatment schedules 
were re-assigned until the cuttings targets were met. 
The following objective function, including both the 
local and the global function, was used in the second 
phase of the CA run:

                                                 [5]

where  OF is the objective function value, a is the area 
of the segment, A is the total area of all segments, and 
b is the weight of the global priority function P. Once 
the local optimization phase was completed, the global 
phase started with Eq. [5] as the objective function, so 
that the value of b was increased from zero by 0.01 in 
every iteration until the global utility (Eq. [4]) reached 
a value, which could no longer be improved. At this 
point, the even-flow harvesting targets were met.

Assessment of forest management plans

The accumulated net income during the planning 
period was used as an indicator to compare the three plans 
in financial terms while timber production was assessed 
based on the standing growing stock volume at the end 
of the 60-year plan assuring that the 50,000 m3 harvesting 
targets were fulfilled for each 20-year period. The spatial 
distribution of prescriptions was analysed considering 
whether cuttings were final fellings and overstory removals, 
or thinnings. The prescribed area for each treatment and 
the spatial layout of the resulting DTUs were compared to 
identify changes in the location of prescriptions and their 
proximity to forest roads. The mean diameter of harvested 
trees in the resulting prescriptions was assessed together 
with the proximity of prescriptions to forest roads. 

Results

Management objectives

As expected, the MaxNetInc plan resulted in the 
highest total net income (6.24 million €). For MaxPro 
and MinNetInc plans, the net incomes were almost the 
same: 5.67 and 5.56 million €, respectively. In terms 

Figure 3. Sub-priority function for objective M (a) and 
cutting targets (objectives R1, R2 and R3) (b).

a

b



Adrián Pascual, Timo Pukkala, Sergio de-Miguel, Annukka Pesonen and Petteri Packalen

Forest Systems April 2018 • Volume 27 • Issue 1 • e001

6

of timber production, MaxPro accumulated the most 
standing volume at the end of the plan (260,507 m3) 
followed by MinNetInc (249,395 m3) and MaxNetInc 
(246,776 m3). The stumpage values of the ending 
growing stock were 14.15, 13.05 and 13.67 million € 
respectively in MaxPro, MaxNetInc and MinNetInc. 
The analysis revealed how the MaxNetInc plan 
progressively diverged from the other plans from the 
first to the third period (Fig. 4). 

The total amount of treated area needed to fulfil 
the cutting requirements in income-oriented planning 
(MaxNetInc) was 964.2 ha, 7% more than in MaxPro 
(898.2 ha) and 30% less than MinNetInc (1,253.2 ha). 
Differences in cutting type were largest during the 
second and third periods (Table 2). During the first 20-
year period, the MaxNetInc and MaxPro plans prescribed 
many heavy thinnings whereas the MinNetInc plan 
employed light thinning over large areas. The cuttings 
of MaxNetInc were more concentrated in dense and 
mature forests during all periods compared to MaxPro, 
but especially during the second and third period.  
Fewer segments were treated with final felling in 

MaxPro, leading to increased thinning area. The mean 
diameter of harvested trees increased toward latter 20-
year periods in all cases, reaching up to 45.7 cm in the 
MaxNetInc plan, 6.3 cm more than in MaxPro plan.

Spatial layout of DTUs 

The location of prescriptions was visually assessed 
by displaying the resulting DTUs of the three plans (Fig. 
5). Compared to the MaxPro plan, prescriptions of the 
MaxNetInc plan tended to be more clustered along the 
road network during the second and third periods. This 
pattern can be seen for instance in the south-eastern 
part of the study area, where the location and type of 
prescriptions varied considerably among the plans. In the 
second period, more segments were prescribed as seed 
tree cut in MaxNetInc than in MaxPro plan, as income-
oriented plan preferred cuttings where the harvesting 
cost per cubic meter was low (harvested trees were 
large). The spatial layout of the harvest blocks showed 
an increasing level of compactness in MaxNetInc, while, 
in MaxPro, prescriptions were more scattered and less 
compact than in MaxNetInc and MinNetInc.

Forwarding distance and size of harvested trees

The observed differences in the allocation of 
prescriptions were further assessed by comparing 
the mean diameter of harvested trees and forwarding 
distance (Fig. 6). The mean distance to road of all 
cuttings was 253.9 m in MaxPro, which is clearly 
more than in MaxNetInc (168.8 m). In the first period, 
the scatter plots of harvested tree size and forwarding 
distance were very similar in MaxNetInc and MaxPro 
plans (Figs. 6a,b). The size of the harvested trees 
considerably increased in MaxNetInc during the 
second and third period (Figs. 6c,d,e,f). In the second 
period, cuttings prescribed in MaxNetInc were located 
close to forest roads (600 m maximum), while in 
MaxPro cuttings were prescribed up to 1,300 m from 
the nearest road. 

Discussion

Three patterns emerged when net incomes 
were maximized (MaxNetInc) instead of timber 
production (MaxPro). In MaxNetInc plan, i) final 
fellings were prescribed more often, ii) the average 
size of harvested trees was larger and iii) cuttings 
were located more in the proximity of roads.

The observed differences between plans were 
more pronounced during the second and third 
20-year period, which is in line with previous 

Figure 4. Net income computed for each period (a) and 
standing growing stock volume at the end of the third period 
(b). Note that the y axis of the right-hand-side diagram is cut.

a

MaxPro           MaxNetInc       MinNetInc

b

MaxPro            MaxNetInc       MinNetInc
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research (Öhman & Lämås, 2003). The lack of large 
differences in the first period between MaxNetInc 
and MaxPro can be partly explained by the design 
of the existing forest road network, which has been 
built to provide access to currently mature forests. 
After the best stands near roads had been harvested 
in the first period, the differences between MaxPro 
and MaxNetInc plans started to increase. 

The spatial layout of the presented DTUs confirmed 
the previous results as prescriptions tended to follow 
forest roads, boosting the compactness of the harvest 
blocks of the MaxNetInc plan. The presence of isolated 
harvest blocks was lower in MaxNetInc than in MaxPro. 
Although the clustering of harvests was pursued in all 
three management plans, the integration of harvesting 
cost equations contributed to a better clustering of 

Table 2. Areas of cuttings and the mean diameter of harvested trees in the alternative management 
plans.

Period Thinnings 
(ha)

Final fellings 
(ha)

Total treated area 
(ha)

Mean diameter of 
harvested trees (cm)

MaxPro 1 142.1 103.1 242.5 32.2

2 312.0 45.8 357.7 34.2

3 168.1 129.9 298.0 39.4

MaxNetInc 1 150.5 116.1 266.6 31.7

2 40.5 231.0 271.5 36.1

3 88.4 337.7 426.1 45.7

MinNetInc 1 112.4 154.1 266.5 31.3

2 216.4 164.5 380.9 33.6

3 445.9 159.9 605.8 39.9

Figure 5. Location of prescriptions in MaxPro (a, d, g); MaxNetInc (b, e, h); and MinNetInc (c, f, i) plans.

a                   b                   c  

d                    e                                           f

g                  h                              i

MaxPro
First Period

Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
First Period

Remove overstory
Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
Second Period

Remove overstory
Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
Second Period

MaxPro
Second Period

Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
Third Period

Remove overstory
Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
Third Period

Remove overstory
Seed tree cut      
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
Third Period

Remove overstory
Seed tree cut
Light thinning
Normal thinning
Heavy thinning
Forest roads

MaxPro
First Period
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treatment units. Taking into account that maximization 
of net incomes tended to increase the area of final 
fellings, additional constraints may be considered to 
prevent the DTUs from becoming too large and not 
conforming with country-specific forest management 
regulations (Tóth & McDill, 2008; Carvajal et al., 
2013). Large continuous areas of final fellings may 

also be detrimental for other ecosystem services, 
for instance recreational values and maintenance of 
biological diversity. 

In our study, we used a decentralized optimization 
algorithm to overcome the computational complexity of 
the planning problem in which the number of calculation 
units and treatment schedules was high (Pukkala et al., 

Figure 6. Distribution of mean diameter of harvested trees and distance to road for MaxNetInc during the first (a), second 
(c) and third period (e); and for MaxPro (b, d, f). The green (+) and red (x) marks show the mean distance to road and the 
overall mean diameter of trees in the prescribed cuttings for MaxPro (+) and MaxNetInc (x). 

a                b         

c          d  
 

e               fMaxPro
MaxNetInc

MaxPro
MaxNetInc

MaxPro
MaxNetInc

MaxPro
MaxNetInc

MaxPro
MaxNetInc

MaxPro
MaxNetInc
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2009). High number of calculation units often prevents 
the use of exact methods such as integer programming. 
Before implementing the CA-based optimization, we 
tested simulated annealing algorithm (SA) as previous 
research has reported its good performance in similar 
problems (Pascual et al., 2016; Borges et al., 2014; 
Jin et al., 2016). The SA results were rather similar to 
those obtained with CA only for the MaxPro planning 
problem. In the two other problems (MaxNetInc and 
MinNetInc), harvest blocks were not as well clustered 
as with CA and, consequently, it was more difficult to 
see the effect of harvesting costs on the forest planning 
layout of cuttings when using SA. Our results confirmed 
those from previous research in relation to the better 
performance of CA compared to SA in spatially-explicit 
forest planning when the number of calculation units is 
high (Heinonen & Pukkala, 2007; Mathey et al., 2007).

Our ALS dataset played a major role in our study as it 
was used in the delineation of forest inventory units by 
means of segmentation and for modelling and prediction 
of the initial values of forest attributes. The economic 
feasibility of ALS inventory depends on many factors, 
such as forest structure and information needs. The target 
area must also be large enough because a set of local 
field sample plots is needed and the required number of 
sample plots is more or less fixed although the inventory 
is enlarged substantially. If stand attributes are needed 
by tree species the required number of sample plots 
is many fold. ALS data acquisition is also expensive 
in small areas, but sometimes ALS data collected in 
other campaigns, e.g. for nationwide DTM purposes, 
can be used. ALS inventory is already considered to be 
economically viable both in plantations and semi-natural 
forest (see e.g. chapters 11-13 in Maltamo et al., 2014). 
The delineation of forest inventory units by means of 
segmentation can be done without any field data but 
without predicted forest attributes its value is limited.

By using full-coverage ALS data, we were able to 
estimate the spatial variation in harvesting costs across 
the study area. Previous research on spatial forest 
planning problems have relied on indirect methods 
such as external data to assign harvesting costs to each 
calculation unit (Öhman et al., 2011), or by assuming 
that machinery displacements are closely related to 
harvesting cost variation (Augustynczik et al., 2016). 
Variation in the quality of forest road network was not 
an issue in our study. This variation may affect the cost 
of transporting timber from roadside to saw and paper 
mills, which in turn would affect cuttings so that more 
wood should be forwarded to good-quality roads. 

The economic return of the MaxPro plan was very 
close to that of MinNetInc, the worst possible scenario 
in economic terms. This means that forest management 
for maximal timber production was very costly. 

Discounting, which was not done in our study, would 
affect the results so that cuttings are scheduled earlier 
when discount rate increases. 

The differences between MaxPro and MaxNetInc 
plans showed that the degree of clustering between 
forest inventory units composing a harvest block may 
partly depend on management objectives which do not 
directly aim at aggregating treatments. Even when the 
purpose of the management is not entirely income-
oriented, the delineation of treatment areas should be 
flexible, responding to stand dynamics and consequent 
changes in stand structure, and combining multiple 
objectives. In this regard, the effect of maximising the 
combined production of timber, biomass and non-wood 
products (e.g., edible mushroom) on treatment decisions 
should be addressed in further studies. Consideration of 
harvesting costs in problem formulation (Solano et al., 
2007) contribute to not only management objectives, 
but it also reinforces the clustering of management 
prescriptions, reducing the fragmentation of the forest. 
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