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Abstract 
There are situations where the knowledge of thermodynamic properties such as thermal conductivity for the present case is required. In 
some of them an additional requirement appears, as the measurement has to be made along the three perpendicular space axes. In the 
present article, three thermal conductivities that appear in orthotropic materials were predicted by solving an inverse heat transfer problem. 
This inverse problem was solved using the Cuckoo algorithm, the deterministic Levenberg-Marquardt, and with the new hybrid of these 
two. It was found that these three strategies produce excellent results when compared to each other. Nevertheless, the hybrid algorithm 
proved to be more efficient than its precursors in solving the present problem. The hybrid algorithm consumed in average less computing 
time compared to the metaheuristic algorithm and extended the search range in comparison to the deterministic one, always maintaining 
precision in its results. 
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Estimación de conductividades térmicas en materiales ortotrópicos 
mediante algoritmos de optimización global 

 
Resumen  
Existen situaciones en donde se requiere el conocimiento de propiedades termodinámicas como la conductividad térmica para el presente 
caso. En algunas de ellas aparece una exigencia adicional, al tener que hacerse la medición a lo largo de los tres ejes espaciales 
perpendiculares. En el presente artículo, se propone predecir estas tres conductividades térmicas que aparecen en materiales ortotrópicos, 
mediante la solución de un problema inverso de transferencia de calor. El problema inverso se resolvió mediante el algoritmo Cuckoo, el 
determinístico de Levenberg-Marquardt, y con el nuevo híbrido entre estos dos. Se encontró que estas tres estrategias producen excelentes 
resultados al compararse entre ellas. Sin embargo, el algoritmo híbrido resultó ser más eficiente que sus precursores al resolver el presente 
problema. El algoritmo híbrido consumió en promedio menos tiempo de cómputo en comparación con el algoritmo metaheurístico y amplió 
el rango de búsqueda en comparación con el determinístico, manteniendo siempre precisión en sus resultados. 
 
Palabras clave: problema inverso; optimización; Levenberg-Marquardt; algoritmo cuckoo; conductividad térmica. 

 
 
 

1.  Introduction 
 
Despite the incredible development of electronics that in 

turn drives the creation of new analytical instrumentation 
for measurement purposes, it still turns out to be not only 
costly to perform certain measurements, but in some cases, 
an arduous task such as, for example, in the characterization 
of orthotropic materials, [1]. By definition, an orthotropic 
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material is known as one in which its properties, whether 
for example mechanical or thermal, are unique and 
independent in their three perpendicular unitary spatial 
axes�𝚤𝚤̂; 𝚥𝚥̂;𝑘𝑘��. That is, the magnitude of its properties or some 
of them depends on the direction in which it is measured. 
This characteristic imparts certain properties to the material 
that make it unique and is reserved for very specific 
applications. Examples of these are polycrystalline metals, 
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composite polymeric materials, graphite fibers, wood, 
among others. Given this property, it is very difficult in 
some situations to experimentally measure the variation of, 
for example, its electrical or thermal conductivity in those 
three coordinate axes. Therefore, there are some proposals 
in the literature to solve this difficulty, one of them being 
the approach and solution of an inverse problem that proved 
to be very effective in this situation, [2-5]. Regarding the 
approach and solution of the inverse problems, it is worth 
mentioning that its versatility and usefulness are well 
known in situations where experimentation is limited by 
obstacles such as high costs of the required instrumentation, 
and complexity in the realization and direct interpretation 
of its results, mainly. For the case presented in this article, 
the problem of heat transfer in a solid is a cause and effect 
relationship. The causes are determined by the initial 
conditions, the boundary conditions, the thermodynamic 
properties, the sources of internal generation and the 
geometry of the body. On the other hand, the effects are 
related to the profile of temperature and heat flow in the 
solid. Therefore, the inverse problem is a powerful 
conceptual tool that allows linking the mathematical model 
(cause) with the experimental data (effect). Moreover, this 
has allowed to address problems and propose solutions that 
were previously virtually impossible to obtain as, for 
example: the study of the interior of the earth without the 
need for expensive drilling, estimating heat transfer 
coefficients in highly aggressive processes for conventional 
instrumentation, such as the presence of high intensity 
electromagnetic fields, measure temperatures in 
inaccessible places even for the modern instrumentation 
that is available today, process complex images in 
astronomy, in computerized tomography for medical 
analysis, and in many others that it is impossible to number, 
[6-26]. In all these cases, the strategy used is to solve the 
problem directly analytically or numerically and solve the 
inverse problem associated with it. From an analysis of the 
literature on the subject, it can be seen that conventional 
methods of local optimization were initially used, such as, 
for example, the Levenberg-Marquardt method that requires 
knowing the derivatives of the objective situation function 
that requires the continuity of the function and stocks of 
these derivatives. Over time, global optimization strategies 
appeared that allow obtaining optimal values through a 
heuristic approach. Again, recent literature is abundant in 
examples of its use in the solution of inverse problems. 

In the present article, the Cuckoo Search Algorithm 
(ABC) and the Levenberg-Marquardt (LM) Search 
Algorithm, as well as its hybrid (HCLM), are used to solve 
the inverse problem that concerns us. The main objective of 
this work is to estimate the thermal conductivity in an 
orthotropic material. A couple of numerical solutions are 
presented as an illustrative example of this strategy. This 
article summarizes below some relevant concepts about the 
mathematical model and its solution, together with the 
description of the optimization algorithms ABC, LM and 
HCLM. Then, the approach of the direct and inverse problem 
is presented. It is followed later, compiling the results of the 
simulations and finalized, with some of the most relevant 
conclusions. 

2.  Fundamentals 
 
In this section the optimization algorithms are described 

very succinctly. In the same way, the objective of the direct 
problem is established. Then the mathematical model of the 
conduction heat transfer process that happens inside the solid 
and its analytical solution is stated. Then, the objective of the 
inverse problem is established. And in the final part, the 
objective function to be solved is defined. 

 
2.1.  Optimization algorithms 

 
Global optimization is a part of mathematics aimed at 

finding the extremes of a function in its domain. Within this 
global optimization there is a generic classification related to 
the structure of the algorithms, which arbitrarily calls them 
deterministic and stochastic. In the first are those algorithms 
that for the same input necessarily produce the same output. 
In the second, it is characterized because its algorithms 
depend on randomness, that is, variables or stochastic 
(random) parameters are present within its components. The 
deterministic method (LM), the metaheuristic (ABC), and the 
hybrid of these two (HCLM), which were used, are described 
below. 

 
2.1.1.  Levenberg-Marquardt Method (LM) 

 
The LM is a traditional deterministic algorithm, widely 

used to solve problems of non-linear characteristics. This 
method results from the combination of the gradient descent 
minimization and the Gauss-Newton methods [27]. In this 
algorithm, when the parameters are far from their optimal 
value, it acts more like the gradient minimization method. 
But when they are close to their optimal value, it acts more 
like the Gauss-Newton method, which makes it easier to 
determine the desired parameters. Given its wide 
dissemination in the literature [3], we will not go into greater 
detail here. 

 
2.1.2.  Cuckoo search algorithm (ABC) 

 
This global optimization algorithm was proposed in 2009 

by Xin-She Yang and Suash Deb [28], who relied on the 
behavior of the bird species, the cuckoos and their aggressive 
breeding strategy. This is related to the way in which these 
birds deposit their eggs in nests of other species. Such eggs 
will have a probability 𝑃𝑃𝑎𝑎 of being discovered by the "host" 
birds and not survive. To increase this probability, some 
species of female cuckoos have managed to perfect the 
mimetization and posture of their eggs with those of the host 
species. For the selection of these nests, the cuckoos explore 
their surroundings using Lévy flights, that is, a small part of 
the new nests are generated around the best nest found so far. 
While the other part are generated far enough away from this 
to avoid being in a non-optimal nest. This algorithm is based 
on the following rules: The first one says that each cuckoo 
places one egg at a time and selects a random host nest where 
it will deposit it. The second says that the nests with the eggs 
in better quality, will pass to the next generation. And the 
third part of the assumption that the number of available host  
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Table 1. 
ABC algorithm pseudocode. 

Entrada 

The objective function 𝑓𝑓(𝑥𝑥). Here 𝑥𝑥 =  (𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)𝑇𝑇, 
and 𝑑𝑑 is the dimension of the problem. The value of 
tolerance 𝑇𝑇𝑇𝑇𝑇𝑇; the probability of abandoning the worst 
nests 𝑃𝑃𝑎𝑎; and the number of nests 𝑛𝑛. 

1: Generate a population of host nests 𝑥𝑥𝑖𝑖, where 𝑖𝑖 =  1,2, … ,𝑛𝑛. 
2: while (𝐹𝐹𝑖𝑖 > 𝑇𝑇𝑇𝑇𝑇𝑇) 

3: Get a cuckoo 𝑖𝑖 randomly through the realization of the flights of 
Lévy. 

4: Evaluate the objective function of the nest  𝐹𝐹𝑖𝑖. 
5: Choose randomly a nest 𝑗𝑗 (among the 𝑛𝑛 nests)  
6: if (𝐹𝐹𝑖𝑖 < 𝐹𝐹𝑗𝑗) 
7: Replace 𝑗𝑗 by the new solution. 
8: end if 

9: Leave a fraction (𝑃𝑃𝑎𝑎) of the worst nests and build new nests to 
replace them in other locations through the flights of Lévy 

10: Keep the best nests 
11: Sort the nests and find the best. 
12: Move the best nest to the next generation. 
13: end while 
14: Establish the best nests and the best current 𝐹𝐹𝑖𝑖. 

Source: The authors. 
 
 

nests is fixed and that the host bird can discover the egg left 
by a cuckoo with a probability 𝑃𝑃𝑎𝑎 (in the interval between [0, 
1]). In this case, the host bird can throw the egg at a great 
distance or leave the nest in order to build a new one in 
another place. These abandoned nests are replaced by new 
nests (with new solutions in new random locations). Based 
on these three rules, the ABC steps are summarized in Table 
1. From this table it can be seen that the algorithm requires 
few input parameters for its execution. These are, the 
objective function, the initial population 𝑛𝑛, the probability 𝑃𝑃𝑎𝑎 
and the search limits. 

 
2.1.3.  Hybrid algorithm (HCLM) 

 
The proposed hybrid algorithm combines the main 

characteristic of LM (better precision) with that of ABC 
(greater search space), in order to design a global algorithm 
that adopts the qualities of its two individual components. 
This is because the LM is deterministic by nature and if it is 
provided with initial values sufficiently close to the optimum, 
it will always find it. On the other hand, ABC is random in 
nature and finds the optimum in a short time (repetitions), but 
there is a different success to failure relationship for each run. 
Thus, the ABC improves efficiency, as well as, accuracy and 
precision. Fig. 1 shows the behavior of the HCLM. It is 
emphasized that its topology (serial) is such that the best ABC 
results become the initial conditions of search for the LM. 

 
2.2.  Objective of the direct problem 

 
Determine the transient internal temperature profile in the 

solid orthotropic material with a defined geometry 
(rectangular parallelepiped), which is initially at a uniform 
temperature 𝑇𝑇0 = 0. A uniform heat flux is applied to the 
material in each of the surfaces for 𝑥𝑥 = 𝑎𝑎, 𝑦𝑦 = 𝑏𝑏 and 𝑧𝑧 = 𝑐𝑐, 
in such a way that there is heat transfer by conduction to the 
interior of the latter. In addition, it is established that the other 
three surfaces are thermally insulated. The dimensionless 

mathematical model is presented in equation , (1) where, 𝐾𝐾𝑥𝑥, 
𝐾𝐾𝑦𝑦 and 𝐾𝐾𝑧𝑧 are the respective components of the thermal 
conductivity in the directions of the unit Cartesian axes, [3]. 
𝑇𝑇 is the absolute temperature, 𝑡𝑡 is the time and  𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦 and 𝑞𝑞𝑧𝑧 
are the uniform flows of heat of entry in each direction. 

 

𝐾𝐾𝑥𝑥
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 +𝐾𝐾𝑦𝑦

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2 +𝐾𝐾𝑧𝑧

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2 = 𝜕𝜕𝑇𝑇

𝜕𝜕𝑡𝑡  

0 < 𝑥𝑥 < 𝑎𝑎 
0 < 𝑦𝑦 < 𝑏𝑏 
0 < 𝑧𝑧 < 𝑐𝑐 
𝑡𝑡 > 0 

(1) 

−𝐾𝐾𝑥𝑥
𝜕𝜕𝑇𝑇(0, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)

𝜕𝜕𝑥𝑥
= 𝑞𝑞𝑥𝑥 

𝜕𝜕𝑇𝑇(𝑎𝑎,𝑦𝑦,𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝑥𝑥 = 0 

0 < 𝑦𝑦 < 𝑎𝑎 
0 < 𝑧𝑧 < 𝑐𝑐 
𝑡𝑡 > 0 

−𝐾𝐾𝑦𝑦
𝜕𝜕𝑇𝑇(𝑥𝑥, 0, 𝑧𝑧, 𝑡𝑡)

𝜕𝜕𝑥𝑥
= 𝑞𝑞𝑦𝑦  

𝜕𝜕𝑇𝑇�𝑥𝑥,𝑏𝑏,𝑧𝑧, 𝑡𝑡�
𝜕𝜕𝑥𝑥 = 0 

0 < 𝑥𝑥 < 𝑎𝑎 
0 < 𝑧𝑧 < 𝑐𝑐 
𝑡𝑡 > 0 

−𝐾𝐾𝑧𝑧
𝜕𝜕𝑇𝑇(𝑥𝑥, 𝑦𝑦, 0, 𝑡𝑡)

𝜕𝜕𝑥𝑥
= 𝑞𝑞𝑧𝑧 

𝜕𝜕𝑇𝑇(𝑥𝑥,𝑦𝑦,𝑐𝑐, 𝑡𝑡)
𝜕𝜕𝑥𝑥 = 0 

0 < 𝑥𝑥 < 𝑎𝑎 
0 < 𝑦𝑦 < 𝑏𝑏 
𝑡𝑡 > 0 

𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 0) = 0 
0 < 𝑥𝑥 < 𝑎𝑎 
0 < 𝑦𝑦 < 𝑏𝑏 
0 < 𝑧𝑧 < 𝑐𝑐 

 
To solve the direct problem, the three components of the 

thermal conductivity, the geometry of the solid and the initial 
and border conditions were assumed as known and with 
sufficient precision in their measurement. The solution of the 
direct problem, that is, of the mathematical model of the 
process, is shown in equation (2), [3]. 

 

 
Figure 1. HCLM flowchart.  
Source: The authors. 

Begin

Execute ABC

X₁ ← ABC best result 

Execute LM taking as the 
initial point X₁

FO(X₂)<FO( X₁) 

X₂  ← LM result 

End

No

Yes
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T(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑎𝑎
𝑞𝑞𝑥𝑥
𝐾𝐾𝑥𝑥

𝛾𝛾𝑥𝑥 + 𝑏𝑏
𝑞𝑞𝑦𝑦
𝐾𝐾𝑦𝑦

𝛾𝛾𝑦𝑦 + 𝑐𝑐
𝑞𝑞𝑧𝑧
𝐾𝐾𝑧𝑧
𝛾𝛾𝑧𝑧  

Where, 
𝛾𝛾𝑥𝑥 = − 1

6 + 𝑥𝑥2

2𝑎𝑎2 + 𝐾𝐾𝑥𝑥𝑡𝑡
𝑎𝑎2 +

2
𝜋𝜋2 ∑

�−1�𝑖𝑖+1

𝑖𝑖2
cos �𝑖𝑖𝜋𝜋𝑥𝑥𝑎𝑎 �𝑒𝑒

−𝜋𝜋2𝐾𝐾𝑥𝑥𝑡𝑡
𝑎𝑎2 𝑖𝑖

2
∞
𝑖𝑖=1   

𝛾𝛾𝑦𝑦 = − 1
6 + 𝑦𝑦2

2𝑏𝑏2 + 𝐾𝐾𝑦𝑦𝑡𝑡
𝑏𝑏2 +

2
𝜋𝜋2 ∑

�−1�𝑖𝑖+1

𝑖𝑖2
cos �𝑖𝑖𝜋𝜋𝑦𝑦𝑏𝑏 �𝑒𝑒

−𝜋𝜋2𝐾𝐾𝑦𝑦𝑡𝑡

𝑏𝑏2 𝑖𝑖
2

∞
𝑖𝑖=1   

𝛾𝛾𝑧𝑧 = − 1
6 + 𝑧𝑧2

2𝑐𝑐2 + 𝐾𝐾𝑧𝑧𝑡𝑡
𝑐𝑐2 +

2
𝜋𝜋2 ∑

�−1�𝑖𝑖+1

𝑖𝑖2
cos �𝑖𝑖𝜋𝜋𝑧𝑧𝑐𝑐 � 𝑒𝑒

−𝜋𝜋2𝐾𝐾𝑧𝑧𝑡𝑡
𝑐𝑐2 𝑖𝑖

2
∞
𝑖𝑖=1   

(2) 

 
2.3.  Objective of the inverse problem 

 
To determine the coefficients of the three thermal 

conductivities 𝐾𝐾𝑥𝑥, 𝐾𝐾𝑦𝑦 and 𝐾𝐾𝑧𝑧, in an orthotropic material with 
defined geometry (rectangular parallelepiped), assuming 
known the measured temperature profile within the solid, 
together with the other parameters of the model, all of them 
with sufficient precision. To estimate these coefficients, the 
aforementioned global optimization algorithms were used. 

 
2.4.  Objective function 

 
The objective function is the standard L2 squared which 

is shown in equation (3), where 𝑌𝑌 are the measured 
temperatures, and 𝑇𝑇 is the temperature estimated by the 
model of equation (2). In this work two options were taken 
as measured temperatures. The first was simply to take the 
theoretical temperature profile which is obtained by solving 
the direct problem. On the other hand, the second option was 
to add Gaussian noise to the theoretical temperature profile 
to emulate possible sensor errors in the measurement. 

 
𝑂𝑂F�𝐾𝐾𝑥𝑥,𝐾𝐾𝑦𝑦,𝐾𝐾𝑧𝑧� = �𝑌𝑌 − 𝑇𝑇�𝐾𝐾𝑥𝑥,𝐾𝐾𝑦𝑦,𝐾𝐾𝑧𝑧��

′
�𝑌𝑌 − 𝑇𝑇�𝐾𝐾𝑥𝑥,𝐾𝐾𝑦𝑦,𝐾𝐾𝑧𝑧�� 

𝐾𝐾𝑥𝑥∗,𝐾𝐾𝑦𝑦∗,𝐾𝐾𝑧𝑧∗ = argmin
𝐾𝐾𝑥𝑥,𝐾𝐾𝑦𝑦,𝐾𝐾𝑧𝑧

𝑂𝑂F�𝐾𝐾𝑥𝑥,𝐾𝐾𝑦𝑦,𝐾𝐾𝑧𝑧� 

 
Restricted to 
 

𝐾𝐾𝑥𝑥,𝐾𝐾𝑦𝑦,𝐾𝐾𝑧𝑧 > 0 

(3) 

 
3.  Results and analysis 

 
In this section, some of the results are first shown using the 

ABC algorithm in preliminary tests, then, the conductivities of an 
orthotropic material are found using the LM, ABC and HCLM 
algorithms and finally an analysis of the obtained results is made. 

 
3.1.  Preliminary tests with the ABC algorithm 

 
In this part, two tests were performed on the ABC 

algorithm. In the first, classic global optimization functions 
were used in order to verify the correct functioning of the 
algorithm and in the second, the objective function defined in 
equation (3) was used to see how it behaves before a 
spectrum of values of the thermal conductivity. 

Table 2. 
Hardware specifications. 
Manufacturer Toshiba 
Model Satellite L45-B 

Processor Intel® Core  
TM i5-5200U 

RAM 6 [GB] 

Operative system Microsoft® Windows 
TM10 64- bit 

Source: The authors. 
 
 

Table 3. 
Results obtained by applying the ABC algorithm to the test functions. 

D FO 𝒏𝒏 Best Worst Std. 
Dev. 

Mean 
𝑭𝑭𝑶𝑶𝒎𝒎𝒎𝒎𝒏𝒏 

Mean 
Iter. 

Mean 
time. 
[s] 

2 

a) 
5 0.000 1.989 0.597 0.139 6988 0.124 
25 0.000 0.000 0.000 0.000 31954 0.365 
50 0.000 0.000 0.000 0.000 62836 0.658 

b) 
5 0.000 0.000 0.000 0.000 5535 0.095 
25 0.000 0.000 0.000 0.000 26792 0.293 
50 0.000 0.000 0.000 0.000 53070 0.541 

c) 
5 0.000 -4.440 0.002 0.001 6720 0.130 
25 0.000 0.000 0.000 0.000 29486 0.397 
50 0.000 0.000 0.000 0.000 57294 0.675 

3 

a) 
5 0.000 1.989 0.729 0.318 8486 0.150 
25 0.000 0.000 0.000 0.000 40359 0.453 
50 0.000 0.000 0.000 0.000 80156 0.856 

b) 
5 0.000 0.000 0.000 0.000 5864 0.102 
25 0.000 0.000 0.000 0.000 28208 0.337 
50 0.000 0.000 0.000 0.000 56246 0.576 

c) 
5 0.000 -5.440 0.003 0.003 8094 0.166 
25 0.000 0.004 0.000 0.000 34794 0.462 
50 0.000 0.001 0.000 0.000 67972 0.831 

Source: The authors. 
 
 

3.1.1.  Test functions 
 
This section shows the verification of the ABC algorithm 

through the solution of classic optimization functions (FO) 
such as a) Rastrigin, b) De Jong and c) Griewank. To do this, 
an algorithm analysis was performed with different 
population sizes (i.e., 𝑛𝑛 = 5, 25 y 50) in two and three 
dimensions (𝐷𝐷). Each configuration was executed 50 times. 
The specifications of the computer used to perform the tests 
are shown in Table 2. 

The results obtained such as the best solution, the worst, 
the standard deviation of the solutions, the average value of 
the objective function, the average iterations used by the 
algorithm and the computational time of execution, are 
shown in Table 3. From this, it can be seen that increasing the 
population improves the search results. However, the use of 
computational resources also increases. 

 
3.1.2.  Objective function 

 
In this section, preliminary tests of the algorithm with the 

objective function were performed. For this, the temperature 
profiles were found by varying the components (𝐾𝐾𝑥𝑥 ,𝐾𝐾𝑦𝑦 ,𝐾𝐾𝑧𝑧) 
(the other parameters of equation (2) are shown below in 
Table 5). Then, the algorithm ABC was executed by varying 
the population of cuckoos (𝑛𝑛 = 5 𝑦𝑦 𝑛𝑛 = 10). These results are 
summarized in Table 4, which includes parameters such as  
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Table 4. 
Results of the algorithm varying the population of cuckoos and the 
conductivities. 

𝑲𝑲 
(𝑲𝑲𝒙𝒙, 
𝑲𝑲𝒚𝒚, 
𝑲𝑲𝒛𝒛) 

Search 
Lim. 
[𝑳𝑳𝒎𝒎𝒏𝒏𝒊𝒊, 
𝑳𝑳𝒔𝒔𝒔𝒔𝒔𝒔] 

𝒏𝒏 𝑭𝑭𝑶𝑶𝒎𝒎𝒎𝒎𝒏𝒏 Std. 
Dev. 

Hits/ 
Misses 

Mean 
Iter. 

Mean 
time 
[s] 

(1500, 
1700, 
2000) 

[0.1, 
3000] 

5 0.000 0.000 30/20 5125 26.7 

10 0.000 0.000 28/22 10165 55.3 

(500, 
600, 
700) 

[0.1, 
1000] 

5 0.000 0.000 31/19 5174 26.2 

10 0.000 0.000 36/14 10217 59.7 

(50, 
60, 
70) 

[0.1, 
100] 

5 0.001 0.001 30/20 7037 38.3 

10 0.000 0.000 42/8 10896 82.4 

(0.1, 
0.2, 
0.3) 

[0.01, 
100] 

5 0.000 0.000 50/0 6776 43.1 

10 0.000 0.000 50/0 14964 111.7 

(0.01, 
0.02, 
0.03) 

[0.001, 
100] 

5 0.000 0.000 42/8 6593 40.7 

10 0.000 0.000 41/9 14507 89.8 

Source: The authors. 
 
 

the search limits, the minimum value of the objective 
function, its standard deviation, the number of hits and 
misses, the average of iterations and the average execution 
time of the ABC algorithm. The criterion for selecting the 
correct and incorrect results was directly related to the search 
range used to find the thermal conductivities and therefore 
was not fixed during all the tests. 

This table shows a hit rate of more than 82% for values of 
thermal conductivity less than 50. On the contrary, when increasing 
this conductivity value the hit rate starts to deteriorate up to 56%. 
A slight improvement in the results is also observed when 
increasing the population of cuckoos in the algorithm. These results 
demonstrate the need to combine stochastic and deterministic 
algorithms, generating hybrids that highlight the positive 
characteristics of each of their predecessors, as discussed below. 

 
3.2.  Estimation of thermal conductivities 

 
Next, the behavior of the three algorithms for different 

situations will be analyzed. For this, the results obtained by 
finding the thermal conductivities are compared by solving the 
inverse problem, using ABC, HCLM and the LM method. In the 
first case the values of the thermal conductivities proposed in [3] 
(𝐾𝐾𝑥𝑥 = 1, 𝐾𝐾𝑦𝑦 = 2 y 𝐾𝐾𝑧𝑧 = 3). Moreover, in the second case, the 
thermal conductivities for crystalline silicon proposed in [30] (𝐾𝐾𝑥𝑥 
= 1.3, 𝐾𝐾𝑦𝑦 = 1.46, y 𝐾𝐾𝑧𝑧 = 1.78) will be taken. This element was 
chosen since it is widely used in the development of elements in 
electronic engineering such as transistors and solar cells. The 
other parameters of equation (2) are shown in Table 5. 

Fig. 2 shows the theoretical temperature profile of the sensor 
located in (0.004,0.004,0.004) for the case 1 as well as the 
temperature profile for different signal-to-noise ratios (SNR) (i.e., 
30, 40 y 50 [dB]). The graph of the other case was omitted because 
it is very similar to the one shown. On the other hand, white 
Gaussian noise was added to the theoretical temperature profile in 
order to simulate real temperature profiles for cases 1 and 2. 
According to preliminary results, a SNR of 30 [dB] was defined as 
the amount of noise minimum allowed to simulate because values 
below this distort the signal too much. 

Table 5. 
Parameter values to simulate the equation (2). 

Parameter Name Value 

�
𝑞𝑞𝑥𝑥,
𝑞𝑞𝑦𝑦,
𝑞𝑞𝑧𝑧
� Heat flux �

1,
1,
1
�  

�
𝑎𝑎,
𝑏𝑏,
𝑐𝑐
� Dimensions of the 

parallelepiped �
0.01,
0.01,
0.01

�  

�
𝑥𝑥,
𝑦𝑦,
𝑧𝑧
� Location of the sensors �

0.004,
0.004,
0.004

�  

Source: The authors. 
 
 

 
Figure 2. Theoretical and measured temperature profile with SNR = 30, 40 
y 50 [dB]. 
Source: The authors. 

 
 

3.2.1.  Results of the Levenberg-Marquardt method (LM) 
 
To apply the LM method, preliminary tests were done to 

find the limits of the initial conditions where it converged and 
then proceeded to perform the particular tests in each case. 
As mentioned above, the LM is deterministic so it converges 
to the same point, as long as the initial conditions are the 
same. Due to this property, the algorithm was executed once. 
Case 1 

Table 6 shows results such as the estimated parameters 
and the percentage of error obtained by the LM method, as 
well as the initial search points, the number of iterations and 
the execution time used. On the other hand, from this table 
you can see the limited search range to find the thermal 
conductivities. This evidences a great disadvantage of the LM 
if some information of the required parameters is not known. 
Case 2 

Table 7 shows results such as the estimated parameters and the 
percentage of error obtained by the LM method, as well as the 
initial search points, the number of iterations and the execution time 
used. Now, from the results it can be seen that by increasing the 
noise level (decreasing the SNR), errors increase. This is due to the 
low quality of the data at small SNR. On the other hand, it is 
important to note that just as in case 1, there is a limited search 
range to find the thermal conductivities and that, in addition, this 
range suffers a reduction compared to case 1 because the thermal 
conductivities to be found have a greater proximity between them. 
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Table 6. 
Results obtained by applying the LM method to the case 1. 

SNR 
Initial 
search 
point 

Estimated 
parameters 

Error 
% Iter. Time 

[s] 

∞ 

[0.3, 
1.3, 
2.6] 

[0.989, 
2.064, 
2.924] 

[1.10, 
3.20, 
2.53] 

68 2.02 

[1.8, 
2.6, 
3.6] 

[1.001, 
1.920, 
3.119] 

[0.10, 
4.00, 
3.97] 

130 3.67 

50 

[0.2, 
1.0, 
2.7] 

[0.981, 
2.092, 
2.906] 

[1.90, 
4.60, 
3.13] 

88 2.45 

[1.5, 
2.3, 
3.3] 

[1.008, 
1.949, 
3.078] 

[0.80, 
2.55, 
2.60] 

99 2.81 

40 

[0.4, 
1.5, 
2.6] 

[0.961, 
2.130, 
2.904] 

[3.90, 
6.50, 
3.20] 

110 3.08 

[1.6, 
2.3, 
3.3] 

[1.023, 
1.919, 
3.071] 

[2.30, 
4.05, 
2.37] 

45 1.39 

30 

[0.8, 
1.8, 
2.8] 

[0.992, 
2.059, 
2.978] 

[0.08, 
2.95, 
0.73] 

52 1.59 

[1.6, 
2.2, 
3.3] 

[1.014, 
1.957, 
3.071] 

[1.40, 
2.15, 
2.37] 

80 2.38 

Source: The authors. 
 
 

Table 7.  
Results obtained by applying the LM method to the case 2. 

SNR 
Initial 
search 
point 

Estimated 
parameters 

Error 
% Iter. Time 

[s] 

∞ 

[1.27, 
1.41, 
1.72] 

[1.308, 
1.456, 
1.774] 

[0.62, 
0.27, 
0.34] 

131 3.46 

[1.33, 
1.48, 
1.80] 

[1.303, 
1.456, 
1.781] 

[0.23, 
0.27, 
0.06] 

119 3.19 

50 

[1.25, 
1.40, 
1.70] 

[1.318, 
1.463, 
1.754] 

[1.39, 
0.21, 
1.46] 

18 0.69 

[1.34, 
1.49, 
1.80] 

[1.306, 
1.459, 
1.774] 

[0.46, 
0.07, 
0.34] 

12 0.53 

40 

[1.20, 
1.40, 
1.70] 

[1.291, 
1.482, 
1.769] 

[0.69, 
1.51, 
0.62] 

11 0.51 

[1.40, 
1.50, 
1.80] 

[1.339, 
1.442, 
1.751] 

[3.00, 
1.23, 
1.63] 

17 0.65 

30 

[1.20, 
1.40, 
1.70] 

[1.288, 
1.480, 
1.768] 

[0.92, 
1.37, 
0.67] 

14 0.60 

[1.40, 
1.50, 
1.80] 

[1.341, 
1.437, 
1.751] 

[3.15, 
1.58, 
1.63] 

14 0.61 

Source: The authors. 
 
 

3.2.2.  Results with the cuckoo search algorithm 
 
As indicated in section 3.1, the ABC presents a good 

performance with a population of cuckoos equal to or greater 
than five (𝑛𝑛 ≥ 5). Therefore, that population size of cuckoos 

was chosen to implement the algorithm. To verify the 
reliability of the results, the tests were repeated 50 times. 
Case 1 

Table 8 shows the results such as the minimum value of the 
objective function, its standard deviation, the number of hits and 
misses, the average of iterations and the average execution time 
of the ABC algorithm. On the other hand, an acceptable 
performance can be observed in the rate of successes and failures 
for the four tests carried out. As expected, when the perturbations 
increase (decrease the SNR) in the temperature profile, the ABC 
begins to lose precision in the results. It is important to note that 
those estimated values that differed with the expected values in 
0.5 were considered correct and that the search range for each 
variable is in the range of 0.1 to 100. 
Case 2 

Table 9 shows the results such as the minimum value of the 
function objective, its standard deviation, the number of hits and 
misses, the average of iterations and the average execution time 
of the ABC algorithm. As in the previous case, when the 
perturbations increase, the algorithm deteriorates in the results. It 
is important to highlight that those estimated values that differed 
with the expected values in 0.2 were considered correct and that 
the search range for each variable is in the range of 0.1 to 100. 

 
3.2.3.  Results with the hybrid method (HCLM) 

 
For the hybrid method, the same parameters were used of 

the ABC and the first two cases were analyzed. 
Case 1 

Table 10 shows the results such as the minimum value of 
the objective function, its standard deviation, the number of 
hits and misses, the average iterations and the average 
execution time of the algorithm HCLM. It is important to note 
that those estimated values that differed with the expected 
values in 0.5 were considered to be correct. On the other 
hand, the search range was performed in the range of 0.1 to 
100 of each variable. Now, from this table it can be seen that 
the success rate improves compared to the ABC by 12% if the 
worst results are compared, which indicates a greater 
precision of the method to find the required variables. 
Finally, there is a slight decrease in the execution time, as 
well as the iterations used if compared with the ABC. 

 
Table 8. 
Results of the ABC algorithm for the case 1. 

SNR 𝑭𝑭𝑶𝑶𝒎𝒎𝒎𝒎𝒏𝒏 Std. 
Dev. 

Hits/ 
Misses 

Mean 
Iter. 

Mean 
Time[s] 

∞ 0.004 0.007 43/7 14644 81.0 
50 0.047 0.002 41/9 11353 63.0 
40 0.123 0.001 39/11 9106 51.3 
30 0.501 0.001 34/16 8707 64.0 

Source: The authors. 
 
 

Table 9. 
Results of the ABC algorithm for the case 2. 

SNR 𝑭𝑭𝑶𝑶𝒎𝒎𝒎𝒎𝒏𝒏 Std. 
Dev. 

Hits/ 
Misses 

Mean 
Iter. 

Mean 
Time[s] 

∞ 0.000 0.000 44/6 9373 53.5 
50 0.038 0.000 40/10 9022 51.2 
40 0.125 0.000 36/14 8627 48.9 
30 0.343 0.000 29/21 8171 46.3 

Source: The authors. 



Vega-Suarez et al / Revista DYNA, 85(205), pp. 140-147, June, 2018. 

146 

Table 10. 
Results of the hybrid algorithm for the case 1. 

SNR 𝑭𝑭𝑶𝑶𝒎𝒎𝒎𝒎𝒏𝒏 Std. 
Dev. 

Hits/ 
Misses 

Mean 
Iter. 

Mean 
Time[s] 

∞ 0.000 0.000 50/0 11725 65.8 
50 0.047 0.006 46/4 9800 54.1 
40 0.124 0.004 42/8 10298 58.0 
30 0.501 0.003 40/10 8860 49.7 

Source: The authors. 
 
 

Table 11. 
Results of the hybrid algorithm for the case 2. 

SNR 𝑭𝑭𝑶𝑶𝒎𝒎𝒎𝒎𝒏𝒏 Std. 
Dev. 

Hits/ 
Misses 

Mean 
Iter. 

Mean 
Time[s] 

∞ 0.000 0.000 50/0 9401 52.5 
50 0.038 0.000 40/10 8881 49.0 
40 0.125 0.000 32/18 7423 42.9 
30 0.412 0.000 28/22 10049 57.7 

Source: The authors. 
 
 

Case 2 
Table 11 shows the results such as the minimum value of 

the objective function, its standard deviation, the number of 
hits and misses, the average of iterations and the average 
execution time of the HCLM algorithm. In this, it can be seen 
that the success rate improves slightly with respect to the 
results obtained in case 2 with ABC. We consider that this is 
due to the noise level of the data used to solve the inverse 
problem, which does not allow the desired parameters to be 
reached. Finally, a similar behavior is observed both in the 
time of convergence and in the number of iterations, in the 
previous case. 

Finally, from the simulations carried out, it can be seen 
from Tables 6, 8 and 10, that the time of convergence of LM 
was lower compared to the other two algorithms (ABC and 
HCLM). One of the factors that influenced this was the search 
range, since being higher for ABC and HCLM (between 0.1 
to 100) compared to LM (0.2 to 3.6), it required more 
iterations and therefore more computation time. On the other 
hand, it is observed that the HCLM presents in general a 
lower number of iterations in comparison with the ABC. This 
is mainly due to the nature of the hybrid algorithm that takes 
advantage of the fact that ABC provides LM (as seen in Fig. 
1) an optimal starting point, so it does not require many 
additional iterations to find the optimal global. Similarly, it 
stands out from Tables 7, 9 and 11, as in the first case, the 
time of convergence of LM was lower compared to the other 
two algorithms (ABC and HCLM). This was mainly due to 
the search range, since being higher for ABC and HCLM 
(between 0.1 to 100) compared to LM (1.2 to 1.8), it required 
more iterations and therefore more computational time. 

 
4. Conclusions 

 
This article describes an alternative way of estimating 

properties such as thermal conductivity in orthotropic 
materials. For this, the mathematical model that defines the 
internal temperature profile was used, when the material is 
subjected to a conduction heat transfer process. Next, the 
respective inverse problem was defined, which was solved by 
the cuckoo search algorithm, the Levenberg-Marquardt 

method and a new hybrid of the latter two. When contrasting 
the results of the simulations with these three algorithms, it 
was found that all were able to find the solution, that is, the 
thermal conductivities for the three orthogonal directions. 
However, the hybrid has a lower number of iterations and in 
some cases better execution time when compared to the ABC. 
We believe that this is due to the presence of the LM. On the 
other hand, when compared with both, the hybrid algorithm 
presented a better performance in terms of execution time and 
number of iterations in most cases. In addition, the solutions 
turned out to be more precise, even though the search rank 
was equal to the ABC. Similarly, it was observed that the 
consumption of computational resources is lower in the LM 
algorithm. Remember that this traditional deterministic 
method has the limitation of having to know in advance a 
region close to the optimal solution, or the probability of not 
finding it will increase markedly. Thus, we can conclude that 
for the problem addressed in this work, it is very 
advantageous to use the new hybrid HCLM algorithm. It is 
important to highlight that the HCLM can be applied in other 
fields of engineering as long as the objective function is 
defined. Readers who wish to follow this methodology, 
should perform preliminary tests to choose the internal 
parameters of the algorithm according to each particular 
application, to obtain better results. 
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