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Abstract 
We propose a methodology for conducting simulations of operational scenarios for energy projects based on photovoltaic generation 
systems. It considers several documented facts about time series of weather, such as strong seasonality and structural breaks, which the 
previous literature has not explored in depth. Our proposal uses public weather time series, which are usually recorded by meteorological 
observatories. This makes our approach a suitable strategy for any firm interested in applying it to its own data and projects. This approach 
also allows the user to set an appropriate level of confidence for the scenarios depending on her interests. 
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Análisis de riesgo usando factores meteorológicos en sistemas de 
conversión de energía de solar 

 
Resumen 
Se propone una metodología para realizar simulaciones de escenarios de operación de sistemas solares fotovoltaicos. Esta aproximación 
tiene en cuenta características documentadas de las variables climáticas, como su estacionalidad y la presencia de quiebres estructurales, 
las cuales no han sido exploradas anteriormente con profundidad. La propuesta usa series de tiempo de datos de diferentes variables 
climáticas, las cuales son normalmente recolectadas por estaciones meteorológicas; esto le da utilidad a nuestra propuesta, ya que cualquier 
firma interesada pueda aplicar nuestro planteamiento a sus propios datos y proyectos. Este enfoque también les permite a los usuarios 
establecer un nivel de confianza adecuado para los escenarios de operación en los cuales se tenga interés. 
 
Palabras clave: sistemas fotovoltaicos; radiación solar horizontal; quiebres estructurales; energías renovables; evaluación del riesgo. 

 
 
 

1.  Introduction 
 
Forecasting and construction of operational scenarios is a 

key component of the appropriate functioning of any firm in 
the energy sector; it is crucial to project management and thus 
to decisions about the operational and financial viability of a 
given project. This is also true for companies with a business 
unit focused on exploiting renewable energy sources, such as 
photovoltaic energy conversion systems. Indeed, a correct 
assessment of operational risks, in terms of the energy that a 
firm could expect to offer to the market in a given day, is a 
crucial input when constructing cash flow scenarios and 
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estimating returns on assets, liquidity ratios, present values, 
and other financial indicators. One can even make the 
argument that the execution of an entire energy conversion 
project depends on the accuracy of this exercise, and hence, 
it warrants considerable research efforts. 

For the above reasons, the literature has explored several 
alternatives to forecasting the level of radiation a user can 
expect to be recovered by a photovoltaic system in a given 
period. These alternatives generally take into account the 
crucial relationship that exists between weather conditions 
and collected radiation, including the stochastic nature of the 
weather variables. For instance, [1] aim at forecasting 
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radiation using k-th neighbor and interpolation methods, 
level of persistency, artificial neural networks, support vector 
regressions and time series analysis. These authors focus on 
the explanation of horizontal global radiation and use 
measures of radiation in a given location, alongside measures 
of weather variables in sparse locations around the radiation 
recording devices. [2] estimate an artificial neural network by 
genetic algorithms, aiming at forecasting daily radiation. 
They consider seven variables as inputs when training their 
network: average air temperature, minimum and maximum 
temperatures, relative humidity, atmospheric pressure, wind 
velocity and ground temperature. Using similar variables, [3] 
report that between three and four meteorological variables 
suffice to explain radiation, at least at the highest frequencies 
of their analysis. These authors base their conclusions on 
calculations of adjusted- R squared statistics, square residuals 
and forecasting errors. In contrast [4], employing similar 
methods and variables, finds that the best model includes all 
the available variables (seven in his case). 

[5] estimate Multivariate GARCH models (time series 
models with autoregressive patterns in the conditional 
variance process), which include climatological variables 
such as solar brightness, precipitation, average minimum and 
maximum air temperatures, relative humidity and saturation 
deficit. [6] emphasize the importance of the range between 
the maximum and minimum temperatures when forecasting 
radiation, and they also highlight the changing nature of the 
relationship between radiation and weather variables, very 
likely driven by the strong seasonal patterns that characterize 
the latter.  

In this study we do not focus on the point-forecast of 
radiation in a given period, instead we emphasize the 
construction of operational scenarios for an energy project in 
terms of the radiation that a photovoltaic unit can expect to 
collect, under certain weather conditions, in a given period, 
with an appropriate level of confidence. This enriches the 
tools available for energy project administrators and allows 
the unit in charge to make more accurate decisions, based on 
richer information, about a project’s realization or 
continuation.   

Our methodology aims at providing thresholds of 
minimum radiation that one may expect to observe given 
certain weather parameters and for a desired confidence 
level. That is, we focus on the estimation of a specific 
quantile of the distribution of radiation conditional on 
weather variables, which increases the accuracy of our 
estimates. We explore several weather indicators in our 
empirical exercise and work with daily averages of those, as 
has been done previously (for instance in [7]). Given the 
impaired evidence regarding the number of variables 
required to explain radiation [3,4], we performed an 
automatic search algorithm to determine how many and 
which variables should be included in an optimal model. 
Importantly, our methodology takes into account the 
dynamic relationship that exists between weather and 
radiation. The changing nature of the relation between 
weather and radiation has been mainly ignored so far. That 
is, strong evolving weather conditions may change the way  
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Figure 1. Graphical summary of the proposed methodology.  
Source: The authors. 

 
 

in which radiation interacts with temperature, wind, 
precipitation and other variables. Therefore, any model that 
is estimated under the assumption of a stable relationship 
among these variables may display spurious patterns, which 
may be avoided only by explicitly considering this 
possibility. Endogenous structural tests in time series 
analysis, such as the ones employed herein, are specially 
designed to address this challenge.  

In what follows we present the proposed methodology, 
and we illustrate it using data from a company that manages 
photovoltaic energy conversion systems, located in 
Colombia. We present our empirical results in section 3, and 
we discuss the results and conclude in sections 4 and 5, 
respectively.  

 
2.  Materials and methods 

 
Our methodology focuses on the problem of estimating 

the expected global radiation on a horizontal surface, given a 
set of weather-related covariates. The proposal consists of 
five steps: i) selection of relevant variables to be included in 
the model, ii) selection of a parsimonious empirical model, 
iii) stability tests of the model’s parameters, iv) simulation of 
operation-scenarios, conditional on weather parameters and 
v) generation of the output variable to be included in 
traditional project management designs (see Fig. 1). 

 
2.1.  Selection of relevant covariates in the model  

 
We assume a linear relationship1 between the total 

amount of radiation 𝑦𝑦𝑡𝑡 , and a set of weather-related 
covariates 𝑥𝑥𝑖𝑖,𝑡𝑡  i=1,2,…k, . In our empirical implementation, 
we imposed a maximum possible number of covariates 
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚=7, following data availability from regular records of 
a meteorological observatory. Working explanatory variables 
were: temperature, humidity, dew point, wind velocity, 
precipitation level, atmospheric pressure, and an indicator of 
cloudiness (the highest minus the lowest temperature within 
a day). In all cases, except for the last one, the recorded 
frequency of each variable was half an hour, and therefore we 
needed to transform the original series to daily averages to 
obtain standardized frequencies among all the covariates and  
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Figure 2. Radiation recorded on January 1st 2015  
Source: The authors. 
Note: the Figure shows the level of radiation collected by a solar panel during 
each half- hour on a given day. The area below the curve corresponds to the 
total level of radiation collected by the solar panel. The data shown in the 
Figure was selected just for illustration purposes.  

 
 

the dependent variable2. This dependent variable was 
constructed as the cumulated level of radiation collected 
by the panel during the course of a day. We had measures of 
the level of radiation collected at half hourly intervals. These 
measures were aggregated by integrating out the area below 
the curve in Fig. 2 for each day within the sample. 

In this case, the population model that describes the 
relation between the collected radiation and the weather 
regressors can be written as follows: 

 
𝑦𝑦𝑡𝑡 = 𝛽𝛽1𝑥𝑥1,𝑡𝑡 + 𝛽𝛽2𝑥𝑥2,𝑡𝑡 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘,𝑡𝑡 + 𝜀𝜀𝑡𝑡,        (1) 

 
In practice, we do not know coefficients 𝛽𝛽𝑖𝑖, nor do we 

know the value of k. That is, we must estimate the marginal 
effects of each covariate on the total amount of collected 
radiation, and, at the same time, we must decide how many 
and which variables may appear in eq. (1). Once this is done 
we end up with a sample-counterpart of eq. (1): 

 
𝑦𝑦𝑡𝑡 = 𝛽̂𝛽1𝑥𝑥1,𝑡𝑡 + 𝛽̂𝛽2𝑥𝑥2,𝑡𝑡 + ⋯+ 𝛽̂𝛽𝑘𝑘� 𝑥𝑥𝑘𝑘� ,𝑡𝑡 + 𝑒𝑒𝑡𝑡 ,       (2) 

 
In eq.(2), marks over each of the coefficients indicate that 

those coefficients are related to the sample, instead of the 
population, and therefore they can be obtained from the data.  

In the process of deciding which variables to include in 
eq. (2), we consider that redundant variables will conduce to 
inefficient estimations of the model’s parameters, while 
omitted (and relevant) variables will likely conduce to biased 
and non-consistent estimations. Hence, lacking a generally 
accepted theory regarding the shape and composition of eq. 

                                                      
2 In our empirical implementation, other alternatives to averages were explored. 
Specifically, we conducted some preliminary exercises using principal components 
instead of averages, with no significant gains in terms of model fitting. 
3 Since our algorithm returns a best model of each 𝑘𝑘� the results do not depend 

(2) led us to undertake a data-driven model selection process 
using ordinary least squares (OLS) and subsets of 
regressions. We conduced our exhaustive search for relevant 
covariates among subsets of variables typically recorded by 
meteorological observatories, many of which have been 
previously explored in the empirical literature.  

Formally, given a maximum number of variables 
recorded by the meteorological observatory, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 , we 
estimated different models fitted on subsets of variables, each 
of cardinality 𝑘𝑘� ≤ 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚. For each value of 𝑘𝑘�, which must be 
chosen a priori by the researcher, it was necessary to evaluate 
all possible combinations of covariates. Then, for each 𝑘𝑘�, we 
selected the model that minimized the sum of squared 
residuals, 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑒𝑒𝑡𝑡2𝑇𝑇

𝑡𝑡=1
3. This strategy is equivalent to 

selecting the subset of variables for a given 𝑘𝑘� , that maximize 
the coefficient of determination, 𝑅𝑅2, of the linear projection 
of 𝑦𝑦𝑡𝑡  onto 𝑥𝑥1,𝑡𝑡 , 𝑥𝑥2,𝑡𝑡 , …, defined as 𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆⁄ , where 
𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑦𝑦𝑡𝑡2𝑇𝑇

𝑡𝑡=1 . There are several alternative approaches that 
may be used to accomplish this task. One that is widely 
accepted in the statistical literature, which, moreover, is 
available in the statistical software R, consists of conducing 
an exhaustive (forward or backward) search for the best 
subsets as explained in [8]. In practical terms, this can be 
done using the function ‘regsubsets()’, from the package 
‘leaps’. In our implementation, we set 𝑘𝑘� = 1 … 7 because our 
maximum number of variables was constrained by the 
number of variables available from the original observatory 
data. 

 
2.2.  Selection of the empirical model, based on criteria of 

fitting and parsimony 
 
Notice that the preceding step gives us the best linear 

model for each value 𝑘𝑘�. Nevertheless, in practice, the 
researcher also needs to estimate the optimum value of 𝑘𝑘�. 
That is, we must select the best model among those available, 
taking into account model’s parsimony considerations, by 
penalizing the inclusion of redundant variables in the 
estimations. That is, if a variable is to be included in a model, 
it must add to the model in terms of explanatory power more 
than it takes from it in terms of efficiency. To this end, we 
used two different criteria: Akaike’s Information Criterion 
(AIC) and a Bayesian Information Criterion (BIC)[9], 
defined as: 

 
𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘� − 𝑙𝑙𝑙𝑙(𝐿𝐿),   (3) 

 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑙𝑙𝑙𝑙(𝑇𝑇)𝑘𝑘� − 𝑙𝑙𝑙𝑙(𝐿𝐿),  (4) 

 
where 𝐿𝐿 is the likelihood of the model, 𝑙𝑙𝑙𝑙 () stands for the 

natural logarithm, and 𝑇𝑇 is the number of time series 
observations in the sample. The best model minimizes either 
of these two criteria. 

 

on a penalty model for model size such as AIC or BIC. 
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2.3.  Stability tests of the model’s estimates due to weather 
conditions 

 
With the best model determined, after steps 1 and 2 we 

test for parameters’ stability. In the case of photovoltaic 
energy conversion systems, this is a crucial step of the 
methodology because weather-related variables are known to 
exhibit strong seasonality patterns, which in principle may 
have a significant effect on the relationship between the 
covariates in the model and the collected radiation during the 
year. This is even more important when modeling weather 
variables for energy companies located in countries 
characterized by higher latitudes and markedly contrasting 
seasons.  

To this end, we used endogenous structural break tests 
following [10,11]. These procedures offer a reliable strategy 
to identify changes in the relationship between the covariates 
and the explained variable. The multiple-breaks statistic is 
intuitively a set of Chow’s statistics [12], calculated using 
recursive regressions over subsamples of increasing lengths. 
Several candidates for breaks are selected using the biggest 
F-statistics for which the null hypothesis in the Chow tests 
(i.e., parameters stability) is rejected. Then, asymptotic 
(corrected) critical values are used to contrast the null of no-
breaks.  

 
If we define 𝜃𝜃� = �𝛽̂𝛽1, 𝛽̂𝛽2, … , 𝛽̂𝛽𝑘𝑘� � and 𝑋𝑋𝑡𝑡 =

�𝑥𝑥1,𝑡𝑡, 𝑥𝑥2,𝑡𝑡 … 𝑥𝑥𝑘𝑘�,𝑡𝑡�  eq.(2) can be rewritten as:  
 

𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑡𝑡′𝜃𝜃𝑗𝑗 + 𝑒𝑒𝑡𝑡,          (5) 
 
where 𝑗𝑗 = 1, … ,𝑚𝑚 + 1 represent a given model regime. 

That is, if we have 𝑚𝑚 structural breaks in the model’s 
parameters, it allows us to estimate 𝑚𝑚 + 1 regimes (or 
‘seasons’). To identify and estimate the model in eq. (5), it is 
necessary first to estimate the number and location of breaks. 
The general idea underlying Bai and Perron’s [10] algorithm 
consists of the following steps:  
i. First, we estimate a model through recursive regressions, 

increasing the sample from ℎ ∗ 𝑇𝑇 to 𝑇𝑇 ∗ (1 − ℎ), where 
ℎ ∈ (0,1). The sample is divided into two sub-samples, 
in the period where 𝑅𝑅2 of the global regression is 
maximized. We set ℎ = 0.05. 

ii. Once this break point is determined, the same searching 
procedure is applied to each of the two sub-samples. The 
process continues to the point where either it reaches a 
maximum number of breaks determined a priori (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
5 in our case) or to the point at which new break 
candidates are no longer statistically significant.  

iii. To conduct hypothesis testing about the significance of 
each break point, critical values provided by Andrews 
[13] and Hanssen [14] must be used to avoid the 
identification of spurious break estimates. 
Once the numbers and locations of the endogenous breaks 

are known, it is possible to estimate eq.(6):  
 

𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑡𝑡′𝜃𝜃�𝑗𝑗 + 𝑒𝑒𝑡𝑡.   (6) 
 
Notice that the model has different coefficients for each 

regime or season. Such coefficients are determined 
endogenously, provided 𝑗𝑗 > 1. Estimations like those 
described above are performed using the package 
‘strucchange’ in the statistical software R.  

 
2.4.  Simulation of scenarios 

 
The simulation exercises in our methodology take into 

account, by construction, the most relevant variables explaining 
radiation, such as structural changes associated with different 
weather regimes. Eq.(6) for each regime can be rewritten as: 

 
𝑦𝑦𝑡𝑡 = 𝑦𝑦�𝑡𝑡 + 𝑒𝑒𝑡𝑡,   (7)  

 
where 𝑦𝑦�𝑡𝑡 = 𝑋𝑋𝑡𝑡′𝜃𝜃� for a given 𝑗𝑗, which has been supressed 

to simplify notation. The sources of uncertainty in this case 
are 𝑦𝑦�𝑡𝑡 and 𝑒𝑒𝑡𝑡. In the former case, we may observe different 
arrangements of the meteorological variables relevant to the 
model, which may conduce to distinct scenarios of operation. 
In the latter case, uncertainty may arise from other variables 
not included in the model, which may potentially affect the 
operation. To take into account both sources of uncertainty, 
we generated different scenarios of operation 𝑆𝑆, conducting 
re-sampling with replacement in the series of 𝑦𝑦�𝑡𝑡 and in the 
series of 𝑒𝑒𝑡𝑡.  Then, we aggregated the two generated series 
into a single series to formulate comprehensive scenarios of 
operation for 𝑦𝑦. This procedure is justified as long as 𝑦𝑦�𝑡𝑡 is 
orthogonal to 𝑒𝑒𝑡𝑡, which holds by construction in our case.  

The final idea consists of estimating some order statistics 
of the simulated scenarios for 𝑦𝑦𝑖𝑖 , {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑆𝑆 . These are 
percentiles of interest for the administrator in charge of the 
project decisions. For example, percentiles α ∈ (0,1) close to 
0 (α = 0.01,0.05,0.10) may be interpreted as conservative 
scenarios for decision making.  

 
2.5.  Data 

 
We use data from February 4th 2014 to October 26th 2015. 

The variable of main interest is radiation, which was 
constructed as explained in section 2.1 and in Fig. 2. As 
explanatory variables we used average daily temperature, 
humidity, dew-point temperature, wind velocity, 
precipitation level, atmospheric pressure, and the difference 
between maximum and minimum temperatures each day. All 
variables were collected at half-hour intervals, and all but the 
last one were averaged to work with a daily version of each. 
All data were taken from a meteorological observatory 
located in Colombia, latitude 3.4383 and longitude -76.5161. 
After transforming each variable, according to our 
requirements we ended up with a total of 580 days of 
observations. Fig. 3 depicts our variables, and in Table 1 we 
show the summary statistics of our sample. Fig. 3 also 
highlights two regimes in the sample, which were detected 
using structural breaks tests as explained above. 
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Figure 2. Radiation and Explanatory Variables Used in The Analysis. 
Source: The authors. 
Note: The Figure shows the daily averages of the variables employed in our 
estimations. Radiation is measured in kWh/m2, temperature is measured in 
°C, humidity is measured in %, dew-point temperature is measured in °C, 
wind velocity is measured in m/s, precipitation is measured in mm, 
atmospheric pressure is measured in Bar. Max-Min corresponds to the 
difference between the highest and the lowest temperatures registered each 
day. The shadowed area corresponds to the first regime in our sample, 
detected by using structural breaks tests.  

 
 

Table 1.  
Summary statistics of the variables used in the estimations. 
 Radiation Temperature Humidity Dew Point 
Min. 1646 20.03 60.81 16.86 
1st Quartile 3938 23.78 71.21 19.17 
Median 4569 24.51 76.30 19.67 
Mean 4559 24.44 76.49 19.70 
3rd Quartile 5274 25.24 81.40 20.24 
Max. 7812 27.64 96.54 21.81 

 Wind Velocity Precipitation 
Atmospheric 
Pressure 

Max-Min  
Temperature 

Min. 0.275 0.0000000 741.7 3.667 
1st Quartile 1.621 0.0000000 744.8 9.278 
Median 2.229 0.0000000 745.7 10.667 
Mean 2.167 0.0066074 745.7 10.703 
3rd Quartile 2.688 0.0002083 746.4 12.111 
Max. 4.396 0.8750000 749.5 18.167 

Source: The authors. 
Note: Minimum, 1st and 3rd quartiles, median, mean and maximum for each 
variable. 
 
 
 
 

Table 2.  
Selected variables given k, from k=2 to k=7. 

k Temp. Dew 
Point Humidity Wind 

Velocity Precip. Atmosp. 
Pressure 

Max-
Min 

Temp. 
1       * 

2 *      * 

3 *   *   * 

4 *   *  * * 
5 * *  *  * * 
6 * *  * * * * 
7 * * * * * * * 

Source: The authors. 
Note: An asterisk indicates that a given variable is included in the model 
with the number of variables indicated in the first column. The variables 
were selected using exhaustive (forward or backward) searches for the best 
subsets. 

 
 
Before conducting our estimations, we had to stabilize the 

mean of the atmospheric pressure variable using a dummy 
variable regression. We detected two changes in the scale of 
the series on March 31st 2014 and on October 5th 2015. These 
changes were unrelated to weather, but they were caused by 
settings in the measurement device.  

 
2.6.  Target 

 
The procedure described above aims at sizing a 

photovoltaic system in an accurate fashion. We seek a 
suitable radiation value that could be used for sizing solar 
photovoltaic and photo-thermal panels, batteries, battery 
chargers and inverters. Applying the proposed methodology, 
we provide an option for performing sizing of these devices, 
which uses statistical tools for the selection of the level of 
radiation to be employed.  

 
3.  Results and discussion 

 
Here we present the main results of our empirical 

implementation. First, we set the relevant variables to be 
included in our model. Given an optimal number of variables, 
the selected combinations are presented in Table 2. As can be 
seen, the difference between maximum and minimum 
temperatures appears in all selected models, using one to 
seven variables. The second most recurring variable is 
average temperature and the third is wind velocity. The least 
relevant variables, in terms of their significance in the 
models, are humidity and level of precipitation.  

We estimated six models using the indications provided in 
Table 2. The models included between two and seven variables 
(we omitted the model with only one variable). Following the 
AIC criterion, the optimal model should include five variables, 
namely, average temperature, dew point temperature, wind 
velocity, atmospheric pressure and the differences between the 
max and min temperatures. According to BIC criteria, the 
optimal model should include only four variables, namely the 
same as those listed above except for dew-point temperature. In 
the interest of parsimony we followed BIC in the final 
specification (Table 3). 
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Table 3. 
Criteria for model selection. 

k 2 3 4 5 
AIC 8,987.542 8,959.928 8,952.471 8,951.929 
BIC 9,004.994 8,981.743 8,978.649 8,982.471 

k 6 7 
AIC 8,953.383 8,955.363 
BIC 8,988.288 8,994.630 

Source: The authors. 
Note: Two criteria were used to determine the optimal number of variables 
in the model, the Bayesian Information Criterion (BIC) and the Akaike’s 
Information Criterion (AIC). The best models are those with lower values 
and are highlighted using bold type in each case.  

 
 
Having selected the best model, we test for the stability 

of its parameters. We detected one statistically significant 
structural break in the sample that minimizes the BIC 
criterion (8914.26) when including partitions. The break is 
located on May 25th 2014 (day 110) with an associated 95% 
confidence interval between May 16th 2014 and June 1st 
2014. Thus, we documented two different regimes in our 
sample, the first one from February 4th 2014 to May 25th of 
the same year, and the second one from May 26th until the 
end of the sample (see Fig. 1). 

We present the estimated coefficients corresponding to 
the two detected regimes in Table 4. In the first regime, only 
two variables - temperature and the highest minus the lowest 
temperatures in a day - were statistically significant. Both of 
them exhibited positive signs in the regressions, meaning that 
an increase of one degree in the average temperature recorded 
in a given day increases the radiation collected by 342.44 
kWh/m2. In the same line, an increase in the difference 
between the max and the min temperatures (i.e., indicating a 
less cloudy day) increases the supply of radiation by 364.68 
kWh/m2, all other variables remaining constant. Although 
only two variables were significantly different from zero 
during this regime, the model is highly significant on a joint 
basis, as shown by an associated F statistic of 85.81, which is 
also significant at a 99% confidence level. The coefficient of 
determination, which is usually interpreted as a measure of a 
model’s goodness of fit, is relatively high, indicating that the 
estimated model accounted for 76.57% of the total variation 
in the collected radiation series.  

In the second regime, all the variables were statistically 
significant. Although, the two variables (temperature and 
max-min) continued to explain radiation in a significant 
fashion, their average effect on radiation was considerably 
less pronounced compared to the first regime. That is, with 
an increase of one degree in the average temperature, 
collected radiation increases by 139.15 kWh/m2 during the 
second regime (in contrast with 342.44 w/m2 in the first 
regime). The same holds true for the level of cloudiness. This 
means that during the second period of the sample, other 
variables, such as wind velocity and atmospheric pressure, 
were also highly relevant to explain the total level of 
radiation collected by a panel. Both variables have positive 
signs. These changes in the model were only possible to 
detect by testing the model’s stability by means of structural 
break statistics. This is a key point when modeling energy 
generation devices that depend on weather variables, 

especially when modeling renewable energies, which are 
characterized by strong seasonality patterns and are, 
therefore, very sensitive to structural instabilities associated 
with weather. 

In Table 5 we report the expected operational scenarios at 
different levels of confidence from 5% to 90%. This 
information is valuable for project managers who seek to 
determine how much of their energy supply can be 
compromised for future delivery depending on the weather 
conditions. For example, during regime 2, the 5th percentile 
of the generated scenarios corresponds to 3,058.46 kWh/m2, 
this means that on only 5% of the days during a year 
(approximately 18 days) will the collected level of radiation 
be lower than 3,058.46 kWh/m2. Analogously, the 90th 
percentile is 5,685.84 kWh/m2, which tells us that on only 
10% of the days will the collected radiation be higher than 
this level. Those scenarios can be interpreted as 
corresponding to ‘optimistic’ or ‘pessimistic’ expectations. 
The lowest quantiles are associated with very conservative 
scenarios of operation, and they can be used as forecasts of 
the worst scenarios a firm might face, during a particular 
weather regime, in terms of energy supply.  

Notice that the percentiles vary considerably from one 
regime to another. Specifically, they are almost always 
higher for the second regime than for the first regime. This 
seems quite natural because, during the first period of the 
sample, the observatory recorded more precipitation, lower 
dew-point temperatures, fewer differences between the 
highest and the lowest temperatures in a day (cloudier days) 
and a lower wind velocity (see Fig. 1). Nevertheless, when  

 
Table 4.  
Coefficient estimates that relate each explanatory variable to radiation in 
each regime of the sample. 

First Regime 
Dependent Variable: Radiation   
Degrees of Freedom 105 
 Estimate Robust S.E. 
Intercept -64684.2 43926.6 
Temperature 342.4*** 84.4 
Wind Velocity 32.7 69.5 
Max-Min Temp. 364.7*** 31.2 
Atmospheric Pre. 76.8 56.9 
   
R-squared 0.77 F-statistic 85.8*** 
Adjusted  
R-squared 0.76 (4 and 105 DF) 

Second Regime 
Degrees of Freedom 465 
 Estimate Robust S.E. 
Intercept -68581.1*** 16099.6 
Temperature 139.2*** 28.4 
Wind Velocity 338.4*** 37.9 
Max-Min Temp. 274.0*** 13.9 
Atmospheric Pre. 88.5 21.2 
R-squared 0.70 F-statistic 272.9*** 
Adjusted  
R-squared 0.70 (4 and 465 DF) 

Source: The authors. 
Note: * significant at 90% of confidence, ** significant at 95% of 
confidence, *** significant at 99% of confidence. 
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Table 5. 
Operation’s Scenarios 

  5% 10% 15% 
Regime 1 2969.396 3342.907 3579.546 
Regime 2 3058.455 3401.363 3627.674 

 20% 50% 90% 
Regime 1 3768.835 4570.654 5774.753 
Regime 2 3808.448 4572.227 5685.841 

Source: The authors. 
Note: The Table shows how much radiation we can expect the panel to 
collect, on a given day, during each regime in the sample, under certain 
levels of confidence. For example, in the second regime, we can expect that 
the collected level of radiation will surpass 5,685.841 w/m2 in a day only 
10% of the time, while we can expect it to be lower than 3,401.363 w/m2 
only 10% of the time. 

 
 

we focus on the 90th percentile during the first regime, the 
average level of collected radiation was lower compared to 
the second regime, but it was also more volatile. Therefore, 
we can conclude that the first regime of operation is also 
more risky in terms of the level of radiation that one may 
expect to receive in photovoltaic panels. 

 
5.  Conclusions  

 
We propose a methodology for conducting simulations of 

operational scenarios for energy projects based on 
photovoltaic generation systems. It considers several 
documented facts about time series of weather, such as strong 
seasonality and structural breaks. Our proposal uses public 
weather time series, which are usually recorded by 
meteorological observatories. This makes our approach a 
suitable strategy for any firm interested in applying it to its 
own data and projects. We illustrate our methodology using 
data for a Colombian energy firm and we document that the 
difference between maximum and minimum temperatures 
appears in all selected models, using one to seven variables. 
The second most recurring variable is average temperature 
and the third is wind velocity. The least relevant variables, in 
terms of their significance in the models, are humidity and 
level of precipitation. 
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