Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA: Rect@

Matemáticas aplicadas a la Economía: La teoría de juegos.

Paula I. Corcho Sánchez*
Facultad de CC. EE. Y Empresariales Universidad de Extremadura
pcorcho@unex.es

Resumen:

La Teoría de Juegos estudia modelos matemáticos que, de alguna forma, representan un aspecto de conflicto o de cooperación entre agentes racionales e inteligentes (Myerson R., 1991). Su principal objetivo es construir modelos a partir de situaciones reales, por lo que, las conclusiones de dichos modelos aportan unas pautas generales de comportamiento, en tanto que este refleje con más perfección la realidad. Esta nueva teoría se ha convertido en una valiosa herramienta para analizar situaciones económicas, sociales y políticas. En este trabajo introducimos conceptos, elementos y algunas de las aplicaciones más significativas para comenzar el estudio de esta disciplina matemática-económica.

Palabras clave: Teoría de Juegos.

[^0]
1 Introducción

Aunque la Teoría de Juegos empezó siendo matemática aplicada, se ha convertido en una forma de razonamiento dominante en el mundo de la empresa y de la economía. Macroeconomistas, como Robert Lucas ${ }^{1}$, sostienen que la contribución más importante a la macroeconomía desde Keynes, ha sido el resultado de formular los problemas macroeconómicos como juegos y su posterior resolución. No sólo, en macroeconomía podemos encontrar la utilización de la Teoría de Juegos, sino en otras muchas otras áreas de conocimiento económico. Por este hecho, en 1994 La Real Academia de Ciencias de Suecia otorgó el Premio Nobel de Economía a los profesores de Teoría de Juegos Harsanyi, Nash y Selten, por su análisis fundamental del equilibrio en la Teoría de Juegos no cooperativos. La vinculación entre matemáticas y Teoría de Juegos es inmensa, de hecho los profesor es citados anteriormente son matemáticos. Para entender esta nueva Teoría hay que formarse inicialmente en matemáticas y dominar ciertas partes de las mismas. La Teoría de Juegos, puede considerarse la ciencia que estudia los juegos con el rigor necesario para resolverlos, y nos encontramos en literatura al respecto, con definiciones como la siguiente: Es la teoría que estudia modelos matemáticos que, de alguna forma, representen un aspecto de conflicto o de cooperación entre agentes racionales e inteligentes (Myerson R.,1991). De esta forma, diremos que un juego es un problema de decisión donde hay más de un agente decisor y las decisiones de un jugador tienen efectos sobre el otro. El diseño de estrategias competitivas, su ejecución, las negociaciones e incluso las relaciones interpersonales, están llenas de factores estratégicos que pueden analizarse en el esquema conceptual de la Teoría de Juegos. Los juegos se han clasificado tradicionalmente en juegos cooperativos y juegos no cooperativos. La diferencia estriba en las posibilidades de comunicación y negociación que se les permite a los jugadores. Lo s juegos no cooperativos son aquellos en los que cada agente actúa siguiendo exclusivamente su propio interés sin poder firmar contratos vinculantes. Los juegos cooperativos se caracterizan por la existencia de un cierto poder superior capaz de hacer cumplir los acuerdo s posibles. Ambos tipos de juegos se representan de distinta manera. Los juegos no cooperativos, se presentan en forma estratégica o en forma extensiva. La forma extensiva (Kuhn, 1953) de un juego describe con gran detalle la secuencia de movimientos de los jugadores, la información que tienen los jugadores en cada momento del juego y otros detalles, como situaciones de azar. En cambio, los juegos cooperativos se presentan en forma característica o coalicional, que consiste en la descripción de los pagos que reciben cada una de las coaliciones posibles. Una vez establecidas las normas de representación de un juego, el siguiente paso es la resolución del mismo. La utilización del cálculo diferencial es uno de los procesos de resolución de un juego. Los participantes de un juego intentan conseguir el mejor resultado posible y se trata de resolver un problema de maximización complicado. La Teoría de Juegos aporta la disciplina de un análisis riguroso ba-

[^1]sado en el paradigma de agentes racionales maximizadores de su utilidad individual. Pero los intereses de los agentes no suelen ser coincidentes, por eso las cuestiones de índole estratégica han de jugar un papel importante a la hora de analizar y entender el comportamiento de los agentes económicos. Este es el marco general de estudio propuesto por la Teoría de Juegos a través de la utilización de las matemáticas. Sus aplicaciones abarcan distintas áreas de la economía: Organización industrial, Economía Pública, Macroeconomía y Teoría de la Empresa. En Organización Industrial encontramos estudios a través de diferentes juegos de la competencia oligopolística, normativa de patentes, incentivos a la innovación tecnológica, regulación óptima de monopolios, etc. En Economía Pública encontramos estudios de asignación de bienes públicos, estructura impositiva óptima, control de externalidades, etc. Otra parte de la teoría de Juegos está aplicándose a la competencia política y sus repercusiones económicas, a la credibilidad de políticas gubernamentales, etc. A todos estos importantes campos de aplicación, la Teoría de Juegos aporta un análisis riguroso y matemático. En este trabajo el objetivo es, simplemente, ilustrar de forma breve y sencilla, cuáles han sido las contribuciones, más importantes, de algunos autores a que la Teoría de Juegos sea aplicada a diversos campos de la economía. El trabajo se divide de la siguiente forma: La sección 2 introduce formas de representación y análisis de los elementos de un juego, la sección 3 ilustra una de las aportaciones conceptuales más importantes, el equilibrio de Nash. Este equilibrio es aplicable a contextos donde cada uno de los jugadores tiene información completa sobre las características relevantes del juego. La sección 4 extiende, de forma breve, el marco teórico de Nash a un contexto en donde jugadores tienen información incompleta de algunos parámetros relevantes del juego o el juego se repite a lo largo del tiempo. La sección 5 ilustra algunas consideraciones y aplicaciones de los juegos cooperativos, detallando el caso de sistemas de votación y su estudio desde la Teoría de Juegos. La sección 6 presenta un resumen y consideraciones finales acerca de la idea de que la Teoría de Juegos ha experimentado un desarrollo fulgurante en las últimas décadas, tanto a nivel teórico como en sus múltiples aplicaciones. Actualmente, camino del año 2000 , podemos concluir que es una disciplina que forma parte del instrumental utilizado por todo economista a la hora de analizar cualquier sistema económico, como un contexto de interacción entre agentes racionales, independientes y con intereses (al menos parcialmente) contrapuestos.

2 Representación de los juegos

Los juegos no cooperativos y los juegos cooperativos se formalizan de distinta manera. Los juegos no cooperativos, se presentan en forma estratégica o en forma extensiva. En cambio, los juegos cooperativos se presentan en forma característica o coalicional, que consiste en la descripción de los pagos que reciben cada una de las coaliciones posibles. Los juegos no cooperativos pueden clasificarse en función de cómo se presentan: juegos en forma estratégica (normal) y juegos en forma ex-
tensiva. La primera se refiere al juego que se define de forma que cada jugador escoge una estrategia, y el conjunto de estrategias escogidas entre todos los jugadores, simultánea e independientemente, determinan los resultados de cada jugador. La forma extensiva (Kuhn, 1953) de un juego describe con gran detalle la secuencia de movimientos de los jugadores, la información que tienen los jugadores en cada momento de l juego y otros detalles, como situaciones de azar.

2.1 Forma estratégica (normal) de un juego.

Formalmente, podemos definir un juego como un conjunto de los siguientes elementos: $N=\{1,2, \ldots n\}$: Conjunto de jugadores. A : Conjunto de resultados posibles. $\{\geq\}_{k \in N}$: Preferencias sobre A para cada jugador (relaciones binarias, completas y transitivas). $\left\{S^{k}\right\}_{k \in N}$: Conjunto de estrategias del jugador $k . a: S \longrightarrow A$: Regla de selección: A cada t-upla de estrategias s, siendo s de la siguiente forma $s=\left(s^{1}, s^{2}, ..\right) \in S=\times_{k \in N} S^{k}$, le asigna un resultado en $A . \pi^{k}: S \longrightarrow \Re$: Funciones de utilidad $\left(\pi^{k}(s) \geq \pi^{k}(t) \Leftrightarrow s \geq_{k} t\right)$. Así pues, la forma estratégica de un juego finito es el conjunto formado por,

$$
\left\{N,\left\{S^{k}\right\}_{k \in N},\left\{\pi^{k}\right\}_{k \in N}\right\}
$$

Existen dos tipos de estrategias en un juego no cooperativo: - Estrategias puras: asignar una acción a cada jugador. - Estrategias mixtas: conjunto de distribuciones de probabilidad definidas sobre el conjunto de estrategias puras. Por ejemplo, en un juego de elección cara o cruz, las estrategias puras son dos: cara y otra es cruz, y una estrategia mixta ${ }^{2}$ consiste en la asignación de probabilidades a decir cara o cruz. En la Figura 1 podemos observar la representación normal del juego de elegir cara o cruz. Las estrategias puras para cada jugador son (cara, cruz) y los pagos son ganar 1 unidad monetaria o perderla (-1): Si se forma parej a (de caras o de cruces) el jugador 1 gana y si no hay pareja gana el jugador 2. En estrategias puras no se llega a un equilibrio de Nash (lo veremos en la próxima sección). En estrategias mixtas la solución o equilibrio de Nash es para cada jugador (1/2Cara, $1 / 2$ Cruz). Este equilibrio en estrategias mixtas explica por qué la gente, lanza una moneda al aire al comenzar algunos juegos.

[^2]

Figura 1

2.2 Forma extensiva del juego.

Cuando los juegos adquieren una estructura secuencial, se adopta la forma extensiva, representada por un juego en forma de árbol. Sea $N=\{1,2,3 \ldots, n\}$ el conjunto de jugadores (personas, organismos, etc. encargadas de tomar decisiones). Un juego en forma extensiva comienza con un movimiento realizado por algún jugador o por la naturaleza ${ }^{3}$. Una vez que el primer jugador ha movido, le llega el turno a algún otro jugador, y así sucesivamente hasta que el juego final ice. Cuando éste termina, los jugadores obtienen sus resultados finales o pagos del juego. Cuando a un jugador le llega el turno de mover, se halla situado en un punto de decisión específico, denominado un nodo. Si el jugador conoce con precisión en qué nodo se halla, entonces éste constituye un conjunto de información. Con su decisión el jugador debe fijar qué nodo seguir en la jugada concreta que esté teniendo lugar. Pero, al decidir, el jugador puede no saber con precisión en qué punto del juego está . Esto se representa agrupando todos aquellos nodos de decisión, para cada jugador que es incapaz de distinguir, en un mismo conjunto de información ${ }^{4}$. Finalmente, un juego en forma extensiva se representa por

$$
\Gamma=(T, P, U, C, p, h)
$$

[^3]donde T representa el árbol, $P=\left\{P_{0}, P_{1}, \ldots . P_{n}\right\}$ son las particiones de los jugadores en los nodos no finales del árbol, $U=\left(U_{0}, \ldots, U_{N}\right)$ donde cada componente, U_{i}, es la partición de P_{i} en conjuntos de información; $C=\left\{C\left(u_{i}\right)\right\}_{i=1, \ldots, n}$ es una correspondencia, donde $C\left(u_{i}\right)$ es el conjunto de elecciones permitidas al jugador i en el conjunto de información $\left.u_{i} ; p=p\left(u_{0}\right)\right\}$ es un vector, donde $p\left(u_{0}\right)$ es la distribución de probabilidad de los movimientos de la naturaleza en u_{0}. Para completar la descripción del modelo, atribuimos a cada jugador i una función de utilidad esperada, h_{i}, definida sobre los nodos finales del árbol T (i.e. $h_{i}(z)$ es la utilidad del jugador i en el nodo final z). El juego se inicia en la raíz del árbol. Los movimientos de cada jugador y la resolución de las incertidumbres determinan el conjunto de arcos que conectan la raíz al nudo terminal que se alcance. El conjunto de arcos recorridos constituye una jugada y, a cada jugada, le corresponde un vector de pagos. En los juegos no cooperativos existe un concepto muy importante: Memoria perfecta. Esta propiedad consiste en que cada jugador recuerde todos sus movimientos en el juego. Si por el contrario, no recuerda algún movimiento diremos que el juego es de memoria imperfecta ${ }^{5}$. En la Figura 2 tenemos representado en forma extensiva el siguiente juego: Hay dos jugadores y dos cartas, un as y un rey. El as gana al rey. El jugador 1 escoge una carta y la ve. El jugador 2 no la ve (sabe que con probabilidad $1 / 2$ será un rey).

Figura 2
El jugador 1 tiene dos opciones decir la verdad o mentir (sus estrategias son decir as o decir rey). Una vez que habla el jugador 1 , el jugador 2 puede creérselo o no creérselo (sus estrategias son creer o no creer). Los pagos son los siguientes: Si el jugador 2 cree al jugador 1, cuando dice que la carta es un as entonces el jugador 1 gana media moneda. Si el jugador dice rey termina el juego y ambos se quedan sin ganar ni perder. Ahora bien si el jugador 2 no se lo cree y el jugador 1 ha recibido

[^4]un as, entonces el jugador 1 gana una moneda del jugador 2 . Si el 1 ha recibido un rey pero dice que es un as (y el 2 no se lo cree)entonces el 2 gana una moneda al 1. Este mismo juego en forma normal quedaría representado en la Figura 3:

1	2	NO CREER	CREER
AS	0,0	$0,5,-0,5$	
REY	$0,5,-0,5$	$0,25,-0,25$	

Figura 3

2.3 Forma coalicional de los juegos cooperativos.

Los juegos cooperativos se definen como un modelo donde interesan las coaliciones que se forman y el pago que recibe cada una de ellas. Las coaliciones de jugadores son los posibles subconjuntos de $N=\{1,2,3 \ldots, n\}$, denotadas por $S \subseteq N$ (dond e N es el conjunto de jugadores). El pago de cada coalición viene dado por la función $v(S)$, llamada función característica del juego $\left(v: 2^{N} \longrightarrow \Re\right)$. La representación formal viene dada por:

$$
(N, v) .
$$

Una vez realizado el primer paso en la formalización de un juego, pasamos a su resolución. Representado el juego al que se enfrentan N jugadores, en forma normal, extensiva o coalicional, el siguiente paso es la obtención de al menos una solución para esto s juegos, que representan en cada momento una situación de conflicto o de cooperación. La búsqueda de solución de un juego es lo que se denomina equilibrio (juegos no cooperativos) y solución-distribución (juegos cooperativos). En la próxima sección veremos algunas soluciones definidas por algunos autores.

3 Equilibrio de Nash

Para hablar de los inicios de la Teoría de Juegos tenemos que hablar de John von Neuman ${ }^{6}$ y O. Morgensten (1944) con la obra The Theory of Games and economic Behavior. Con ellos comenzó a utilizarse la herramienta matemática en la resolución de problema s económicos. Por lo tanto, podemos decir que la resolución formal de juegos es un producto del siglo XX. Los autores anteriores, centraron su investigación en los llamados juegos de suma nula. En este tipo de juegos, los intereses de los jugadores son estrictamente contrapuestos: lo que uno gana es exactamente igual a lo que el otro pierde. El primer resultado importante, fue la demostración de que todo juego bilateral de suma nula tiene una única forma de jugarse, y por tanto, un único pago asociado para cada jugador (valor del juego). De hecho, este valor del juego se alcanza mediante estrategias óptimas por parte de cada jugador que minimizan el máximo pago que su oponente puede obtener. Esto es lo que se conoce con el nombre de estrategias minimax. Es decir, la estrategia que minimiza el pago máximo del oponente son las óptimas que maximizan el propio pago dado el comportamiento de aquél. En este sentido, la confrontación entre jugadores racionales inmersos en un juego de suma nula es máxima.

3.1 Juegos de suma nula, estrategias maxmin y minimax.

Formalmente, el juego se representa por los conjuntos de estrategias S^{I} y $S^{I I}$ y los pagos π^{I} y $\pi^{I I}$, donde $\pi^{I}=-\pi^{I I}$. Dada esta característica el juego puede representarse en forma matricial con una única matriz de números, A, correspondiente a los pagos que recibe el jugador I. Supongamos que el jugador I tiene m estrategias puras y el jugador II tiene n estrategias puras. Sea $p^{T}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ una estrategia mixta genérica para el jugador I y $q^{T}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ una estrategia mixta genérica para el jugador $I I$. El pago esperado para el jugador I si utilizan estrategias p y q respectivamente, es

$$
E^{I}(p, q)=p^{T} A q=\sum_{i} p_{i} \sum_{j} q_{j} a_{i j}
$$

La reacción de los jugadores es que I intenta escoger p para maximizar la expresión anterior, mientras que el jugador $I I$ intentar minimizarla. De esta forma, en Teoría de Juegos tenemos las siguientes definiciones:

1) Valor (\underline{v}) y estrategia maxmin (p^{*}) para el jugador I $\underline{v}=\operatorname{Max}_{p} \operatorname{Min}_{q} p^{T} A q ; \quad \quad p^{*} \in \arg \quad \operatorname{Max}_{p} \operatorname{Min}_{q} p^{T} A q$
2) Valor (\bar{v}) y estrategia maxmin (p^{*}) para el jugador II
$\bar{v}=\operatorname{Min}_{q} \operatorname{Max} x_{p} p^{T} A q ; \quad p^{*} \in \arg \operatorname{Min}_{q} \operatorname{Max}_{p} p^{T} A q$ De forma análoga obtenemos los conceptos de de valor y estrategia minimax para el jugador II: 1) Valor

[^5](\bar{v}) y estrategia minimax (q^{*}) para el jugador II
$\bar{v}=\operatorname{Min}_{q} \operatorname{Maxn}_{p} p^{T} A q ; \quad \quad q^{*} \in \arg \operatorname{Min}_{q} \operatorname{Max}_{p} p^{T} A q$
Para los juegos de suma nula tenemos los siguientes resultados:
Proposición 1 El valor maxmin es menor o igual al valor minimax para todo juego de suma nula, es decir, $\bar{v} \geq \underline{v}$.

Teorema 1 (Teorema del Minimax). Cada una de las siguientes condiciones son equivalentes: 1.- Un equilibrio existe. 2.- $\bar{v}=\underline{v}=v$, (llamado valor del juego). 3.- Existe un número real v y un par de estrategias mixtas q^{*} y p^{*}, una para cada jugador tal que:

$$
\begin{aligned}
&\left(A q^{*}\right)_{i=1,2 \ldots m} \leq v, \\
&\left(p^{* T} A\right)_{j=1,2 \ldots n} \geq v,
\end{aligned}
$$

es decir que existe al menos una estrategia minimax para el jugador II y otra maxmin para el jugador I.

La demostración de este teorema puede analizarse en Owen, 1967 (An elemntary Proof of the Minimax Theorem, Management Science, 13.). La existencia del equilibrio está asegurada por el Teorema de Nash (se analizará en la siguiente subsección) . Con el Teorema del Minimax caracterizamos este equilibrio para juegos de suma nula. Existen resultados análogos como:

Teorema 2 (von Neumann, 1944) Todo juego finito de dos personas de suma nula con información perfecta tiene una única solución (equilibrio) y el valor $\underline{v}=\bar{v}$.

3.2 Equilibrio de Nash.

Con el paso del tiempo, se fue ganando mayor apreciación de las estrategias en otros contextos económicos y se fueron fraguando opiniones sobre la relevancia de los juegos de suma nula como modelos apropiados para entender el comportamiento de jugadores racionales en situaciones de conflicto. Entonces, surgieron ideas acerca de que los juegos que se aplicaban no presentaban una oposición frontal entre los jugadores, sino que era una mezcla de incentivos a la confrontación y a la cooperación que están indisociablemente unidos en el análisis del juego. Con estas ideas, las estrategias minimax que resultaban óptimas en juegos bilaterales de suma nula dejan de serlo. La alternativa fue propuesta por Nash y es lo que hoy conocemos como Equilibrio de Nash:

Definición 1 Un n-tupla de estrategias mixtas $\sigma \in M$ es un equilibrio de Nash si para todo jugador $k \in N$ y para toda estrategia $\tau^{k} \in M^{k}$, se cumple:

$$
E^{k}\left(\sigma^{1}, \ldots, \sigma^{k}, \ldots, \sigma^{n}\right) \geq E^{k}\left(\sigma^{1}, \ldots, \tau^{k}, \ldots, \sigma^{n}\right)
$$

El equilibrio de Nash debe entenderse de la siguiente forma: supongamos que los jugadores pudieran fijar un determinado perfil de estrategias por cada uno a lo largo del juego. Para que ese perfil pudiera considerarse como un equilibrio de Nash, es necesario que, una vez supuesto por parte de cada jugador que los demás van a cumplirlo, él mismo no tenga incentivos para desviarse de este acuerdo. En el siguiente apartado se hallan algunos equilibrios de Nash, en ejemplos sencillos. Volviendo al juego de las monedas de la Figura 1, podemos observar que no existe un equilibrio de Nash en estrategias puras. En cambio en estrategias mixtas tenemos que resolver el siguiente sistema de ecuaciones:

$$
\begin{gathered}
V E_{i}(C A R A)=V E_{i}(C R U Z) ; \\
p_{i}(C A R A)+p_{i}(C R U Z)=1 ; \quad \forall i \in N,
\end{gathered}
$$

siendo $p_{i}(C A R A)\left(p_{i}(C R U Z)\right)$ la probabilidad de que el jugador i escoja cara (cruz). Resolviendo este sistema obtenemos $p_{i}(C A R A)=p_{i}(C R U Z)=0.5$. Con lo cual, la solución en estrategias mixtas es que cada jugador elija con probabilidad $1 / 2$ cada acción, sólo así se llega al equilibrio. En la Figura 3, del mismo modo que anteriormente, resolviendo el correspondiente sistema de ecuaciones, tenemos que $p_{1}(R)=0.67$ y $p_{2}(A)=0.33, p_{2}($ creer $)=0.67 p_{2}($ no creer $)=0.33$. Con ello podemos concluir que el jugador 1 debería decir la verdad el doble de veces que miente. Del mismo modo, el jugador 2 debería creer al jugador 1 el doble de las veces que no le cree.

Teorema 3 (Nash, 1951) Todo juego finito tiene un punto de equilibrio en estrategias mixtas.

Uno de los inconvenientes de este equilibrio descrito, es la multiplicidad en su existencia. Esto indica que pueden existir juegos para los cuáles no existan un único equilibrio de Nash, en ellos la noción de equilibrio de Nash pierde parte de su atractivo como predicción del juego. Por este motivo, aparecen los llamados refinamientos del equilibrio de Nash. Entre los más importantes, podemos nombrar el equilibrio perfecto ${ }^{7}$. Sin embargo, el problema de la multiplicidad de equilibrios y la propuesta de nuevos refinamientos sigue siendo motivo de investigaciones recientes (Asheim, 1991; Kahn, 1992; Ferreira, 1995;....). Otra de las investigaciones llevadas a cabo, a raíz del concepto de equilibrio de Nash, es la de establecer puentes de relación entre soluciones cooperativas y no cooperativas, es decir, entre las dos ramas en que se divide actualmente la Teoría de Juegos. El equilibrio de Nash fue propuesto inicialmente para juegos con información perfecta, lo que significa que en cada momento del juego, el jugador a quien le corresponde decidir conoce la historia completa de todas las decisiones tomadas hasta ese momento y con información completa, lo

[^6]que significa que las funciones de las ganancias de los jugadores son de dominio público. Cuando estas hipótesis son muy débiles en algunos contextos económicos se empieza a hablar de equilibrio perfecto en subjuegos (Selten, 1965), de juegos y equilibrios bayesianos (Harsanyi, 1968), juegos dinámicos, etc. Así podemos concluir este apartado diciendo que Nash fue el primero que estableció un equilibrio aplicable a contextos donde cada uno de los jugadores tiene información completa sobre las características relevantes del juego. Harsanyi, extendió el marco teórico de Nash a un contexto en donde los jugadores tiene sólo información in completa de parámetros relevantes del juego. Del mismo modo podríamos seguir citando autores que van refinando el concepto inicial de equilibrio de Nash para modelos más generales y que se asemejan cada vez más con la realidad económica.

3.3 Aplicaciones.

En esta sección se desarrollan ejemplos que permiten explicar algunos acontecimientos económicos. Veamos en primer lugar cómo podemos explicar formalmente, con la Teoría de Juegos que los beneficios de las compañías fabricantes de cigarrillos aumentaron cuando se prohibió la publicidad en televisión. Supongamos, para simplificar, dos compañías que las llamaremos 1 y 2. Las estrategias de cada compañía son hacer publicidad en TV. o no. Las entradas en la matriz de ganancias son los beneficios de cada compañía en millones de pesetas. El juego de suma variable ${ }^{8}$ con dos compañías resultante podríamos representarlo en forma normal en la figura 4. Las estrategias para cada jugador son no anunciarse, anunciarse.. En la matriz de pagos puede verse que la publicidad en TV es una herramienta de marketing muy poderosa. Si la compañía 1 hace publicidad en TV y la 2 no, los beneficios de la compañía 1 aumentan en un veinte por ciento; lo mismo pasa si intercambiamos los papeles. Cada una de las compañías tiene incentivos para anunciar sus cigarrillos en TV. Existe un único equilibrio de Nash (y por tanto solución) en el ambas compañías optan por hacer publicidad en TV. Nótese, no obstante, que los beneficios son más bajos que si las compañías se abstuvieran de hacer publicidad. La razón de es to es que la publicidad de una tiende a anular la de la otra, dejando las ventas del sector más o menos igual, pero a un coste mucho más alto. Todo juego en el que cada jugador tiene una estrategia dominante tiene una única solución que consiste en jugar esa estrategia dominante. Cuando esta situación es mala para los jugadores, el fenómeno recibe el nombre de dilema de los presos. Los jugadores están presos de sus propias estrategias, a no ser que algo cambie el juego. En el caso que nos ocupa lo que cambió el juego fue la prohibición de anunciarse y los jugadores sólo se quedaron con la estrategia de no anunciarse. Tras este motivo, para sorpresa

[^7]agradable de las compañías, los beneficios aumentaron. ${ }^{9}$

1	2	NO TV
NO TV	50,50	20,60
TV	60,20	27,27

Figura 4
Existen variantes de juegos que tienen múltiples aplicaciones. Uno de los que acabamos de ver es la aplicación del juego llamado el dilema de los presos. Éste juego tiene otras interpretaciones como el problema del polizón en la provisión de bienes públicos, la carrera de armamentos, etc. Este juego consiste en representar formalmente lo siguiente: la policía encierra a dos sospechosos en celdas separadas y les explica las consecuencias derivadas de las decisiones que formen. Si ninguno confiesa, ambos serán condenados por un delito menor y sentenciados a un mes de cárcel. Si ambos callan, serán sentenciados a medio mes de cárcel cada uno. Finalmente, si uno confiesa y el otro no, el que confiesa ser puesto en libertad y el otro será sentenciado a tres meses de prisión (un mes más dos por obstrucción a la justicia). El juego representado en forma normal puede apreciarse en la figura 5.

[^8]| 1 | 2 | callar |
| :---: | :---: | :---: |
| callar | $-0,5,-0,5$ | $-3,0$ |
| confesar | $0,-3$ | $-1,-1$ |

Figura 5
El equilibrio de Nash es (confesar, confesar) y está claro que les hubiese convenido callarse a ambos. Otros juegos poseen un número de estrategias superior a cuatro. La clave para tratar juegos con muchas estrategias es el cálculo diferencial ${ }^{10}$. Un ejemplo de esto lo constituye este problema: Supongamos que x_{1} y x_{2} representan los presupuestos para publicidad de las empresas 1 y 2 . Además $x_{i} \in[0,1000]$. Los beneficios de la empresa 1 están representad os por $u_{1}\left(x_{1}, x_{2}\right)=1000 x_{1}-x_{1}^{2}-x_{2}^{2}$ y los de la empresa 2 por $u_{2}\left(x_{1}, x_{2}\right)=1000 x_{2}-x_{1} x_{2}-x_{2}^{2}$. Maximizando los beneficios de las empresas respecto a su propio presupuesto pero considerando el presupuesto de la otra tenemos:

$$
\begin{gathered}
\frac{\partial u_{1}}{\partial x_{1}}=1000-2 x_{1}=0 \\
\frac{\partial u_{2}}{\partial x_{2}}=1000-x_{1}-2 x_{2}=0
\end{gathered}
$$

Resolviendo el sistema de ecuaciones tenemos que el equilibrio sería (x_{1}^{*}, x_{2}^{*}) = $(500,250)$. Es importante señalar que se garantiza la existencia de equilibrio cuando los conjuntos de estrategias y las funciones de utilidad tengan algunas propiedades (intervalos acotados, C^{2}, estrictamente cóncavas en la estrategia del jugador correspondiente,...). El teorema de existencia de equilibrio de Nash no dice nada cuando los conjuntos de estrategias o las funciones de utilidad no son los adecuados. En estos casos, un juego puede tener o puede no tener equilibrio. Otro ejemplo del que podemos hablar en esta sección es el mencionado en un artículo de Hal Varian ${ }^{11}$ (1990). En 1989, la cadena comercial Sears anunció una nueva política de precios:

[^9]se decidió implantar una política de precios bajos, pero no tan bajos como los precios de rebajas. Al cabo de dieciocho meses de precios bajos cada día, se volvió a la política de ir lanzando promociones o rebajas. La Teoría de Juegos, a través de las soluciones en estrategias mixtas, nos ayudan a entender lo que pudo haber ocurrido: Supongamos dos empresas bien diferenciadas, llamadas 1 y 2 , que compiten en precios. Cada empresa puede escoger un precio normal (PN) o un precio de rebajas (PR), tal que $P N>P R$. El coste por unidad es constante; por ejemplo $\mathrm{PN}=600$, $\mathrm{PR}=500$ y coste $/ \mathrm{u}=450$. Esta sería la parte de oferta del modelo. En el lado de la demanda hay dos tipos de compradores según la forma de actuar ante la forma de comprar un determinado producto. Por un lado, existen compradores que aceptan el primer precio que ven. A estos les llamamos compradores d (desinformados). Supongamos que existen 100 compradores de este tipo, y que se presentan de forma aleatoria en cualquiera de las dos empresas; Por lo tanto, cada empresa espera hacer 50 ventas a compradores d sea cual sea el precio. Por otro lado, están los compradores i (informados) que sólo compran en rebajas. Estos compradores van de tienda en tienda buscando el precio más bajo. Supongamos que hay 120 compradores en el mercado que estamos considerando. Con estos datos, mencionados en el párrafo anterior, construimos el juego en forma normal que está representado formalmente en la figura 6 .

Figura 6
Los jugadores son la empresa 1 y la 2, las estrategias son $P N$ y $P R$ y los pagos son: Si las dos empresas eligen PN entonces el beneficio de cada un a de ellas es $50(600-450)=7500(\mathrm{~d}$ (PN-coste/u)); Si la empresa 1 decide iniciar una rebaja y la 2 no, tenemos que el beneficio para la empresa 1 es de 8500 , ya que aumenta el número de ventas en 170 unidades $(50+120)$ aunque el beneficio marginal por unidad es de 50 . Si ambas deciden optar por un precio de rebaja, el beneficio es de 5500. La forma normal nos indica que los equilibrios de Nash en estrategias
puras son $(P N, P R)$ y $(P R, P N)$. Esto es lógico, porque ninguna de las empresas va a abandonar y dejar que la otra gane más dinero. Veamos que información nos dan las estrategias mixtas. Sea $p(P N)$ la probabilidad de poner un precio normal y $p(P R)$ la probabilidad de cobrar el precio de rebajas. En un equilibrio en estrategias mixtas, el beneficio esperado por cobrar el precio normal $V E(P N)$ y el beneficio esperado por cobrar el precio en rebajas $V E(P R)$ es igual. Con lo cual,

$$
V E(P R)=8500 p(P N)+5500 p(P R)=V E(P N)=7500
$$

Las probabilidades que consiguen esta igualdad son,

$$
p(P N)=\frac{2}{3} ; \quad p(P R)=\frac{1}{3}
$$

Esto nos dice que si una empresa lanza una promoción o rebaja la tercera parte de las veces, defenderá sus beneficios frente a su competidor. Su promoción será efectiva porque por aparecer por sorpresa. Lanzar promociones con la frecuencia acertada sirve para defender un nivel de beneficios equivalentes a los que se obtienen con precios normales, es decir 7500. Los precios de rebajas es como un farol en el Póquer, sólo los buenos jugadores lo hacen, pero no más veces de las necesarias. Hallar el equilibrio en estrategias mixtas permite determinar cuántas veces hay que dar una sorpresa rebajando precios. Desde el punto de vista del cálculo de las estrategias mixtas podemos decir que en los almacenes de Sears se renunció al elemento sorpresa y ello le llevo a obtener unos beneficios reducidos al fijar unos precios próximos al coste y esto, le hizo volver a la política de ir lanzando promociones.

4 Extensiones de los juegos no cooperativos

Una hipótesis estándar en Teoría de Juegos no cooperativa es que la estructura del juego son de conocimiento compartido o común. Es decir, que el número de jugadores, las estrategias, las preferencias,... son conocidos por todos los participantes del juego. Además todos saben que los otros jugadores conocen esta información y así sucesivamente. Ante esta hipótesis, nos preguntamos cómo se pueden estudiar situaciones reales donde los jugadores disponen de menos información acerca de la estructura del juego, o mejor dicho no tienen una información completa del juego. La respuesta es el estudio de los juegos con información incompleta. En un juego con información incompleta los jugadores poseen información privada sobre preferencias y habilidades cuando escogen sus estrategias. Para modelizar estas situaciones existen los juegos bayesianos. A la representación normal de un juego no cooperativo habría que añadir más elementos y tendríamos el siguiente modelo para representar un juego bayesiano:

$$
G=\left\{N, S^{1}, \ldots S^{n}, T^{1}, \ldots, T^{n}, p^{1}, \ldots p^{n}, \pi^{1}, \ldots, \pi^{n}\right\}
$$

donde N es el número de jugadores, y para cada jugador, S^{i} representa el conjunto de estrategias del jugador i, T^{i} denota el conjunto posible de tipos del ju-
gador i y π^{i} es su función de pagos. Además, también se añade que para cada jugador i y para cada tipo t^{i} en T^{i}, tenemos $p^{i}\left(. / t^{i}\right)$ como la probabilidad sobre el conjunto de tipos de los demás jugadores (sobre T_{-i}), es decir sobre $T_{i}=T^{1} \times$ $T^{2} \ldots \times T^{i-1} \times T^{i+1} \times \ldots T^{n}$. La función de pagos está definida en $S \times T$, donde $T=T^{1} \times T^{2} \ldots \times T^{i-1} \times T^{i} \times T^{i+1} \times \ldots T^{n}$. Los conjuntos T^{i} recogen toda la información (incluso creencias) que el jugador i pueda tener acerca de los demás jugadores en el juego. Una vez representado se trataría de buscar solución a este tipo de juegos con el concepto de equilibrio bayesiano. Un equilibrio de un juego bayesiano es un conjunto de conjeturas sobre la acción que escogería cada jugador en función de su tipo, tal que cada tipo de cada jugador maximiza su utilidad esperada dado su propio tipo y las conjeturas sobre los otros jugadores. Como podemos observar las matemáticas aplicadas al cálculo de estos equilibrios son cada vez más complejas. Existen otros tipos de juegos, por ejemplo los juegos repetidos, que intenta estudiar el uso estratégico de la información privada en una negociación repetitiva. Es decir, responder a la pregunta de cómo usar la información disponible en una negociación repetida en el tiempo. En estos juegos se estudian las amenazas y las promesas (creíbles) sobre el comportamiento futuro y cómo esto puede afectar el comportamiento en el presente. Un concepto de solución para juegos repetidos es el llamado equilibro de Nash perfecto en subjuegos.

5 Juegos cooperativos y situaciones de comunicación

Hasta ahora, hemos estudiado los juegos no cooperativos apoyándonos en las estrategias que pueden utilizar cada uno de los jugadores y una función de pagos asociada a cada jugador, la cual depende de las diferentes estrategias que se empleen. En cambio, en un juego cooperativo no es necesario analizar las estrategias de los jugadores; sólo es necesario conocer los pagos asociados a los resultados del juego cooperativo. Esta es una situación derivada de una actividad en la que los elementos que intervienen (personas, empresas, instituciones,...) persiguen alcanzar un objetivo mediante la colaboración entre ellos. Los objetivos pueden ser ganar una votación, mejorar una gestión, buscar mayores beneficios empresariales, etc. La cooperación entre grupos es necesaria, por ejemplo, para poder alcanzar una mayoría en múltiples contextos. La falta de mayoría ${ }^{12}$ absoluta de un grupo obliga a formar alianzas, coaliciones entre distintos grupos. Surgen problemas reales que se suelen abordar formalmente desde un contexto de la teoría de juegos cooperativos. La Teoría de Juegos, tanto su parte cooperativa y la no cooperativa, trata de proporcionar un conocimiento más profundo del comportamiento racional en situaciones de conflictos reales, pero no hemos de olvidar, que posee el carácter de una teoría matemática y que hay dos razones principales que hacen difícil la aplicación

[^10]de esta Teoría a la práctica: los supuestos fuertes de racionalidad y los requisitos de información. Por ello, como decía Raiffa (1982), el pensamiento de la Teoría de Juegos puede usarse para aconsejar mejor a una parte de una negociación acerca de la forma en la que debería comportarse. Los juegos cooperativos fueron definidos por von Neumann y Morgenstern en el tratado titulado Theory of games and economic behavior. En este libro definen lo que es formalmente un juego cooperativo de n-personas e introdujeron las ideas relacionadas con la solución del juego.

Definición 2 Un juego cooperativo es un par (N, v) donde N es un conjunto finito, $N=\{1,2, \ldots, n\}$, cuyos elementos se denominan jugadores y los subconjuntos $S \in$ 2^{N} coaliciones, siendo 2^{N} el conjunto formado por todos los subconjuntos de N, i.e. $S \subseteq N$. La función $v, v: 2^{N} \longrightarrow \Re$, se denomina función característica. El valor $v(S)$ es igual a la cantidad mínima que puede obtener la coalición si todos sus miembros se asocian y juegan en equipo.

Ejemplos: - Una finca rústica está valorada por su propietario en 50 millones. Un empresario le ofrece acondicionarla como polígono industrial, con lo que su valor de mercado alcanzaría los 100 millones. Otro empresario le ofrece urbanizar la finca para la construcción de viviendas, con lo que el valor alcanzaría los 150 millones. El juego quedaría representado ${ }^{13}$ de la siguiente forma: $N=\{1,2,3\}$, $2^{N}=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ y $v: 2^{N} \longrightarrow \Re$, siendo $v(\{1\})=50, v(\{2\})=0 ; v(\{3\})=0 ; v(\{1,2\})=100 ; v(\{1,3\})=150 ;$ $v(\{2,3\})=0 ; v(\{1,2,3\})=150 ;$

- En un órgano de una institución, constituido por 40 personas con derecho a voz y voto, las decisiones se adoptan mediante el voto favorable de la mayoría absoluta de sus miembros. En esta situación el juego cooperativo se representa con $N=\{i \in$ $N: 1 \leq i \leq 40\}$ y $\quad v(S)=1$, $\operatorname{si} \operatorname{card}(S) \geq 21$, $v(S)=0$, en otro caso,
En este caso, los valores 0 y 1 reflejan si una coalición de jugadores $S \subseteq N$ es perdedora o ganadora en una votación. Normalmente, las propiedades que tenga la función característica correspondiente a un juego cooperativo son las que califican y dan nombre al juego. Tenemos, siguiendo esta norma, juegos monótonos, superaditivos, cero-normalizados, convexos, etc. Cuando hay que decidir qué resultados del juego son plausibles, una de las ideas básicas en la Teoría de Juegos cooperativos de utilidad transferible ${ }^{14}$ es que, dado un juego (N, v) y suponiendo que se llega a algún tipo de entendimiento entre los jugadores, se reparte la ganancia total $v(N)$ de la coalición N entre ellos. Por tanto, se deduce que hay que hacer una distribución de la cantidad $v(N)$ entre los jugadores. Ésta puede ser representada por

[^11]una función x con valores reales sobre el conjunto de jugadores N y debe satisfacer el principio de eficiencia: $\sum_{i \in N} x_{i}=v(N)$, donde x_{i} representa el pago al jugador i con la función x. Los vectores $x \in R^{N}$ que satisfacen el principio de eficiencia son llamados preimputaciones del juego (N, v). De esta forma tenemos la siguiente definición de solución de un juego cooperativo.
Definición 3 Una solución sobre una colección no vacía de juegos es una aplicación Σ que asocia a cada juego cooperativo (N, v) de dicha colección un subconjunto $\Sigma(v)$ del conjunto de preimputaciones.

Además, la mayoría de los conceptos de solución propuestos para juegos cooperativos requieren otras propiedades como, por ejemplo, racionalidad individual ($x_{i} \geq$ $v(\{i\}), \forall i \in N)$. Cuando las preimputaciones cumplen este requisito hablaremos de imputaciones del juego. La Teoría de juegos cooperativos se centra en el desarrollo de criterios dirigidos a decidir qué óptimos de Pareto debería considerar se que son la solución del juego, lo que ha llevado a un gran número de conceptos de solución muy diferentes. Estos diversos conceptos están unidos por el supuesto, común a todos, de que el resultado de un juego debe ser óptimo de Pareto, por lo que la Teoría de Juegos supone que tendrá lugar la cooperación (aunque en la vida real a menudo se violan los contratos). Existen, en la literatura referente a soluciones de juegos cooperativos, varios conceptos de solución: Núcleo (core), valor de Shapley, Nucleolo, τ-valor, el valor de Baanzhaf-Coleman, etc. Cada una de ellas cumplen propiedades atractivas para los juegos cooperativos, y uno de los objetivos perseguidos desde el punto de vista matemático es el de quedar demostrada la existencia (o las condiciones) y la caracterización axiomática de dichas soluciones. En principio, en el estudio de los juegos cooperativos, se supone que cualquiera de los jugadores quiere cooperar con los demás o, en otro caso, el juego se desarrollará en forma no cooperativa. Es decir, será posible formar cualquier coalición entre jugadores. El interés por aproximar la teoría a la realidad, dio lugar al estudio de juegos cooperativos con estructuras de coalición (Aumann y Maschler, 1964). En esta aproximación a una cooperación más restringida o limitada, los jugadores son distribuidos formando una partición del conjunto de los mismos, denominada estructura de coalición. Posteriormente, se proponen nuevos puntos de vista para modelar la conducta cooperativa entre los jugadores (Meyerson, 1977). Dado un juego (N, v), Meyerson le asocia un grafo de cooperación $G=(N, E)$ cuyo conjunto de vértices N es el formado por todos los jugadores y el conjunto de aristas no ordenadas E viene dado por los acuerdos bilaterales entre los jugadores. El grafo indica las posibilidades de comunicación entre parejas de jugadores y lleva implícito que no todas las coaliciones de jugadores son factibles. Este modelo de grafo se utiliza en problemas de asignación costes/beneficios, redes de comunicación y otra líneas de investigación que continúan en la actualidad, véase por ejemplo, Carreras (1991), Nouweland, Borm y Tijs (1992). Para ilustrar los conceptos anteriormente mencionados en esta sección vamos a presentar una aplicación realizada por Bilbao y López (1994) de la teoría de juegos cooperativos para evaluar la distribución del
poder de los miembros de la Unión Europea.

5.1 El poder de las naciones en la Unión Europea.

El modelo para asignar índices o cuotas de poder a los partidos, grupos, naciones o actores sociales que deciden mediante votaciones, está basado en los juegos de votación ponderada. Estos juegos permiten asignar a cada uno de los jugadores un índice de poder, que mide su capacidad para participar en coaliciones que superen la mayoría adoptada, es decir, en coaliciones ganadoras. Un juego de votación ponderada se define sobre un conjunto de jugador es, $N=\{1,2, \ldots, n\}$, cada uno de los cuales tiene asignado un número entero positivo de votos o pesos, que se denotan por $w_{1}, \ldots w_{n}$. Los votos que reúne cada coalición S, es la suma de los que tienen sus componentes, $w(S)=\sum_{i \in S} w_{i}$. Una coalición será ganadora si el número de votos que reúne es superior a la cuota o mayoría exigida para ganar. Dada una cuota q, tal que $q>1 / 2 w(N)$, se define le juego con la siguiente función característica:

$$
\begin{aligned}
& v(S)=1, \text { si } w(S) \geq q \\
& v(S)=0, \text { en otro caso. }
\end{aligned}
$$

Un juego de votación ponderada se representa, con los siguientes datos:

$$
v=\left[q ; w_{1}, w_{2}, \ldots, w_{n}\right] .
$$

La solución del juego llamada valor de Shapley es:

$$
\gamma_{i}(v)=\sum_{S \subset N: i \in S} \frac{(s-1)!(n-s)!}{n!}(v(S)-v(S \backslash\{i\}))=\sum_{S \in W: i \in S} \frac{(s-1)!(n-s)!}{n!},
$$

donde W denota el conjunto de coaliciones ganadoras minimales, es decir,

$$
W=\{S \subseteq N: v(S)=1 y v(T)=0, \text { si } T \subset S y T \neq S\}
$$

Este valor es el se denomina índice de poder de Shapley-Shubick, y se interpreta como la contribución marginal esperada por un jugador que convierte una coalición perdedora en ganadora. En el modelo que vamos a plantear, suponemos que el poder reside en el Consejo de la Unión Europea. Cada nación miembro es un jugador que puede unirse a otros para formar coaliciones y tiene un número de votos que le asigna el Tratado de la Unión Europea. Dado que está abierta la discusión sobre cual debe ser la exigencia de mayoría cualificada para la obtención de compromisos, se van a obtener índices de poder coalicional utilizando reglas de mayoría cualificada que exijan cuotas entre 61 y 68 votos sobre el total de 87 votos. Por tanto, teniendo en cuenta los datos de la Tabla 1, el juego de votación del Consejo de la Unión Europea se modela con los siguientes datos.

$$
v=[q ; 10,10,10,10,8,5,5,5,5,4,4,3,3,3,2]
$$

Las mayorías cualificadas que se estudian en este modelo son $\{q \in N: 61 \leq q \leq 68\}$.

	EL CONSEJO DE LA UNIÓN EUROPEA			
	Población	Votos	Índice Pobla.	Indice Votos.
Alemania	80.6	10	0.2188	0.1149
Reino Unido	57.9	10	0.1573	0.1149
Francia	57.5	10	0.1561	0.1149
Italia	56.9	10	0.1545	0.1149
España	39.1	8	0.1061	0.0920
Holanda	15.2	5	0.0414	0.0575
Grecia	10.3	5	0.0281	0.0575
Bélgica	10.1	5	0.0273	0.0575
Portugal	9.8	5	0.0268	0.0575
Suecia	8.7	4	0.0236	0.0460
Austria	7.9	4	0.0215	0.0460
Dinamarca	5.2	3	0.0141	0.0345
Finlandia	5.1	3	0.0137	0.0345
Irlanda	3.6	3	0.0097	0.0345
Luxemburgo	0.4	2	0.0011	0.0230
TOTAL	382.2	87	1	1

TABLA 1
En la Tabla 1 y 2 podemos observar que países como Reino Unido, Francia e Italia los índices de poder no se corresponden con los de población. España es uno de los países más equilibrado en la relación población/votos/poder. Sin embargo, existen mayorías cualificadas que le permitirían t ener índices de poder superiores a su índice de votación. Los demás países, por lo general, tienen un índice de poder y de votación superior a sus correspondientes índices de población.

ÍNDICES DE PODER EN EL CONSEJO DE LA UNIÓN EUROPEA								
q	61	62	63	64	65	66	67	68
Alemania	0.119	0.117	0.12	0.119	0.121	0.118	0.115	0.124
Reino Unido	0.119	0.117	0.12	0.119	0.121	0.118	0.115	0.124
Francia	0.119	0.117	0.12	0.119	0.121	0.118	0.115	0.124
Italia	0.119	0.117	0.12	0.119	0.121	0.118	0.115	0.124
España	0.0917	0.0955	0.0924	0.0884	0.0936	0.0921	0.0981	0.0911
Holanda	0.0558	0.0552	0.0566	0.0556	0.0566	0.0558	0.0542	0.055
Grecia	0.0558	0.0552	0.0566	0.0556	0.0566	0.0558	0.0542	0.055
Bélgica	0.0558	0.0552	0.0566	0.0556	0.0566	0.0558	0.0542	0.055
Portugal	0.0558	0.0552	0.0566	0.0556	0.0566	0.0558	0.0542	0.055
Suecia	0.0464	0.0454	0.0402	0.049	0.0398	0.0472	0.0463	0.0374
Austria	0.0464	0.0454	0.0402	0.049	0.0398	0.0472	0.0463	0.0374
Dinamarca	0.0313	0.0353	0.0331	0.0306	0.0332	0.0316	0.0373	0.0374
Finlandia	0.0313	0.0353	0.0331	0.0306	0.0332	0.0316	0.0373	0.0374
Irlanda	0.0313	0.0353	0.0331	0.0306	0.0332	0.0316	0.0373	0.0374
Luxemburgo	0.0218	0.0207	0.0226	0.0237	0.0185	0.022	0.0215	0.0237

TABLA 2

Los cálculos realizados en las Tabla 2 presupone que se permite cualquier coalición entre distintos países. Sin embargo, es razonable admitir que existirán coaliciones factibles y otras que no. Las naciones se agruparán en bloques siguiendo intereses políticos comunes, económicos, etc, por lo tanto existirá un modelo de cooperación parcial. Veamos cómo se modela formalmente un modelo de cooperación por grafos. El juego restringido por el grafo de cooperación parcial (N, v^{G}), para un juego de votación ponderada, viene dado por

$$
v^{G}(S)=\max \left\{v\left(S_{i}\right): S_{i} \in C_{\mathcal{F}}(S)\right\}
$$

donde \mathcal{F} es el conjunto de coaliciones factibles, $\mathcal{F}=\{S \subseteq N:(S, E(S))$ es un subgrafo conexo de $G\}$, dado un grafo de cooperación $G=(N, E)$. El conjunto formado por todas las coaliciones maximales ${ }^{15}$ de S lo denotamos por $C_{\mathcal{F}}(S)$. El índice del juego restringido por el grafo de cooperación (N, v^{G}), es el valor de Meyerson ${ }^{16} \mu(N, v, G)$, de la situación de comunicación que estamos analizando

[^12]en esta parte de la sección. Existen teoremas que ponen de manifiesto que el valor de Meyerson es la única regla de asignación justa ${ }^{17}$ que puede definirse en el conjunto de las situaciones de comunicación asociadas a un juego (N, v), y que, en el caso de que el juego (N, v) sea superaditivo, es una regla de asignación estable ${ }^{18}$. En la Tabla 3 podemos observar los valores de los índices de Meyerson para q=62 y q=65 (La Unión Europea exige al menos 62 o 65 votos de un total de 87). Estos valores han sido cálculados ${ }^{19}$ con el programa de cálculo Mathematica realizado por Wolfram en 1991. En la Figura 7 podemos construir con grafos un modelo de comunicación en la Unión Europea asumiendo las posibles coaliciones bilaterales que no son factibles (Lane y Maeland, 1995). Evidentemente, la formación de bloques puede ser muy variada y abordar múltiples posibilidades. En la Figura 7 se muestra un esquema de formación de bloques siguiendo intereses políticos comunes e influencia económica. Este esquema es uno de los muchos posibles, lo que se intenta es formalizar a través de un grafo las relaciones bilaterales entre distintos países de la Unión Europea.

Figura 7
El siguiente paso consiste en determinar el valor de Meyerson ${ }^{20}$, para las diferentes situaciones de comunicación planteadas en el sistema de grafos anterior. En la

[^13]Tabla 3, suponiendo el modelo de cooperación anterior, podemos apreciar un aumento de poder que experimenta Alemania y Francia. Esto puede deberse a que este poder es más real que el derivado de una supuesta cooperación total y completa por parte de todos los países miembros. También, observamos que España pierde esa característica de país equilibrado en relación población/votos/poder. Comentar además que Italia y el Reino Unido pierden poder considerando estas nuevas relaciones bilaterales.

V́ALOR DE MEYERSON EN EL CONSEJO DE LA UNIÓN EUROPEA

q	\mathbf{q}			65
Alemania	0.2925	0.2653		
Reino Unido	0.0628	0.0727		
Francia	0.2925	0.2653		
Italia	0.0628	0.0727		
España	0.0511	0.0567		
Holanda	0.02824	0.03276		
Grecia	0.02824	0.003276		
Bélgica	0.02824	0.03276		
Portugal	0.02824	0.03276		
Suecia	0.01491	0.0155		
Austria	0.02466	0.02288		
Dinamarca	0.04499	0.05726		
Finlandia	0.01106	0.01217		
Irlanda	0.0018	0.0195		
Luxemburgo	0.0113	0.0086		

TABLA 3

6 Conclusiones y comentarios

En las secciones anteriores, hemos ilustrado algunas de las aportaciones conceptuales, más importantes, con las que se inicia el estudio de la Teoría de Juegos. Ésta proporciona las herramientas necesarias, tanto para modelar situaciones no cooperativas como situaciones de cooperación y comunicación. La Teoría de Juegos se divide en dos grandes ramas: los juegos no cooperativos y los juegos cooperativos. Ambos tipos de juegos son muy diferentes, aunque las últimas investigaciones están encaminadas a establecer puentes de relación entre soluciones cooperativas y no cooperativas, es decir, entre las dos partes en las que se divide actualmente la Teoría de

Juegos. Las formas de representación para los distintos tipos de juegos se explican de forma simple en la segunda sección. La forma normal y estratégica, para juegos no cooperativos, difieren en el grado de detalle del que se sirven para describir el conflicto que se estudia. Para realizar estudios de alto alcance, se hace necesario utilizar una descripción completa de información y de los posibles movimientos secuenciales de las acciones en la situación bajo consideración. Los elementos principales son los jugadores, las reglas del juego y las soluciones del mismo. Para este último concepto, observamos que en los juegos no cooperativos se habla de equilibrio y en los juegos cooperativos de solución del juego. El primero se refiere a las estrategias elegidas por cada jugador para conseguir el mejor pago posible (maximizar su ganancia) teniendo en cuenta las posibilidades con las que cuentan los demás jugadores. El segundo, se refiere a la forma de repartir lo conseguido en la cooperación total o parcial de los jugadores. La primera parte del trabajo está dedicado al análisis de los juegos no cooperativos y del equilibrio de Nash. Se define el equilibrio de Nash y se muestran algunos ejemplos sencillos. Podemos observar que la propiedad de equilibrio de Nash es únicamente un requisito mínimo para una solución racional del juego. Por ello, aparecen problemas de unicidad. Para recomendar una estrategia única, la Teoría de Juegos tiene que imponer más requisitos de racionalidad a la solución teórica del juego. La obra de importantes matemáticos, como Harsanyi y Selten, proporcionan una teoría coherente ${ }^{21}$ para la selección del equilibrio en los juegos. La segunda parte introduce los juegos cooperativos de n personas y se proponen algunos modelos de cooperación parcial. El modelo clásico de la teoría cooperativa presupone que todos los jugadores cooperan entre sí y no hay ningún impedimento para ello. Sin embargo, la realidad impone ciertos límites a la cooperación total. Esto ocurre en cualquier situación en la que los jugadores no sean afines entre sí. Estas situaciones deben modelarse, mediante juegos de n personas entre las que la cooperación sólo es parcial. Este análisis, comienza con los trabajos de Meyerson, que modela las relaciones entre los jugadores mediante grafos de cooperación. En la última sección se hace un breve repaso a los juegos de votación ponderada y se estudia el ín dice de poder en estos juegos, entendido como la contribución marginal esperada por un jugador que convierte a una coalición perdedora en ganadora. El estudio de índices de poder en las ciencia s políticas se pone de manifiesto en numerosos trabajos (Herne y Nurmi (1993), Bilbao y López (1994), Carreras (1988), Calvo y Lasaga (1997), etc.). En este trabajo se presenta, de forma ilustrativa, la interpretación de estos juegos de votación ponderada en el caso del poder de las naciones que constituyen la Unión Europea. En la actualidad, la Teoría de Juegos se aplica en distintas áreas de conocimiento como pueden ser la investigación operativa, ciencias políticas, modelos de contaminación, mercados econó micos y otras muchas, sin olvidar, en ningún momento, que el objetivo de esta teoría es construir modelos (matemáticos) que reflejen de la forma más aproximada posible situaciones reales donde los individuos se enfrentan a problemas de decisión multipersonales. De esto,

[^14]deducimos que estos modelos de juegos nos proporcionarán normas de actuación más precisas en tanto el modelo refleje con más perfección la realidad.

Referencias

[1] Gibbons R. (1993), Un Primer Curso de Teoría de Juegos. Antoni Bosch, editor.
[2] Aumann, R. Maschler M. (1964), The Bargaining set for cooperative games. Princeton University Press, Princeton, New Jersey.
[3] Bilbao, J. López, J. (1994), El Poder de las Naciones en la Unión Europea. Política Exterior 40, 79-90.
[4] Calvo, E. Lasga, J. (1997), Probabilistic Graphs and Powwer Indices: An Application to the Spanish Parliament. Journal of Theoretical Politics 9, 477-501.
[5] Carreras, F. (1991), Restriction of Simple Games. Mathematical Social Sciencies 21, 245-260.
[6] Carter, M. (1993), Cooperative Games. Economic and Financial Modeling with Mathematica, Ed.Varian, Telos.
[7] Greenberg J., The Theory of Social Situations. An Alternative game-theoretic approach. (Cambridge Univ. Press.), (1990),
[8] Herne, K. Nurmi, H. (1993), The Distribution of a Priori Voting Power in the EC Council of Ministers and the European Parliament. Scandinavian Politic al Studies 16, 269-284.
[9] Kuhn H.W. (1953), Extensive Games and the problem of information, Annals of Mathematics Studies 28, p. 193.
[10] Lane, J. Maeland, R. (1995), Voting Power under the EU Constitution, Journal of Theoretical Politics 7 (2),
[11] Myerson R. (1977), Graphs and Cooperation in Games. Mathematics of Operations Research, 2.
[12] Owen G. (1967), An Elemtary Proof of the Minimax Theorem. Management Science, 13.
[13] Raiffa H. (1982), The art ans Science of negotation. Cambridge, MA: Harvard University Press.
[14] Von Neumann and Morgenstern (1947), The Theory of Games and Economic Behavior, Princeton Univ. Press.

[^0]: * Este artículo ha sido presentado en el Seminario de Teoría de Juegos celebrado en el Centro de Investigaciones Sociales y de Ciencias Economico-Administrativas de Guadalajara (México) con el proyecto BRV990006.
 Recibido: Diciembre 1.999
 Aceptado Abril 2.000, después de una revisión.

[^1]: ${ }^{1}$ Premio Nobel de economía en 1995. Cita la importancia de la Teoría de Juegos en su libro Models of Business Cycles, Oxford: Blackwell, 1989

[^2]: ${ }^{2}$ Cuando se emplean estrategias mixtas hablaremos de utilidades esperadas.

[^3]: ${ }^{3} \mathrm{El}$ azar puede ser introducido hacien do que en ciertos puntos de decisión mueva el jugador 0. Este jugador se denomina naturaleza o azar, y elige su movimiento a partir de una distribución de probabilidad que es conocida por el resto de los jugadores.
 ${ }^{4}$ En general, un conjunto de información puede contener cualquier número de nodos; sin embargo, cada nodo de un conjunto de información debe tener el mismo número de ramificaciones saliendo de él. Ello es así porque el número de ramificaciones es el número de elecciones que un jugado r tiene en ese punto, de no tener exactamente el mismo número de elecciones, tendría un medio de diferenciar los nodos.

[^4]: ${ }^{5}$ Con memoria imperfecta los cálculos matemáticos se complican.

[^5]: ${ }^{6}$ Además de crear la Teoría de Juegos, proporcionó las bases matemáticas de la mecánica cuántica y creó la arquitectura de los ordenadores, entre otras muchas cosas más.

[^6]: ${ }^{7}$ Se trata de elegir entre varios equilibrios de Nash, pero a veces, también existen varios equilibrios perfectos en un mismo juego.

[^7]: ${ }^{8}$ Un juego de suma variable es aquel en el que los intereses de los jugadores no están totalmente contrapuestos. Un juego de suma nula es aquel en el que los intereses de los jugadores están totalmente contrapuestos (lo que gana uno lo pierde el otro).

[^8]: ${ }^{9}$ Existen trabajos que demuestran que en 1970 cuatro grandes compañías de tabaco en EEUU gastaron 315 millones de dólares anunciando sus productos, pero sólo 252 millones en 1971. Este descenso provino de la no publicidad en TV. Al mismo tiempo, los beneficios aumentaron en 91 millones.

[^9]: ${ }^{10}$ Para ello utilizaremos funciones de utilidad diferenciables.
 ${ }^{11}$ A Model of Sales. American economic Review 70.

[^10]: ${ }^{12}$ Hoy en día, en las elecciones españolas a nivel regional a surgido y sigue surgiendo ese problema en la configuración de los Gobiernos Autonómicos.

[^11]: ${ }^{13}$ Otra parte del juego se encargaría de predecir qué coalición se formará y cómo se repartirá el beneficio entre los socios.
 ${ }^{14}$ La función característica sin transferibilidad denota no un número sino un conjunto incluido en \Re^{S} que se interpreta como las combinaciones de utilidades para los distintos jugadores de S que son alcanzables por la coalición S considerada aisladamente.

[^12]: ${ }^{15}$ Una coalición factible T es maximal de S si se verifica que $T \in \mathcal{F}$ y no existe $h \in \mathcal{F}$ tal que $T \subset H \subseteq S$.
 ${ }^{16}$ El valor de Meyerson de la situación de comunicación (N, v, G) es el valor de Shapley del juego restringido por el grafo.

[^13]: ${ }^{17}$ Sea (N, v) un juego cooperativo y sea $S C^{N}$ el conjunto de todas las situaciones de comunicación definidas sobre el conjunto N; Una regla de asignación para el juego v es una función sobre $S C^{N}$ definida, $Y: S C^{N} \longrightarrow R^{N}$, que verifica que $\sum_{k \in S} Y_{k}(N, v, G)=v(S)$. La regla de asignación es justa si para cualquier $(N, v, G) \in S C^{N}$ y cualquier arista $(i, j) \in E$, $Y_{j}(N, v, G)-Y_{j}(N, v, G \backslash\{i, j\})=Y_{i}(N, v, G)-Y_{i}(N, v, G \backslash\{i, j\})$.
 ${ }^{18}$ La regla de decisión es estable si para cualquier $(N, v, G) \in S C^{N}$ y cualquier arista $(i, j) \in E$, $Y_{j}(N, v, G) \geq Y_{j}(N, v, G \backslash\{i, j\})$ y $Y_{i}(N, v, G) \geq Y_{i}(N, v, G \backslash\{i, j\}$.
 ${ }^{19}$ Los profesores Fernández, Jiménez y López de la Universidad de Sevilla realizan en la actualidad estudios del package de Carter (1993) que incorpora métodos para calcular diversos conceptos de solución, entre ellos el valor de Shapley.
 ${ }^{20}$ Se calcula el valor de Shapley del juego restringido que resulta de tomar como sistema de coaliciones factibles el que se deriva de considerar los subgrafos conexos.

[^14]: ${ }^{21}$ Cualquier teoría normativa del comportamiento racional sólo estará terminada cuando contenga una teoría que seleccione un único punto de equilibrio para cada juego (Nash, 1951).

